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A valve mechanism supports the working process of an engine cylinder, and a camshaft is a key component required to open and
close a valve. When a camshaft loosens, the balance of the engine disrupts. In the meanwhile, the generalised force at its centre of
gravity (CG) alters.)is study proposed a novel technique to detect camshaft loosening based on recognising the generalised force
at the CG of the engine. We conducted Hanning windowed interpolation of discrete spectra to extract the precise phase and
amplitude by utilising the acceleration signals at the engine cylinder and mounts and cylinder head.We then accurately computed
the generalised force at the CG. Finally, we accurately extracted the camshaft loosening features by analysing the main harmonic
orders for the generalised force. As indicated by simulations, ourmethod can be used to effectively detect combustion engine faults
involving camshaft loosening.

1. Introduction

A camshaft is a key component required to open and close the
valve in an engine valve distribution mechanism. Camshaft
projections are in contact with a tappet. Excessive stress due to
contact between the camshaft projection and the tappet roller
may cause wear failure [1]. Additionally, under long service
time, a camshaft is subject to alternating load torque, bending
moment, and impact load. It possibly operates with an angular
vibration along with a bending vibration. Bearing and bush
wear and camshaft loosening can lead to overall wear and
unpleasant noise. )e efficiency and reliability of camshafts
decrease because of inaccurate movement, eventually resulting
in force variations at the centre of gravity (CG). An injection
pump camshaft of a truck diesel engine failed after a mere
13,000km run because fatigue cracks were initiated at the
keyway root through circumferential tangential stress because
the stationary frictional force between the camshaft cone and
timer working on keyway edges was inadequate [2]. A diesel
engine camshaft underwent instantaneous circumferential
cracking that propagated brittlely due to tensile stress generated
at the site of camshaft straightening [3].

Du and Yu [4] developed an engine power assembly and
accompanying valve train. )ey compared the vibration
acceleration signals of the engine cylinder head in normal
and fault states to determine the loosening fault features of
camshaft bearings. Diagnosis using mechanical systems is a
key subject in modern industry. In recent years, intelligent
methods have been widely used in structural diagnosis to
detect faults in 3D printers. Li et al. introduced an extreme-
learning-machine-based intelligent solution for fault diag-
nosis that used a low-cost and precise attitude sensor and
helped diagnostic measure studies for determining faults in
delta 3D printers [5, 6]. Kumar et al. developed a diagnostic
technique based on deep learning to recognise defects in
two-wheeler vehicle engines [7]. Ting et al. [8] determined
the cluster centre in a radial basis function neural network by
using the K-means clustering algorithm to study faults in
camshaft grinders. Fault samples are critical to initiate an
artificial intelligence (AI) mode. However, achieving con-
venient and thorough sampling in actual applications is
difficult because mostly mechanical systems are healthy and
normal.)us, it becomes difficult to attain AImodel training
even with sufficient fault samples [9].
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)e diagnosis of camshaft faults must be effectual and
accurate to ensure that the engine operates as usual [10].
Vibration signals, containing a large amount of fault in-
formation, are extensively utilised to diagnose faults [11–14].
)e vibration pattern of an engine can offer diverse infor-
mation about its state. In most cases, engine faults are
manifested directly as the fluctuation of generalised force at
the engine CG, achieved by utilising the acceleration signals
at the engine mounts. Xu et al. computed generalised force at
the engine CG and extracted features to detect single and
continuous/intermittent double cylinder misfires [15]. )e
primary vertical force for a four-cylinder four-stroke motor
refers to the second-order force, and the half- and first-order
forces are nearly zero [16]. However, the force at the CG
varies with camshaft faults.

Our study proposes a novel technique to detect camshaft
loosening based on recognising the generalised force at the
engine CG. We extracted the precise phase, frequency, and
amplitude through Hanning windowed interpolation. Two
prime advantages of our detection method are its high fault
sensitivity and less subjectivity to external factors and ex-
perimental conditions.

)e following presents the organization of the rest of the
paper. Section 2 introduces the identification principles for
generalised force at the CG. Section 3 describes the diag-
nostic procedure for camshaft loosening based on the
computed generalised force and illustrates the simulation
results. )e conclusions are made in Section 4.

2. Theoretical Fundaments

2.1. Generalised Force Estimation Method. As shown in
Figure 1, a powertrain mounting system is simplified into a
six-degree-of-freedom vibration model to calculate the
engine excitation force.

