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(e key nodes play important roles in the processes of information propagation and opinion evolution in social networks.
Previous work rarely consideredmultiple relationships and features into key node discovery algorithms at the same time. Based on
the relational networks including the forwarding network, replying network, and mentioning network in a social network, this
paper first proposes an algorithm of the overlapping user relational network to extract different relational networks with same
nodes. Integrated with these relational networks, a multirelationship network is established. Subsequently, a key node discovery
(KND) algorithm is presented on the basis of the shortest path, degree centrality, and random walk features in the multi-
relationship network. (e advantages of the proposed KND algorithm are proved by the SIR propagation model and the
normalized discounted cumulative gain on the multirelationship networks and single-relation networks. (e experiment’s results
show that the proposed KND method for finding the key nodes is superior to other baseline methods on different networks.

1. Introduction

With the rapid development of social networks (e.g.,
Facebook, Twitter, and SinaWeibo), they have become main
platforms for people to obtain, spread, and exchange in-
formation. In social networks, how do we quickly spread
information? How do we effectively control the speed of
virus diffusion? How do we efficiently suppress the width of
rumor propagation? How do we correctly control and guide
the evolution trend of public opinion? For these practical
application scenarios, key nodes are able to play important
roles in the structures and functions of networks [1–3]. In
recent decades, scholars have mainly focused on single-re-
lation networks [4, 5]. Single-relation networks mean that
the networks consist of the same type of nodes and only one
type of relationship between nodes. Traditional single fea-
ture mining contained degree centrality and related variants
of degree centrality [6]. Chen et al. [7] proposed a degree
discount centrality algorithm to effectively make influence
maximization. Sheikhahmadi et al. [8] proposed degree
distance centrality algorithm. (eir experiments showed
that the performance of this algorithm was better than other

measures including high degree and betweenness in eight
large-scale networks. Wang et al. [9] proposed degree
punishment method to select spreaders. (ey adopted SIR
(Susceptible-Infected-Recovered) model to assess the per-
formance of the method. Combined with the neighbors’
numbers, neighbors’ influences, and clustering coefficient,
Chen et al. [10] proposed a cluster rank algorithm. (eir
experiments showed that the performance of this algorithm
is significantly superior to the degree centrality and k-core
decomposition. Besides, there are many methods to find the
key nodes in networks, such as feature vector method [11],
shortest path increment [12], spreading influence related
centrality [13], PageRank [14], LeaderRank [15], HITS [16],
k-shell centrality [17], and k-shell improved algorithm
[18–21]. From these research results, it can be seen that the
key node identification is very successful in single-relation
networks.

However, in real social networks, users often participate
in different social activities in various ways and form various
connections with different users [4, 22–24]. (e different
interactive relationships form multirelationship networks
[25]. For the multirelationship networks, there are many
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types of relationships between nodes; and the types of
nodes may be different. Obviously, the multirelationship
networks possess more information than single-relation
networks to effectively express the diversity of relationships
for social networks. Battiston et al. [25] first proposed the
relevant symbolic representation of the multirelation
network. Boccaletti et al. [26] further enhanced the un-
derstanding of multirelationship networks. Al-Garadi et al.
[27] applied the node identification method of single-re-
lation networks to multirelation networks. (ey only
mined the single feature of networks, failing to accurately
identify the key nodes. Chen et al. [13, 28] integrated
multiple centrality measures into the hierarchical ranking
method to identify the key nodes in complex social net-
works. Wang et al. [29] proposed a new metric for mea-
suring key nodes in multilayer networks. (ey further
verified the metric in single-layer networks, multi-
relationship networks, and aggregated networks, respec-
tively. Li et al. [30] proposed a key node identification
method for multilayer networks based on evidence theory.
(eir method had high computational complexity and was
not applicable to large social networks. Pedroche et al.
[31, 32] extended some algorithms for single-layer net-
works to two-layer networks. Fu et al. [33] used the rep-
resentation learning to learn the global structural features
and local structural features of networks.(eir method well
represented the characteristics of nodes. Singh et al. [34]
proposed a new multirelationship network aggregation
method to identify key nodes. (eir experiments showed
that their method has obviously advantage for influence
maximization across multiple social networks. Huang et al.
[35] treated the community as a node through extended
neighbor strategy. (ey transformed the multilayer net-
work into a single-layer network and then proposed an
algorithm to find the key nodes in monolayer or multilayer
networks. (us, the key node discovery is beneficial to
understand the structure properties of multirelation
networks.

