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&e advanced communication technology provides new monitoring and control strategies for smart grids. However, the ap-
plication of information technology also increases the risk of malicious attacks. False data injection (FDI) is one kind of cyber
attacks, which cannot be detected by bad data detection in state estimation. In this paper, a data-driven FDI attack detection
framework of the smart grid with phasor measurement units (PMUs) is proposed. To enhance the detecting accuracy and
efficiency, the multiple layer autoencoder algorithm is applied to abstract the hidden features of PMUmeasurements layer by layer
in an unsupervised manner. &en, the features of the measurements and corresponding labels are taken as inputs to learn a
softmax layer. Last, the autoencoder and softmax layer are stacked to form a FDI detection framework. &e proposed method is
applied on the IEEE 39-bus system, and the simulation results show that the FDI attacks can be detected with higher accuracy and
computational efficiency compared with other artificial intelligence algorithms.

1. Introduction

Phasor measurement units (PMUs) can measure the voltage
and current phasors directly with the help of global posi-
tioning system synchronization clock [1, 2]. Due to the
ability of monitoring the transient dynamics of power
systems, more and more PMUs have been installed in the
smart grid. Meanwhile, the rapid developments of enhanced
monitoring and information technology also facilitate the
malicious cyber attacks [3]. &e large-scale integration of
renewable energy resources poses a challenge for the security
of the system operation due to inherent uncertainties of
renewables [4–6]. &e cyber attacks on the power system
monitoring and data acquisition systems are the main ob-
jectives for attackers to seriously threaten the power system
operating safety. Attackers launch a cyber attack by sending
a malicious information to the control center from mea-
surements. One of the most important functions of a state
estimator is bad data detection, by which some malicious

attacks can be detected because the value of the objective
function increases dramatically when attacks are launched.
However, one kind of the serious cyber attacks that cannot
be detected by bad data detection in state estimations is the
false data injection (FDI) attack [7].

Up to now, lots of research works have been developed
on different cyber attacks. Under the assumption that the
network topology and parameters are known by the at-
tackers, the FDI attack method is proposed in [8] for the first
time. However, it is hard for the attacker to obtain the full
acknowledgments of power systems. Aiming at this problem,
in [9], a FDI attack method is given based on only partial
knowledge of the system topology and a subset of meter
measurements. To reduce attack costs and detection risks,
the minimal set of meters that required to be compromised is
taken as the objective function in [10]. In [11], the FDI attack
is combined with other kind of cyber attacks, forming an
enhanced FDI attack method. Once the FDI attack is
launched in power systems, it is hard to be detected. To

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 2014345, 8 pages
https://doi.org/10.1155/2021/2014345

mailto:ch.lg@nuist.edu.cn
https://orcid.org/0000-0002-2412-9066
https://orcid.org/0000-0002-6515-4567
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/2014345


prevent the measurements being attacked, the meters should
be protected. Lots of methods for minimizing the protection
costs have been presented in [12, 13].

At the same time, the corresponding FDI attack de-
tections are becoming a hot research topic. In [14], a re-
actance perturbation-based scheme is proposed to detect
and identify originally covert FDI attacks on power system
state estimation that enhances the security of state estima-
tion without significantly increasing the operational cost in
power systems. In [15], an online anomaly detection algo-
rithm that utilizes load forecasts, generation schedules, and
synchrophasor data to detect measurement anomalies is
given. In [16], the feasibility and limitations of adopting the
proactive false data detection approach to thwart FDI attacks
on power grid state estimation are studied, and a framework
to detect FDI attacks on power grid state estimation by using
the proactive false data detection approach is proposed.

With the rapid developments of artificial intelligence
technologies, the research works of data-driven technology-
based detection methods are increasing dramatically. &e
principle component analysis is used to analyze the FDI
attacks in the real-time environment [17], providing a more
accurate and sensitive response than the previous FDI de-
tection techniques. In [18], a supervised learning using la-
beled data called support vector machine-based FDI attacks
detection method is proposed. &e principal component
analysis is used to reduce the dimension of the data to be
processed, which leads to lower computation complexities.
Use of deep learning for solving pattern classification
problems is proven to be an effective way in engineering [19].
Under the FDI attack condition, spatial and temporal data
correlations may deviate from those in normal operating
conditions. Based on this characteristic, a discrete wavelet
transform algorithm and deep neural networks’ techniques
are used to construct an intelligent system for AC FDI attack
detection, which is proposed in [20]. In [21], the deep
learning technique is applied to recognize the behavior
features of FDI attacks with the historical measurement data
and employ the captured features to detect the FDI attacks in
real time. Although the deep learning is an effective method
to detect the FDI attacks, some drawbacks, such as the heavy
computation loads and bad generalization abilities with a
huge amount of inputs, restrict the further applications.
Autoencoders [22, 23] are one of the effective methods to
cope with these problems, which can learn compressed
features in an unsupervised manner, attracting more and
more researchers’ interests [24, 25]. However, the effec-
tiveness of autoencoder decreases when the number of
hidden units is more than the dimension of input data. To
address this problem, sparse autoencoders, in which the
sparsity is integrated into the autoencoder model to learn
more efficient sparse features, have been developed [26]. In
[27], a denoising autoencoder is used in wind turbine
gearbox fault diagnosis, which can learn useful features from
raw inputs by denoising. Due to the abilities of abstracting
robust representations from noisy data, the denoising
autoencoder is applied inmany fields in recent years [27, 28].
In [29], autoencoders are used to reduce dimension and
extract features from measurement datasets. Further, the

autoencoders are integrated into an advanced generative
adversarial network framework, which successfully detects
anomalies under FDI attacks with a few labeled measure-
ment data. However, the single-layer autoencoder cannot
abstract entire representations of the original data. Aiming at
this problem, a stacked autoencoder is proposed, which is
made up of multiple autoencoders. &e output of the first
layer of the autoencoder is taken as the input of the second
layer.