Assuming a slight movement of the engine mount
system, the kinematic equation for the power assembly
mounting system is

M €Q (t) + C _Q(t) + KQ(t) � F(t), (1)

where M denotes the 6 × 6 rigid mass matrix of the engine, C
denotes the 6 × 6 damping matrix, K denotes the 6 × 6
stiffness matrix, and Q and F are the generalised displace-
ments at the engine CG and 6 × 1 generalised force vector,
respectively.
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, (2)

where m is the engine mass; xc, yc, and zc are the CG co-
ordinates in the OXYZ reference system; Jxxo, Jyyo, and Jzzo

are the inertial moments for X, Y, Z coordinates, separately;
and Jxyo, Jyzo, and Jxzo are the cross inertial moments.
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, (3)

where kxx, kyy, and kzz are the total reciprocating stiffnesses
of elastic support; kxy, kxz, and kzy are the coupling stiff-
nesses of elastic support; and kαα, kββ, and kcc are the rotary
stiffnesses about the coordinate axis.
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(4)

where Fx, Fy, andFz represent transitional applied forces;
Mx, My, andMz represent the applied moments about
point O; Xo, Yo, andZo are point O′s transitional dis-
placements; and α, β, and c are point O′s rotational
displacements.

Using Fourier transformation on the two sides of
equation (1), we derive

M −
K

(2πf)
2 −

jC

2πf
  €Q (f) � F(f). (5)

Considering s points at which acceleration can be de-
termined, where the coordinates of the i th point
(i � 1, . . . , s) for the CG are xi yi zi , the following
equation can be derived under a “slight” motion hypothesis:
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Figure 1: Simplified model of a powertrain.
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A � E €Q . (6)

Accordingly, €Q can be computed using the least-squares
method:

€Q � E
T
E 

−1
E

T
A, (7)

where E is the transpose matrix and A denotes the accel-
eration vectors in three orthogonal directions for all the
points.

E �
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0 0 1 y1 −x1 0

· · ·
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0 0 1 ys −xs 0
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,

A � Ax1(f) Ay1(f) Az1(f) · · · Axs(f) Ays(f) Azs(f) .

(8)

We can precisely extract the acceleration signal phases
and amplitudes by exploiting the engine acceleration signals
at the mounts and block by using discrete spectrum inter-
polation. )e generalised force at the CG [17] is given by

F(f) � M −
1
ω2K
∗

  E
T
E 

−1
E

T
A. (9)

At local coordinates, the mount complex stiffnesses in
the three directions are given as

K
∗

� K + jωc

� K + jK′,
(10)

where j �
���
−1

√
and K′ � ωC � 2πfC are the loss stiffnesses.

)e phase difference of the gas-pressure torque for each
cylinder of an i-cylinder engine is 4π/i, which varies with the
engine ignition order. )e highest amplitude of the first
harmonic order k� i/2 appears in the resultant torque
spectrum. )e primary harmonic orders of a 4-cylinder 4-
stroke 4-cylinder 4-cylinder engine include k� i/2, i, 3i/2.
Figure 2 shows the phase angle graphs for a typical 4-cyl-
inder 4-stroke 4-cylinder 4-cylinder engine, the firing order
of which is1-3-4-2.

Considering the same contribution by each cylinder to
the engine torque, primary orders in the torque’s structure
are merely present due to gas forces, which are multiples of
half the cylinder quantity for the 4-cylinder 4-stroke engine
(Figure 2). Besides, the primary harmonic orders for the
torque are the 2nd, 4th, and 6th orders, when the engine runs
as usual. Primary harmonic orders change in the event of a
fault.

2.2. InterpolationMethod forDiscreteSpectrum. Equation (9)
requires accurate extraction of the amplitudes, frequencies,
and phases of the engine mounts and block. However, actual
test signals contain noise. In discrete spectral analyses, no-

integer period sampling leads to erroneous amplitude,
frequency, and phase [18–21]. Conventional FFT extracts a
highly errored generalised force, especially for the phase.
Before the correction, the first harmonic of the acceleration
shows similar errors to those for absolute phases. )us,
attaining accurate relative phases between acceleration re-
sponses leads to a decrease in the error estimates of the
generalised force. However, in the 2nd harmonic, phase
errors vary, provided the failure of maximum spectral lines is
within different frequencies, and alterations are present in
the relative phases [17]. )e interpolation method is used to
estimate frequency bias based on the amplitude ratio of the
first two maximum spectral lines. Consider x(t) as a single
sequence of the harmonic signal and its amplitude, fre-
quency, and phase as f0, A, and θ0, respectively. )en,

x(t) � A cos 2πf0t + θ0( . (11)

)rough equispaced sampling using N sampling points
at sampling frequency f0, we get a new sampling sequence:

x(n) � A cos 2πf0
n

N
+ θ0 . (12)

Applying Fourier transformation to equation (12), it
becomes

Xw(k) �
1
N



N−1

k�0
w(n)x(n)e

−j2πnk/N
, (13)

where w(n) is the window function.
After correction, the amplitude and phase are given by

A �
Xw(k)

W ∇f1
 

,

θ0 � arctan
Ik

Rk

  + π∇f1
,

(14)

where Xw(k) is the amplitude of the maximum spectral line
of the discrete spectrum of harmonic signals, that is, the
greatest amplitude in the major lobe, and W(∇f1) is the
spectral mode function.