At present, there is no unified concept of the key node
discovery in multirelation networks [36–40]. (e existing
methods of key node discovery for multirelationship
networks have not fully used the importance of the re-
lationships between different layers and the importance
of the edges between layers. (erefore, the key node
discovery algorithms have yet to study for multirelation
networks.

In this paper, we will design a novel algorithm for
identifying top-K key nodes in social networks. Firstly, we
propose an algorithm of overlapping user relational net-
works to establish different relational networks in social
networks. Subsequently, we reconstruct a multirelationship
network based on these relational networks.(en, we build a
node influence measure based on the multiple relationships
and multiple features to rank influential nodes. On the
multirelationship network, we propose a key node discovery
(KND) algorithm to obtain key node. Some comparison
experiments are made to verify the effectiveness of the KND
method on social networks. (e main contributions of this
paper are as follows:

(1) An algorithm of overlapping user relational network
is proposed.(is algorithm is able to extract different
relational networks with the same nodes.

(2) An algorithm of establishing multirelationship net-
work is proposed based on the different relational
networks. (e multirelationship network fully in-
tegrates the multiple relationships and multiple
features in social networks.

(3) A key node discovery (KND) algorithm with mul-
tiple relationships and multiple features is proposed.
In this method, a novel node influence measure is
built on the multirelationship network. Based on the
node influence method and the algorithms of
overlapping user relational network and multi-
relationship network, the key node discovery algo-
rithm is designed to find the key nodes on
multirelationship network. Some comparison ex-
periments on different datasets verify that the per-
formance of the proposed KND algorithm is better
than baseline methods. By the evaluation of the
normalized discounted cumulative gain (NDCG),
the proposed KND algorithm gets the best NDCG
score in different networks. (ese results show that
the proposed KND algorithm can accurately find the
top-K nodes in the social networks.

(e rest of the paper is organized as follows. Section 2
presents related definitions and proposed algorithms.
Section 3 explains the experimental setup and result an-
alyses of comparison experiments on three datasets. Sec-
tion 4 draws conclusions and future directions.

2. Key Node Discovery Algorithm Based on
Multiple Relationships and Multiple
Features of Social Networks

2.1.RelatedDefinitions. In a social network, there exist many
relational networks. (e ith relational network can be
represented as an undirected graph Gi � (Vi, Ei, Ri, Wi) for
1≤ i≤ l, where Vi � v1, v2, v3, . . . , vn  represents the set of
users in the ith relational social network;
Ei � e1, e2, e3, . . . , en  represents the set of edges between
nodes in the ith relational network; Ri � (r1, r2, r3, . . . , rl)

represents the set of relationships among users at each layer
in the social network, and their values belong to [0, 1]; and
Wi � W1i, W2i, W3i, . . . , Wni  represents the set of weights
in the ith relational social network.

Integrated with the l relational networks, the multi-
relationship network is defined, where V �

vj|vj ∈ V(Gi), 1 ≤ i ≤ l , I � Eab⊆Va ∗Vb; a, b � 1, 2, . . . ,

l, a≠ b}, W � Wi|1≤ i≤ |V| , and Wi � W1i, W2i,

W3i, . . . , Wli}. Specifically, E represents the set of interlayer
edges connected between the ath and bth relational networks;
Va and Vb, respectively, represent the nodes of the ath and bth
relational networks; and W is the set of the weights of all user
pairs in different relationships. In order to better measure the
weights of the relationships in the social network, their values
will be normalized in the following. Figure 1 shows an example
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of a social network and the multirelationship network. In
Figure 1(a), a social network has 3-layer relational networks,
where each layer network has 10 nodes, and the dotted lines
represent the edges between layers.

Each layer represents a type of relationship; the first layer
network is a forwarding network, where the network edges
with the blue lines represent the relationships between users;
the second layer is a replying network, with relationships
between users within the network represented by red lines;
and the third layer is a mentioning network, with rela-
tionships between users of the network represented by green
lines. Assume that users in different relational networks are
connected by a user participating in two or more rela-
tionships. (en all the relational networks aggregate the
multirelationship network, as shown in Figure 1(b).

Definition 1 (Neighbors) [34]. (e neighbors for a node u

are denoted by N(u) � v|uv ∈ E(G){ }.

Definition 2 (Degree centrality) [34]. For a node u ∈ G, the
degree centrality is the number of links incident upon node
u; that is, D(u) � |N(u)|.

