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To enable power generation companies to make full use of effective wind energy resources and grid companies to correctly
schedule wind power, this paper proposes a model of offshore wind power forecast considering the variation of wind speed in
second-level time scale. First, data preprocessing is utilized to process the abnormal data and complete the normalization of
offshore wind speed and wind power. )en, a wind speed prediction model is established in the second time scale through the
differential smoothing power sequence. Finally, a rolling PSO-LSTM memory network is authorized to realize the prediction of
second-level time scale wind speed and power. An offshore wind power case is utilized to illustrate and characterize the
performance of the wind power forecast model.

1. Introduction

Offshore wind power over the past decade remains un-
precedented [1, 2]. And offshore wind power has a pivotal
andmature role in renewable energy.)ere are high offshore
wind speed, large turbine capacity, annual operating hours
of up to 4,000 hours or more, and offshore wind power
efficiency compared to onshore wind power annual power
generation of 20% to 40% more, with higher energy effi-
ciency [3–5].

Offshore wind farms are far away from the land, not af-
fected by urban planning, and reducing the impact of noise and
electromagnetic waves on residents. Furthermore, offshore
wind farms can promote the economic development of coastal
areas and facilitate the local consumption of coastal heavy-load
cities [6–8]. However, the randomness and uncontrollability of
offshore wind power cause wind power generation companies
to decline to report power generation correctly which leads to
active abandonment of the reported electric power and fines for
excessive reported electric power [9, 10]. )erefore, it is nec-
essary to predict wind speed and predict short-term wind
power in practical applications [11]. Offshore wind power
prediction is based on historical output data, NumericWeather
Prediction (NWP), and measured meteorological data, and a

prediction model is established to predict the future offshore
wind power output [12–15]. Reference [16] arrested themining
and analysis of the inherent fluctuation law of wind power as
the starting point and studied new methods around the uti-
lization of wind power fluctuation law in ultra-short-term
forecasting. Reference [17] proposed a new method based on
the extreme learning machine and the bootstrap prediction
interval formula to predict wind power in different seasons and
verify its effectiveness. Reference [18] effectively solved the
combined forecasting interval of wind power by improving the
bat algorithm based on the fuzzy cost function. Reference [19]
employed support vector machine (SVM) regression to predict
the wind powermodel and effectively verified that, for different
wind power weather types, the neighboring days were selected
to establish the reliability based on its reliability. However, wind
power forecasting is urgently needed to enable offshore wind
power generators to use wind power forecasting results to plan
and schedule offshore wind turbines and maximize the profits
of the offshore wind power generators and the power sector,
and it is necessary for accurate wind power forecasting [20].

)e existing multifactor offshore wind power forecasting
methods cannot satisfy the lack of information. )e wind
power forecast method is eagerly demanded in the next few
hours when only offshore wind turbine wind speed and wind
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power are available. So this paper proposes a model of
offshore wind power forecast considering the variation of
wind speed in second-level time scale. In the case of pro-
cessing abnormal data and data normalization and differ-
ential smoothing power series, the rolling PSO-LSTM
(Particle Swarm Optimization-Long Short-Term Memory)
model is established for training, and the training results are
utilized to predict the data. )e training and prediction
results using the real data of offshore wind power show that
this prediction model proposed in this paper has higher
prediction accuracy than traditional prediction models and
can more accurately predict the second-level wind power in
the next four hours.

2. Data Preprocessing of Wind Speed and
Wind Power

2.1. Processing of Abnormal Data. )e measurement data of
offshore wind farms is collected by various sensors, and
rapid conversion and transmission of field data through data
transmission devices are realized.

Offshore wind power at this stage mainly uses wind
power data sensor group, wind turbine foundation sensor
group, power transmitter, and signal transmission module.
Among them, the wind power data sensor group includes
wind direction meter, anemometer, barometric pressure
sensor, temperature and humidity sensor, etc.; the wind
turbine basic sensor group includes acceleration sensor,
pressure strain gauge and reference motor, etc.; the power
transmitter mainly does output power acquisition and
voltage conversion; the signal transmission module mainly
talks about the collected signal transmission to the control
center.