)e rectangle window is expressed as

W ∇f1
  �

sin π∇f1
 

π∇f1 . (15)

)e Hanning window is expressed as

W ∇f1
  �

sin c ∇f1
 

1 − ∇f1 . (16)

Highly accurate amplitudes can be attained even at a
considerably low sound-to-noise ratio (SNR) of −2.33 dB.
)e maximum error rates for the rectangle and Hanning
windows are 4.5% and 6%, respectively. )e phase precision
for the Hanning window is <10°; however, due to an im-
proper interpolation direction in the interpolation technique
that is multiplied with the rectangular window when
SNR� 2.33 dB and ∇f1 ≤ 0.25, the resulting error is
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relatively large.)e Hanning window is twice in width as the
rectangle window, leading to a significant reduction in the
possibility of interpolation direction error, and there is no
arch exception [18]. Hence, we applied Hanning windowed
interpolation discrete spectrum in order to extract the phase,
amplitude, and frequency of the engine acceleration signals.

3. Camshaft Loosening Diagnosis Based on
Generalised Force Recognition

3.1. Simulation Models. )e engine valve mechanism
comprises a cam, a lifter, valves, valve springs, and a
camshaft. Each component has a certain mass and elasticity
to produce an elastic deformation during motion. )e valve
train produces high acceleration when running at a high
speed and is subject to a specific dynamic load. In the dy-
namic analysis, the components of the valve mechanism are
simplified into an equivalent lumpedmass and an equivalent
spring, respectively. )us, the lumped mass-spring vibration
model can be applied to perform the dynamic analysis of the
valve mechanism. )e dynamic model of the valve train has
been designed based on AVL Excite Timing Drive and in-
cludes double overhead camshafts for a 4-cylinder 4-stroke
engine. )e component unit of the valve train contains parts
such as a valve stem, valve seat, camshaft bearing, cam, lifter,
and spring and phase units, in sync with the composition of
the valve mechanism. Figure 3 presents the logic schematic
diagram of the component connections of the valve train.

We performed a high-quality FEA using AVL Excite and
multibody dynamics modelling for an in-line 4-cylinder 4-
stroke engine installed with mounts (Figure 4). First, an
engine crankshaft and powertrain finite element model is
established. )e finite element has an enormous degree of
freedom; thus, its matrix is simplified using MSC Nastran to
improve the computational efficiency. Next, the coupled
multibody dynamics model is set up based on the AVL
Excite. )e excitation force includes the force of a gas ex-
plosion and the inertial forces of reciprocation and rotation.
All excitation forces are included in our model to ensure that
the vibration is similar to that of an actual engine. )e
explosion pressure for each cylinder is set based on the

cylinder pressure plot. )e cylinder pressure curve of an
engine running at a speed of 2000 rpm at full load condition
is shown in Figure 5. )e piston load of each cylinder at
regular intervals, the pressure load of each cylinder wall, and
the load torque at the flywheel output are generated auto-
matically by the software as per the firing order. )e same is
applied to the corresponding nodes. )e valve mechanism
force can be considered an extended load of the powertrain,
which contains valve seat force, valve spring force, and
camshaft support force. )e other force is the piston striking
force produced due to the gap between the piston and the
cylinder liner.

For determining the valve train excitation force, we used
the valve train model based on the Excite Timing Drive and
loaded the calculated force into the Power Unit model. )e
data connection interface is preferred for both models. )e
piston striking force is calculated using excited Piston and
Rings, and the dynamic striking force of five nodes is dis-
tributed in the height direction of the main and vice thrust
side of the cylinder liner. )e calculated piston striking force
is also considered an extended force loaded into the cor-
responding nodes of the powertrain model.

Table 1 presents the CG of the power assembly and the
mount locations. Table 2 presents the power assembly’s
inertia parameters excluding those of the piston, connecting
rod, and crankshaft. )e three mounts have a stiffness of
3×105N/m and damping of 200N s/m.