Definition 3 (Shortest path of a node) [12]. Let div represent
the distance from node i to node v. (en the sum of the
distances from node i to the other nodes in a graph G,
denoted by C(i), is called the shortest path of node i; that is,

C(i) � 
i∈V

div. (1)

Definition 4 (Shortest path in the graph G) [12]. Shortest
path in graph G represents the sum of the shortest paths of
all nodes of G. (at is,

C(G) � 
i∈V

C(i) � 
v∈V


i∈V

div. (2)

2.2. Overlapping User Relational Networks. In social net-
works, users actively participate in different relational net-
works. (ese users are called overlapping users. (e
subgraph induced by the overlapping users in the ith re-
lational network is called the ith overlapping user relational
network for 1≤ i≤ l. (e network that is aggregated by all
overlapping user relational networks is called multi-
relationship network. In the following, for convenience, the
ith overlapping user relational network for 1≤ i≤ l is briefly
called the ith relational network.

In the kth relationship network (1≤ k≤ l), the weight of
the edge between users i and j is defined as

w
k
ij �

1, ij ∈ Ek Gk( ,

0, others.
 (3)

(en, the algorithm of overlapping user relational net-
works that are abstracted from a social network with rela-
tional networks Gi

′ � (Vi
′, Ei
′, Ri
′, Wi
′) (1≤ i≤ l) is represented

by Algorithm 1.

2.3. Establishing Multirelationship Network. In a social
network containing l relational networks, the weight of the
edge between users i and j is calculated as follows:
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Figure 1: A social network and the multirelationship network.
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Wij � 
l

k�1
w

k
ij. (4)

Based on the definition of the multirelationship network,
we can further establish a multirelationship network with
weights of edges through aggregating the l relational net-
works. For example, Figure 2 gives four relational networks:
following, forwarding, replying, and mentioning networks.
Figure 3 illustrates the process of aggregating the four re-
lational networks and the multirelationship network. (e
multirelationship network can be established by
Algorithm 2.

2.4. Key Node Discovery of the Multirelationship Network.
Let G\i be the graph removing node i. Based on the defi-
nition of the shortest path for a node, the shortest path
increment for a node i, denoted by SPISi, is the following:

SPISi � C(G\i) − (C(G) − C(i)) � C(G\i) + C(i) − C(G).

(5)

Let DCi and PRi denote the degree centrality [6] and
PageRank value [14] of a node i in graph G, respectively; and
let Sd(·) denote 0-1 normalization method. (en, we have

Sd SPISi(  �
SPISi − mini∈V(G)SPISi

maxi∈V(G)SPISi − mini∈V(G)SPISi

, (6)

Sd DCi(  �
Di

|V(G)| − 1
, (7)

Sd PRi(  �
1 − a

|V(G)|
+ a 

j∈N(i)

PR(j)

|N(i)|
, (8)

where Di stands for the degree of node i; and a is the
damping coefficient, generally 0.85.

Since a multirelationship network is aggregated by
different relational social networks through the overlapping
users, the node influence score of a user i in the network can
be calculated by combining with the degree centrality,
PageRank value, and shortest path increment as follows:

INFi � α∗ Sd SPISi(  + β∗ Sd DCi(  + c∗ Sd PRi( , (9)

where α, β, and c are parameters and α + β + c � 1.
(e shortest path increment is based on global features;

the degree centrality is based on local features; and PageRank
is a random walk feature. (us, this formula combines both
local and global features.

In multirelationship network, based on the weight of
edge ij in the kth relationship network (1≤ k≤ l), the node
weight of node i, denoted by NW(i), can be defined as
follows:

NW(i) � 
j∈N(i)

w
k
ij. (10)

Considering the edges of each relational network and the
characteristics of the network structure of different relational
networks, the final node influence score of a node i, denoted
by INFfinal(i), is aggregated with the node weight and the
node influence score in the multirelationship network.

INFfinal(i) � NW(i)∗ INFi � 
j∈N(i)

w
k
ij α∗ Sd SPISi( (

+ β∗ Sd DCi(  + c∗ Sd PRi( ,

(11)

where α + β + c � 1.
By the algorithms on the overlapping user relational

network and multirelationship network, the key node dis-
covery algorithm based on multiple relationships and
multiple features of social networks (KND algorithm) can be
stated by Algorithm 3.