Due to the special climatic conditions, instrument failure,
network transmission errors, and other problems may lead to
wind measurement data and wind power in the collection,
conversion, transmission, and other processes occur in the
absence of measurement and measurement error, which
undermines the integrity and rationality of offshore wind
power data and cannot truly reflect the distribution of wind
resources in the field. Most of the existing wind power
prediction methods directly or indirectly use wind resource
data, so the accuracy of wind measurement data is directly
related to the good or bad wind power prediction results.
Incomplete data reduce the coherence and utilization of the
basic data, and they and the wrong data together constitute
anomalous data, which affect the analysis of wind power
fluctuation characteristics, the construction of prediction
models, and the study of prediction errors. )erefore, the
original wind measurement data need to be analyzed, ex-
amined, and corrected to obtainmore accurate historical data.

2.2. Normalization of Wind Speed and Wind Power.
Before training the prediction model, because the GRU
neural unit in the model uses sigmoid and tanh functions as
activation functions, and also to improve the accuracy of
wind power prediction and the convergence speed of the
data in the training process, this paper uses the Max-Min

normalization method to normalize the original wind power
data and convert it to the data in the interval [0,1]. )e
equation of data normalization is as follows:

y �
xi − xmin

xmax − xmin
, (1)

where y is the normalized wind power value; xmax is the
maximum value in the original wind power data; xmin is the
minimum value in the original wind power data; xi is the
actual wind power value.

In general, the power output of the wind farm is con-
sidered to be the superposition of each wind turbine. )e
power output of the wind turbine can be expressed by the
following equation:

Pw �
1
2
Cpρπr

2
v
3
, (2)

whereCp is the wind power utilization coefficient of the wind
power; ρ is the air density; r is the radius of the fan blade; v is
the wind speed.

)e wind energy utilization coefficient indicates the ratio
of wind power to wind energy, which is the conversion
efficiency of wind energy by the wind turbine. According to
the Baez limit, the maximum wind energy utilization co-
efficient of the horizontal wind turbine is 0.593 under the
condition of not considering the influence of wake flow.

2.3. Fitting Relationship of Wind Speed and Wind Power.
Due to the large variety of wind speed, small wind speed and
excessive wind speed are not conducive to wind power
generation. Small wind speed can not drive the blade ro-
tation and excessive wind speed will cause offshore wind
turbine failure; in the design, offshore wind turbines need to
install speed limiting devices to ensure that the wind turbine
in high winds can operate safely. Wind turbine design has
the following provisions: cut-in wind speed vin, cut-out wind
speed vout, and rated wind speed vr. )erefore, the offshore
wind power formula can also be expressed as follows:

Pw �

0 0≤ v≤ vin, vout ≤ v

f(v) vin ≤ v≤ vr

Pr vr ≤ v≤ vout

,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where f(v) is used as the equation of offshore wind power
versus wind speed at wind speeds between the cut-in wind
speed and the rated wind speed, as Figure 1.

Even though the relationship between wind speed and
wind power cannot be solved accurately in reality, and the
actual equation of wind speed and wind power cannot be
solved, so this paper will adopt the Sigmoidal model using
the Boltzmann equation for nonlinear fitting of the actual
equation of wind speed and wind power, and the Boltzmann
equation is shown as follows:

y � A2 +
A1 − A2

1 + e
− x−x0( )/B( )

, (4)

where A1, A2, x0, B are the parameters of the Boltzmann
equation.
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3. Prediction Model of Wind Speed and
Wind Power

3.1.Wind Power PredictionModel in Second-Level Time Scale.
)e time series has certain dynamic time characteristics; that
is, the series value of the current moment has a correlation
with the series value of several previous moments, and the
correlation increases with decreasing time interval. And
offshore wind power has numerous uncertainties, such as
wind direction, air pressure, temperature, etc., but the
second-level wind speed fluctuation changes and wind
power size will not occur in a large difference. According to
its offshore wind fluctuation pattern and time series, the
future short-term wind speed variation is judged to predict
the wind power size. A single wind speed variation pre-
diction model on a second-scale time scale can be expressed
as follows:

P(t) � f1(P(t − θ), P(t − 2θ), . . .) + E(t), (5)

where θ is the time interval of data collection; f1 is the time
correlation function of the offshore wind power series; E(t)

is the prediction error at moment i.
Due to the complexity of the weather system, the off-

shore wind power series have an unstable nature. By dif-
ferentially smoothing the power series, the f1 complexity
can be reduced and the prediction error can be reduced as
follows:

ΔP(t) � f2(ΔP(t − θ),ΔP(t − 2θ), . . .) + e(t), (6)

where P(t) is the variation in offshore wind power at
moment t and t − θ; f2 is the time-dependent function of the
offshore wind power difference series; e(t) is the minimum
prediction error at moment t.