3.2. Camshaft Bearing Loosening Fault Setting. )e simula-
tion of loosening bearing faults is created by removing the
SRBS unit from the model, provided that fixation of intake
and exhaust camshafts at the cylinder head is achieved using
five sliding bearings. No effect is exerted by the loosening
bearing on the pressing camshaft. In the present simulation,
the bearing of the intake camshaft of cylinder-3 (SRBS int4)
is removed so that bearing-4 has a zero acting force
throughout the work cycle, and the dynamic driving force of
cylinder-3’s intake and exhaust valves is transmitted to the
cylinder through the adjacent bearings 3 and 5 only. Fig-
ures 6 and 7 display the bearing forces of bearing 3 and 5,
respectively, at 2,000 rpm under normal and faulty scenarios.
When the bearing of cylinder-3 loosens, the supporting force
of the adjacent bearing changes to a large extent.

)e excitation force of the valve mechanism is taken as
the input force for the engine powertrain.)e acting force of
the camshaft on the cylinder head is mainly transmitted
through the bearing. )e valve train excitation force is
calculated based on the valve train model, followed by in-
troducing force into the Power Unit model through the
loading points as shown in Figure 8.

3.3. Camshaft Loose Diagnosis. )e loosening of the cam-
shaft bearing changes the generalised force at the CG. )us,
the fault features of camshaft bearing loosening can be
determined by calculating the generalised force based on the
vibration signals of the engine system. )e Hanning win-
dowed interpolation, as mentioned in Section 2.2, is used for
the precise phase, frequency, and amplitude extraction of the
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Figure 2: Phase angle graphs of gas-pressure torques for the 4-
cylinder 4-stroke engine.
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three engine acceleration signals at the cylinder block, head,
andmounts, respectively.)e generalised force computation
at the CG is determined using equation (9).

)e engine has a firing order of 1-3-4-2. )e frequency of
the excitation signal of the 4-cylinder 4-stroke engine is twice
that of the engine RPM. )e vibration signals produced by the
engine are the superposition of the fundamental frequency
signal and its higher frequency signal, based on the harmonic
signal characteristics. Under normal conditions, the primary
harmonic orders of engine vibration signal are the 2nd, 4th, and
6th orders, respectively, whereas the 0.5th order is nearly zero.
)e highest amplitude of the 2nd harmonic appears on the
resultant torque spectrum. Additionally, the signal of the engine
block vibration conforms to the same law.

)e vertically generalised force, identified under
normal conditions, is shown in Figure 9. )e amplitude of
the 2nd harmonic is the highest, whereas the amplitude of
the 0.5th harmonic is closer to zero, which is consistent
with the theoretical analysis. Camshaft loosening was
induced in cylinder-3 by removing the intake camshaft
bearing SRBS int4 (Figure 1). In this case, a large impact is
observed after each alternate revolution by the engine,
and its frequency is half of the engine RPM.)e loosening
of the camshaft leads to the formation of another exci-
tation force cycle, and the crankshaft rotates twice per
cycle. It also leads to an increase in the amplitude of the
0.5th harmonic and its multiples increases considerably
(Figure 10).

Figure 3: Valve train logic of component connections.

Figure 4: Engine logic of component connections.
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Figure 5: Pressure curve of the cylinder at 2000 rpm.

Table 1: Engine CG and mount positions.

X Y Z
Engine c.g. 139.3mm 9.8mm 91.9mm
Mount 1 0 285.2mm 122mm
Mount 2 73mm −254mm −45.5mm
Mount 3 554.5mm −80.4mm −148.1mm

Table 2: Engine inertia variables.

Mass Moment of inertia Product of inertia
m Jxx Jyy Jzz Jxy Jyz Jxz

111 kg 4.13 kg m2 9.67 kg m2 8.13 kg m2 0.16 kg m2 −0.16 kg m2 1.12 kg m2
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Figure 6: Camshaft force under normal condition.
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Figure 7: Camshaft force in faulty state.
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4. Conclusions

)is study proposed a novel technique for detecting cam-
shaft loosening, which was used for analysing the order of
the harmonics of the generalised force at the CG. Precise
phase, frequency, and amplitude extraction were conducted
using the Hanning windowed interpolation, thereby
achieving the generalised force accurately at the CG.

)e proposed method is effective in diagnosing the fault
induced due to camshaft loosening as demonstrated by the
simulation results based on the AVL software.)e loosening
of the camshaft changes the generalised force at the CG. )e
amplitude of the 0.5th harmonic and its multiples increase
sharply because the crankshaft rotates twice per cycle. )e
0.5th harmonic and its multiples increase when the rate of
change reaches half of the engine speed.
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