3. Experiments

In this section, we will give the experimental dataset, baseline
methods, and evaluation experiments of KND algorithm.

3.1. Datasets. Four datasets are employed to verify the
performance of the proposed KND algorithm. (ey are
classified into two groups: single-relationship networks
and multirelationship networks. (e single-relationship

Input: Relational networks in the social network Gi
′(Vi
′, Ei
′, Ri
′, Wi
′), 1≤ i≤ l

Output: Each overlapping relational network: Gi(Vi, Ei, Ri, Wi), 1≤ i≤ l

(1) Vi⟵∅, Ei⟵∅, Wi⟵∅, Ri⟵∅
(2) for each graph Gi, 1≤ i≤ l do
(3) Vcommon � V(G1)∩V(G2)∩ . . . ∩V(Gl)

(4) for v ∈ Vcommon do
(5) for v ∈ N(u) in each graph Gi, 1≤ i≤ l do
(6) Ei⟵Ei ∪ (u, v)

(7) Vi⟵Vi ∪ u, v{ }

(8) for each edge uv ∈ Ei do
(9) the weight of the edge (u, v) in the ith overlapping relational network: wi

uv⟵ 1
(10) Ri⟵ 1
(11) Return Gi(Vi, Ei, Ri, Wi)

ALGORITHM 1: Overlapping user relational network.
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networks include two LFR artificial synthetic networks
and a karate club network. (e multirelationship network
is Higgs Twitter network, including following, forwarding,

replying, and mentioning relational networks. (e sta-
tistics of the two groups of datasets are shown in Tables 1
and 2.
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Figure 3: Multirelationship network.

Mathematical Problems in Engineering 5



3.1.1. Karate Club Network (https://blog.csdn.net/
weixin_41857995/article/details/105454517). It was a
friendship social network between 34 members of a college
karate club in a college of America.

3.1.2. LFR Artificial Synthesis Networks (LFR Networks) [41].
Since the networks follow power law distribution, they can
be used to simulate real networks. If the LFR network hasM
nodes, then the network is denoted by LFR-M network.

3.1.3. Higgs Twitter Network (http://snap.stanford.edu/data/
higgs-twitter.html). (e twitters contained news about the
discovery of new particles with Higgs boson features before,
on, and after July 4, 2012. (is dataset has four types of

Input: Gi(Vi, Ei, Ri, Wi) (1≤ i≤ l) obtained from Algorithm 1
Output: Multirelationship network G(V, E, R, W)

(1) V⟵∅, E⟵∅, W⟵∅, R⟵∅
(2) for each graph Gi, 1≤ i≤ l do
(3) for each edge (u, v) ∈ Ei do
(4) Wuv is updated by formula (4)
(5) E⟵E∪ (u, v)

(6) V⟵V∪ u, v{ }

(7) end for
(8) end for
(9) MaxW � maxuv∈E(G)(Wuv)

(10) for each edge (u, v) ∈ E do
(11) Wuv⟵ (Wuv/MaxW)

(12) R⟵ 1
(13) end for
(14) Return G(V, E, R, W)

ALGORITHM 2: Establishing multirelationship network.

Input: G(Vi, Ei, Ri, Wi), 1≤ i≤ l: which obtained from Algorithm 1
Output: top-K nodes: S

(1) V⟵∅, E⟵∅, W⟵∅, R←⟵
(2) for each graph G(Vi, Ei, Ri, Wi), 1≤ k≤ l do
(3) for each edge ij ∈ Ek do
(4) NW(i)⟵j∈N(i)w

k
ij by formula (10)

(5) end for
(6) end for
(7) Obtain the multirelationship network G(V, E, R, W) by Algorithm 2
(8) Compute SPISi by formula (6)
(9) Compute DCi by formula (7)
(10) Compute PRi by formula (8)
(11) Compute INFi by formula (9)
(12) for i ∈ V(G) do
(13) Compute INFfinal(i) � NW(i)∗ INFi by formula (11)
(14) end for
(15) Sort ( INFfinal(i)|i ∈ V(G) )
(16) Return top-K nodes S

ALGORITHM 3: Key node discovery algorithm.

Table 1: Statistics of single networks.

Dataset Number of nodes Number of edges
Karate club network 34 77
LFR-500 network 500 1657
LFR-1000 network 1000 3200

Table 2: Statistics of Higgs Twitter network.