3.2. Rolling LSTM Neural Network. Recurrent neural net-
works are a type of artificial neural network. Recurrent
neural networks are good at processing time scale data and
can describe the data before and after relationship on the
time axis. LSTM was proposed by Hochreiter and
Schmidhuber as a derivation of recurrent neural networks
[21]. LSTM addsmultiple special computational nodes in the
hidden layer of recurrent neural networks to improve the
gradient transfer mode during backpropagation and effec-
tively slow down the gradient disappearance or gradient
explosion, solving the problem of not being able to build a
predictionmodel for a longer time span due to the long-term
dependence problem of RNN [22], whose model structure is
shown in Figure 2.

In Figure 2,U, V, and W are the weight coefficient matrix
between the input layer and the hidden layer, the weight
coefficient matrix between the hidden layer and the output
layer, and the self-feedback weight coefficient matrix of the
hidden layer, respectively; x, y, and h denote the input,
output, and hidden layer sequences of the RNN model,
respectively.

)e LSTM network structure consists of input gates,
output gates, and forgetting gates and is different from the

RNN in that there are multiple hidden layers, and the
neurons in the hidden layers are replaced by memory units
with gating mechanisms. )e basic structure of the network
is shown in Figure 3.

)e memory cell is the core component of the LSTM
network.)e input of the model contains the sequence input
xt at time t, the hidden layer cell state ht−1, and the memory
cell ct−1 at time t1; the output contains the memory cell state
ct and the hidden layer state ht, where ct and ht contain the
long-term and short-term memory information of the
model, and the information flow between the networks is
carried out by controlling the input gate, the forget gates,
and output gates to achieve the reading and modification of
the memory cell unit for information flow between net-
works. tanh denotes the activation function of tanh, and the
input gate uses the sigmoid activation function to enter the
parameters and control the variables between [0, 1] to
achieve the control of xt on ct; the forgetting gate is to
selectively forget the neuron state of the previous moment,
and the specific expression is to use memory unit ct−1 for the
control of ct; the output gate is used to output and control
the parameter variables; i.e., the degree of influence of ct on
ht is utilized. )e calculation equations are, respectively, as
follows:

it � σ Wixxt + Wihht−1 + bi( 􏼁, (7)

ft � σ Wfxxt + Wfhht−1 + bf􏼐 􏼑, (8)

ot � σ Woxxt + Wohht−1 + bo( 􏼁. (9)

where it, ft, and ot denote the state calculation results of
input gate, forget gate, and output gate, respectively;
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Figure 1: Ideal relationship between wind speed and wind power.
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Figure 2: Structure of recurrent neural network.
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Wih, Wfh, Wox and bi, bf, and bo denote the weight matrix
and bias term of the corresponding gates, respectively; σ
represent the sigmoid activation function.

)e output result of the memory module in the LSTM
model at moment t is determined by the output gate together
with the cell state as follows:

ct
′ � tanh Wc · ht−1 + Wf · xt + bc􏼐 􏼑, (10)

ct � ft ⊙ ct−1 + it ⊙ ct
′, (11)

ht � ot ⊙ tanh ct( 􏼁, (12)

where ct
′ denotes the cell state-input at moment t; tanh is the

hyperbolic tangent activation function; Wc, bc represent the
state weight matrix and bias term of the input layer, re-
spectively; ⊙ denotes the elements are multiplied by
position.

3.3. Rolling PSO-LSTM Neural Network. Particle swarm
optimization (PSO) was first proposed by Eberhart and
Kennedy in 1995 as a population-based stochastic optimi-
zation technique based on the foraging behavior of a flock of
birds [23, 24]. PSO algorithm first initializes the particle
states to obtain a set of stochastic solutions, and the particles
continuously update their states by tracking the individual
local optimal solution (Pbest) and the global optimal solution
(Gbest) during the spatial motion. Pbest and Gbest denote the
optimal position of the particle fitness value of the individual
in the process of spatial position iteration and the whole
population, respectively, and the fitness value is calculated
once in each iteration, and then Pbest and Gbest are updated
once (Xn), the position of the i-th particle in the D-di-
mensional space is Xi � [Xi1, Xi2, ... XiD]T, and the corre-
sponding fitness value of each particle is solved according to
the objective function.)e velocity, Pbest, andGbest of the i-th
particle are Vi � [Vi1, Vi2, . . . ViD]T, Pi � [Pi1, Pi2, ... PiD]T,
and Pg � [Pg1, Pg2, . . . PgD]T. )e particle updates its ve-
locity and position during the iterative process as follows:

v
k+1
id � ωV

k
id + c1r1 P

k
id − X

k
id􏼐 􏼑 + c2r2 P

k
gd − X

k
id􏼐 􏼑, (13)