Relational
networks Following Forwarding Replying Mentioning

Number of
nodes 456626 256491 38918 116408

Number of
edges 14855842 328132 32523 150818
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networks: following, forwarding, replying, and mentioning
networks.

3.2. Baseline Methods. To evaluate the accuracy of the
KND algorithm, six baseline methods are selected as
follows:

(1) PageRank (PR) [14]: (e initial values of nodes are
given the same score. (en each value is constantly
updated by an iteration formula of PR. When the
iteration results tend to converge in a stable state, the
top-K nodes with higher scores are selected as the
key node.

(2) Degree centrality (DC) [11]: It computes the cen-
trality of a network. (en, the top-K nodes with high
centrality are selected as the key nodes.

(3) SPIS [12]: It computes the shortest path increments
of all nodes in networks. (en, the nodes that have
the highest top-K shortest path increments are se-
lected as the key nodes.

(4) MCIM [42]: (is method considers four metrics to
evaluate a node. (e overlapping influence and the
influence between nodes and their neighbors are
both considered to evaluate a node. (en, the nodes
with top-K evaluation values are selected as the key
nodes.

(5) Eigenvector [17]: (e importance of a node depends
on both the number of neighbor nodes and the
importance of its neighbor nodes. Both the topology
and the properties of the node are considered. (en
the nodes with top-K eigenvector scores are selected
as the key nodes.

(6) Random [43]: It randomly selects K nodes as the key
nodes.

3.3. Evaluation Experiments of KND Algorithm. (e SIR
(Susceptible-Infected-Removed) model [9] is adopted to
compare transmission ability on the KND algorithm and
baseline methods. (e susceptible population S is converted
to the infected population with the probability η, and the
infected population I recovers to be immune to the infor-
mation with probability ξ. When there are no infected nodes
in the network or a preset number of iterations is reached,
the propagation process stops in networks. Based on dif-
ferent sizes of dataset, we adopt different values of η and ξ
according to [44]: ηmin ≈ 〈k〉/〈k2〉, where 〈k〉 indicates
average degree in the whole network and 〈k2〉 indicates the
mean of the squared degrees in all nodes of the network. For
convenient comparison, we set ξ � 0.01 and η: � η + 0.02.
(e values of η for each network are shown in Table 3.

Moreover, parameters α, β, and c are set as 0.4, 0.2, and
0.4, respectively. Considering the fact that all experiments
are probabilistic experiments, we get 50 times of calculations
each time and take their average result as the final result to
avoid the effect of random error. For the Higgs Twitter
network, to reduce the complexity of the experiments, we
only consider three important relationships: replying,

mentioning, and forwarding.(e three relational networks are
aggregated as the Higgs multirelationship network by Algo-
rithm 2. Under the above parameters, we make some com-
parison experiments for the KND, DC, PR, Eigenvector,
MCIM, SPIS, and Random methods on the karate club, LFR-
500, LFR-1000, replying, mentioning, forwarding, and Higgs
multirelationship networks. (e more infected nodes are, the
stronger transmission ability of the initial infected nodes is.
When the initial infected nodes are the same, themore infected
nodes are, the better the performances of the methods are.

From Figure 4, on the karate club network, whatever the
initial numbers of infected nodes are, the total number of
infected nodes stays the same, close to 34. (e reason is that
the size of the karate club network is too small; and the initial
infected nodes easily infect other nodes of the network. (e
performances of the KND, DC, PR, Eigenvector, MCIM, and
SPIS methods are almost the same and better than the
performance of the Random method on the karate club
network.

On the LFR-500 and LFR-1000 networks, with the in-
crease of initial numbers of infected nodes, the total numbers
of infected nodes for the KND and baseline methods are
going up; the performance of the KND method is the best;
and the performance of the Random method is the worst.
Since the sizes of the two networks are different, at the same
initial number of infected nodes, the total number of in-
fected nodes on LFR-500 is more than that on LFR-1000. It
indicates that the more the number of nodes in the network
is, the weaker the transmission ability is under the same
initial number of infected nodes.

On the replying, mentioning, and forwarding networks,
the performance of the KND method is better compared to
all baseline methods; the Random method gets the worst
performance. On the replying and mentioning networks, as
the initial numbers of infected nodes increase, the total
numbers of infected nodes steadily rise. However, on the
forwarding network, the total numbers of infected nodes rise
from 5 to 10; from 10 to 20, they keep about 280; from 20 to
25, they go through a descent; and then they increase slowly.
(erefore, the KNDmethod on the three single networks has
the best performance overall.

On the Higgs multirelationship network, from 5 to 10,
the performance of the MCIM method is the best, while the
performance of the KND method is the second; from be-
ginning to end, the total numbers of infected nodes con-
tinuously rise; from about 10 to end, the performance of the
KND method is the best; and, from beginning to end, the
Eigenvector method is the worst.

Table 3: Value of parameter η in different networks.

Networks η η+ 0.02
Karate club network 0.303748 0.323748
LFR-500 0.352644 0.372644
LFR-1000 0.376703 0.396703
Replying network 1.105682 1.125682
Mentioning network 0.678706 0.698706
Forwarding network 0.726671 0.746671
Higgs multirelationship network 0.007877 0.027877
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On the replying, mentioning, forwarding, and Higgs
multirelationship networks, when the initial numbers of
infected nodes are the same, the total number of infected
nodes on the Higgs multirelationship network is lower than
those on the replying, mentioning, and forwarding net-
works. (is implies that the transmission abilities on single
networks are stronger than those on multirelationship

network. (is is because real social networks always contain
multiple relationships and features, which reduces the
transmission capacity to some extent. (erefore, the whole
performance of the KND method is superior to the baseline
methods on single-relationship and multirelationship net-
works; and the multirelationship network can indicate social
networks better.

0
5

10
15
20
25
30
35
40

5 10 15 20 25 30

TO
TA

L 
N

U
M

BE
R 

O
F

IN
FE

CT
ED

 N
O

D
ES

INITIAL NUMBER OF INFECTED NODES

KND
DC
PR

MCIM
Eigenvector SPIS

Random

(a)

KND
DC
PR

MCIM
Eigenvector SPIS

Random

0
50

100
150
200
250
300
350

5 10 15 20 25 30

TO
TA

L 
N

U
M

BE
R 

O
F

IN
FE

CT
ED

 N
O

D
ES

INITIAL NUMBER OF INFECTED NODES

(b)

5 10 15 20 25 30
INITIAL NUMBER OF INFECTED NODES

KND
DC
PR

MCIM
Eigenvector SPIS

Random

0
50

100
150
200
250
300
350

TO
TA

L 
N

U
M

BE
R 

O
F

IN
FE

CT
ED

 N
O

D
ES

(c)

KND
DC
PR

MCIM
Eigenvector SPIS

Random

5 10 15 20 25 30

INITIAL NUMBER OF INFECTED NODES

0
50

100
150
200
250
300
350

TO
TA

L 
N

U
M

BE
R 

O
F

IN
FE

CT
ED

 N
O

D
ES

 (X
10

)

(d)

5 10 15 20 25 30
INITIAL NUMBER OF INFECTED NODES

KND
DC
PR

MCIM
Eigenvector SPIS

Random

0
50

100
150
200
250
300
350

TO
TA

L 
N

U
M

BE
R 

O
F

IN
FE

CT
ED

 N
O

D
ES

 (X
10

)

(e)

KND
DC
PR

MCIM
Eigenvector SPIS

Random

5 10 15 20 25 30

INITIAL NUMBER OF INFECTED NODES

0
50

100
150
200
250
300
350

TO
TA

L 
N

U
M

BE
R 

O
F

IN
FE

CT
ED

 N
O

D
ES

 (X
10

)

(f )

5 10 15 20 25 30
INITIAL NUMBER OF INFECTED NODES

KND
DC
PR

MCIM
Eigenvector SPIS

Random

0

50

100

150

200

250

TO
TA

L 
N

U
M

BE
R 

O
F

IN
FE

CT
ED

 N
O

D
ES

 (X
10

)

(g)

Figure 4: Total numbers of infected nodes for all methods on different networks. (a) Karate club network. (b) LFR-500 network. (c) LFR-
1000 network. (d) Replying network. (e) Mentioning network. (f ) Forwarding network. (g) Higgs multirelationship network.
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Figure 5: Continued.
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Summing up these discussions, compared with all
baseline methods, the proposed KNDmethod can effectively
discover the key nodes in social networks.