X
k+1
id � X

k
id + V

k+1
id , (14)

where k denotes the number of current iterations; Vk
id, Xk

id,
Pkid, and Pkgd denote the velocity, position, individual local
optimal solution, and global optimal solution of the particle,
respectively; C1 and C2 are acceleration factors, which are
usually taken as positive numbers; r1 and r2 are random
numbers between [0, 1]; and ω is the inertia factor.

In this paper, the PSO model search process is improved
in 2 ways using linear differential decrement for the inertia
factor and linear adjustment for the acceleration factor
[25, 26] to adjust the local and global search capability of the
particles as follows:

ω � ωmax − ωmax − ωmin( 􏼁
k

Tmax
􏼠 􏼡

2

, (15)

c1 � c1,ini − c1,ini − c1,fin􏼐 􏼑
k

Tmax
􏼠 􏼡 , (16)

c2 � c2,ini + c2,fin − c2,ini􏼐 􏼑
k

Tmax
􏼠 􏼡, (17)

where ωmax and ωmin denote the maximum and minimum
values of iterative inertia weights; k denotes the number of
previous iterations; Tmax denotes the maximum number of
iterations; c1,ini, c1,fin and c2,ini, c2,fin denote the initial and
final values of acceleration factors c1 and c2, respectively.

)e prediction of time series data is achieved by rolling
PSO-LSTM memory network, and the specific process is
shown in Figure 4.

3.4. Evaluation Criteria of Model. In order to accurately
verify the prediction performance of the LSTM network
model proposed in this paper, the mean absolute percentage
error (yMAPE), root mean square error (yRMSE), and pre-
diction accuracy (yFA) are selected as evaluation indicators to
analyze the prediction effect of the model, where the smaller
values of yMAPE and yRMSE indicate a better fit and more
accurate model prediction results, as defined by the formula
as follows:

yMAPE �
1
n

􏽘

n

i�1

Xact(i) − Xpred(i)

Xact(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (18)

yRMSE �

���������������������

􏽐
n
i�1 Xact(i) − Xpred(i)􏼐 􏼑

2

n

􏽳

, (19)

yFA � 1 −
Xact(i) − Xpred(i)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Xact(i)
⎛⎝ ⎞⎠ × 100%, (20)

where n denotes the sample size of the test set; Xact (i) and
Xpred (i) (i� 1, 2, . . ., n) are the true and predicted values of
wind power at the time i, respectively.
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Figure 3: LSTM memory network structure.
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4. Case Analysis

4.1. Experimental Data Set and Experimental Environment.
)is paper uses an experimental environment with Win-
dows 10 operating system, 8GB of RAM, Intel (R) Core
(TM) i3-9100F CPU @ 3.60GHz, NVIDIA GeForce GTX
1650 GPU, and Python 3.8 language. Anacaoda 3 and
Tensorflow 1.14.0 were used to write PSO-LSTM memory
networks, LSTM and ARIMA, which are commonly used for
time series prediction.

To verify the scientificity and reliability of the offshore wind
power prediction model proposed in this paper, the online
monitoring data of second-level wind speed and second-level
offshore wind power of offshore wind power in Jiangsu
province in one day are used in the analysis of this paper. 105
offshore wind turbines with a rated power of 1500 kW are
included in this wind turbine group, and the wind speed and
offshore wind power of a unit are shown in Figure 5:

As can be seen from Figure 5, part of the data shows that
the power is less than 0, abnormal data need to be processed,
and the offshore wind power of this unit has not reached half
of the rated power, so it is judged that this wind speed and
power relationship should be in the rising part, and the
nonlinear fitting of the second wind speed and offshore wind
power by Boltzmann equation is shown in Figure 6.