3.4. Evaluation Indicator and Its Analysis. To evaluate the
sorting qualities of key nodes (top-K nodes) for all methods,
the normalized discounted cumulative gain (NDCG) [45] is
adopted. Suppose that NDCG@n denotes the normalized
discounted cumulative gain of the first n nodes; DCGn

represents the cumulative loss gain of the nodes; and IDCGn

represents the maximum DCGn in the ideal case. (en

NDCG@n �
DCGn

IDCGn

, (12)

where DCGn � 
n
i�1 Rl(i)/log(i + 1); and Rl(i) represents

the correlation between node i and the final result.
Figure 5 shows the values of NDCG@n on different

networks. From Figure 5(a), on the karate club network,
when n � 10, 30, the KND, PR, and MCIM methods get the
largest NDCG scores. When n � 10, 20, 30, the Random
method is the worst. When n � 20, the NDCG score of the
MCIM method is the highest, whereas the NDCG score of
the KND method is very close to the highest value. When
n � 30, the NDCG scores of all methods are slightly dif-
ferent.(e reason is that the size of the network is very small.
It can be concluded that the advantage of the KNDmethod is
not obvious in small size networks.

From Figure 5(b), on the LFR-500 network, when
n � 10, 20, 30, the KND method is the best; the Random
method is the worst; and the NDCG scores of the KND, DC,
PR, Eigenvector, and MCIM methods are subtly different.
(ey show that the KND method is the best.

From Figure 5(c), on the LFR-1000 network, when
n � 10, 20, 30, the NDCG scores of the KND are the largest;
and the NDCG score of the Random method is the smallest.
When n � 10, the NDCG scores of the PR, MCIM, and SPIS

methods are slightly different. When n � 30, the DC, Ei-
genvector, and SPIS methods almost obtain the same
NDCG@30. (ey show that the KND method can take the
best performance on the LFR-1000 network.

From Figure 5(d), on the replying network, when n � 10,
the NDCG score of the KND method is the same as that of
the MCIM, the highest. When n � 20, the DC method gets
the largest NDCG@10, but the NDCG score of the KND
method is slightly lower than that of the DC method. When
n � 30, the KND and MCIM methods obtain the highest
NDCG@30. When n � 10, 20, 30, the NDCG scores for
Random method are the lowest. (ese imply that the overall
performance of the KND method is superior to those of the
other methods on the replying network.

From Figure 5(e), on the mentioning network, when
n � 10, the SPIS method gets the largest NDCG@10; and the
KND method obtains the second NDCG@10. When n � 20,
the NDCG score of the MCIM method is the largest and
slightly more than KND method. When N � 30, the NDCG
scores of the KND and MCIM methods are almost the same
and the largest. When n � 10, 20, 30, the Random method
gets the worst performance. (ese imply that the more the
value of n is, the better the KND method obtains the per-
formance on mentioning network.

From Figure 5(f), on the forwarding network, when
n � 10, 20, 30, the NDCG scores of the KND, DC, PR,
MCIM, and SPIS methods are slightly different; the KND
method gets the best performance; and the Random method
obtains the worst performance.(us, the performance of the
KND method is the best on the forwarding network.

From Figure 5(g), on the Higgs multirelationship net-
work, when n � 10, 20, 30, the NDCG score for the KND
method far exceeds all baseline methods. (us, the KND
method can get the best performance on the Higgs multi-
relationship network.

(erefore, the overall sorting quality of the KNDmethod
is superior compared to all baseline methods on the single-
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Figure 5: NDCG scores on different networks. (a) Karate club network. (b) LFR-500 network. (c) LFR-1000 network. (d) Replying network.
(e) Mentioning network. (f ) Forwarding network. (g) Higgs multirelationship network.
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relationship network and multirelationship network. In
particular, the sorting quality of the KNDmethod is far more
than all baseline methods on the multirelationship network.
It is concluded that the KND method is very helpful to find
the key nodes in social networks.

4. Conclusion

In social networks, a user always has multiple relationships
and features. Considering the fact that the different rela-
tionships constitute different relational networks, this paper
proposed the algorithm of overlapping user relational net-
work to find different relational network consisting of the
same nodes in social networks. Based on these relational
networks, we first proposed the algorithms of the over-
lapping user relational network and multirelationship net-
work. (en, we proposed the key node discovery algorithm
with multiple relationships and multiple features to find the
top-K nodes in social networks.(e experiments of the KND
algorithm and six baseline methods on karate club, LFR-500,
LFR-1000, replying, mentioning, forwarding, and multi-
relationship networks show that the KND algorithm can
obtain the best performance on the multirelationship net-
work. (e key node discovery methods with multiple re-
lationships, multiple features, and users’ attributions are
worth research directions in the future.
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