4.2. Offshore Wind Forecast. )e collected offshore wind
power is normalized and fed into the LSTM network model as
feature parameters, and two key parameters are optimized: the
number of neuronsm and the learning rate rlr, and the particle
fitness is taken as the average absolute percentage error of the
prediction results, and the settings of the model parameters in
the optimization process are shown as Table 1.

)e optimization results of the number of hidden layer
neuronsm and the learning rate rlr are shown in Figure 7: the
laws of particle fitness, the number of hidden layer neurons,
and the learning rate with the number of iterations, re-
spectively, and Figure 7(a) shows the number of hidden layer

neurons with the change of the number of iterations, which
finally stabilizes at 4, and Figure 7(b) shows the variation of
the learning rate with the number of iterations, which is
finally stabilized at 0.0014.

)e LSTM network model consists of an input layer, a
hidden layer, and an output layer. )e Adam algorithm is
used to train the internal parameters of the LSTM, the tanh
function is used for the activation function in the hidden
layer, the rounding rate of the network nodes is taken as 0.2,
the number of iterations is taken as 300 to prevent over-
fitting, the learning rate in the LSTM model is set to 0.0014,
the number of neurons in the hidden layer is 4, and the first
18 hours of the day are also used as the training set. )e first
18 hours of the day were used as the training set and the last 4
hours were used as the test set.

)e difference method is used for wind power data, only
the rate of change in the series is considered to exclude the
trend problem that the series has, and a rolling LSTMmodel
is used for time series prediction of offshore wind power.

In this paper, rolling PSO-LSTM model is selected to
realize the prediction of offshore wind power in seconds, and
the actual power curve and other models predict the power
curve within 4 hours per second values as shown in Figure 8,
and the evaluation index of the prediction results is shown in
Table 2:

By intercepting the data from 22:59:30 to 23:00:30, it
can be seen that the LSTM second-level prediction model
is closer to the real data, and the second-level power error
is lower. )e actual power curve under the intercepted
partial time and the predicted power curve of other
models are shown in Figure 9, and the second-level power
error of the prediction point samples under the inter-
cepted partial time is shown in Figure 10:

)e analysis shows that the PSO-LSTM prediction model
has the lowest yMAPE but the lowest yRMSE index and the highest
yFA, respectively, compared to the LSTMandARIMAprediction
models, indicating that the PSO-LSTM prediction model has
better prediction results for the offshore wind power prediction
problem with second-level time series wind speed variation.

t-5 t-4 t-3 t-2 t-1 t
LSTM

t-4 t-3 t-2 t-1 t t+1
LSTM

t-3 t-2 t-1 t t+1 t+2
LSTM
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LSTM Network Optimization

Acceleration Factor
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hidden layer neurons learning rate
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Figure 4: Rolling PSO-LSTM memory network.
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Figure 6: Abnormal processing and fitting between second-level wind speed and offshore wind power.

Table 1: Parameter setting of PSO.

Parameter Setting
Tmax 100
npop 30
m value scope [1, 20]
m search scope [−4, 4]
rlr value scope [0.000 1, 0.01]
rlr search scope [−0.001, 0.001]
ωmax 0.9
ωmin 0.4
c1,ini 2
c1,fin 0.5
c2,ini 0.5
c2,fin 2
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Table 2: Offshore wind power forecast errors under different models.

Model yMAPE yRMSE yFA
PSO-LSTM 0.043% 0.255% 99.81%
LSTM 0.062% 0.515% 98.71%
ARIMA 0.090% 0.655% 98.06%
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5. Conclusions

In this paper, we propose an offshore wind power prediction
method to improve the accuracy of offshore wind power
prediction by considering the variation of wind speed in the
second time series in conjunction with the current re-
quirements of the rapid development of artificial intelligence
technology and the gradual improvement of the accuracy of
offshore wind power prediction. )is paper obtains con-
clusions as follows:

(1) )e PSO-LSTM rolling prediction model is used to
analyze the wind speed and wind power at the second
level, and the prediction of offshore wind power per
second in the next 4 hours is completed.

(2) Using the characteristics of PSO-LSTM network
applicable to time series, the PSO-LSTM rolling
prediction model constructed in this paper has a
large improvement in prediction accuracy compared
with LSTM and ARIMA prediction models.

(3) With the rapid development of computer technology
combined with the comprehensive use of big data
platform, the model is applied to other prediction
fields, which may uncover more effective informa-
tion and thus improve the prediction accuracy and
may provide theoretical guidance for the subsequent
long-term offshore wind power accurate prediction.
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