In this paper, a stacked autoencoder-based FDI attack
detection framework in the smart grid is proposed.&emain
contributions are listed:

(1) A data-driven FDI attack detection framework is
proposed. &e topology errors and bad data are
detected by state estimations.&e hidden FDI attacks
in measurements that cannot be identified by state
estimation are detected by the intelligent algorithm.

(2) &e stacked autoencoder is applied to detect the FDI
attacks. Compared with other methods, the perfor-
mances of the stacked autoencoder are better in the
condition that the amounts of ordinary and attacks’
samples differ widely.

(3) &e proposed method is applied on the IEEE 39-bus
testing system. &e performances of the proposed
method are better than the traditional deep learning
methods, which are capable of practical applications.

&e rest of this paper is organized as follows. Section 2
establishes the power system linear state estimation model.
&e bad data detection method is also given. In Section 3, the
basic principle of FDI attacks is given. In Section 4, the
stacked autoencoder-based FDI attack detection method is
proposed. To evaluate the performance of the proposed FDI
attack detection method, the case study is carried out under
different conditions in Section 5. Finally, Section 6 concludes
this paper.

2. Linear State Estimation of Power Systems

2.1. Linear State Estimation Model. With the rapid devel-
opment of PMUs, it is possible to take the linear state es-
timation based on phasor measurements. &e linear state
estimation can be solved directly without iteration. As a
result, the calculation burden of linear state estimation is
lighter than nonlinear estimation. &e measurements of
linear state estimation include real and imaginary parts of
bus voltages and currents phasors which can be measured
directly. In the linear state estimation, the real and imaginary
parts of bus voltages are taken as states that should be es-
timated. &e relationships between branch current mea-
surements and states are derived from the π equivalent of
transmission lines, which are shown as follows:

Iij,r � gij + gi0􏼐 􏼑ei − gijej − bij + bi0􏼐 􏼑fi + bijfj,

Iij,i � gij + gi0􏼐 􏼑fi − gijfj + bij + bi0􏼐 􏼑ei − bijej,

⎧⎪⎨

⎪⎩
(1)

where Iij,r and Iij,i are the real and imaginary parts of the
branch current phasors going from bus i to bus j,
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respectively, gij and bij are the conductance and susceptance
of branch i-j, respectively, gi0 and bi0 are the conductance
and susceptance of the shunt branch at bus i, respectively,
and ei and fi are the real and imaginary parts of voltage
phasor of bus i, respectively.

&e matrix form of (1) is

Iij,r

Iij,i

Iji,r

Iji,i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

gij + gi0 − bij − bi0 − gij bij

bij + bi0 gij + gi0 − bij − gij

− gji bji gji + gj0 − bji − bj0

− bji − gji bji + bj0 gji + gj0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ei

fi

ej

fj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2)

Equation (2) can be rewritten as

ZB � HBx, (3)

where zB � [. . .Iij,r, Iij,i, Iji,r, Iij,i, . . .]T, x� [. . .ei, fi, ej, fj,
. . .]T, zB is the vector of the branch current measure-
ments, and x is the vector of states.

In addition to the branch current measurements, the
injected currents and bus voltages can bemeasured by PMUs
also. &e measurement equation of linear state estimation is

zU

zB

zIN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

I2m×2n

HB

YM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦x, (4)

where zU and zIN are the phasor measurement vectors of bus
voltages and injected currents, respectively, I2m× 2n is the
measurement matrix of bus voltages, m and n are the
number of buses equipped with PMUs and the total bus
number, respectively, and YM is the injected current mea-
surement matrix.

Equation (4) can be rewritten as

z � Hx + v, (5)

where z is the measurement vector, v is the measurement
error, and v satisfies Gaussian distribution with zero mean
and variance σ2.

Equation (5) is linear, so the linear weighted least squares
can be used to estimate the states.&e objective function is to
minimize the sum of weighted variances, which is shown as
follows:

J(x) � [z − Hx]
T
R

− 1
[z − Hx], (6)

where J is the objective function, R is a diagonal matrix, the
ith diagonal element of R is 1/σ2i , and σi is the variance of ith
measurement. &e estimated states are

x
⌢

� H
T
R

− 1
H􏽨 􏽩

− 1
H

T
R

− 1
z, (7)

where x
⌢ is the estimated states.

2.2. Bad Data Detection. Under the normal condition (no
bad data in measurements), the sum of estimated mea-
surement variance is under a given threshold ε; however, if

the measurements experience bad data, the threshold ε
would be exceeded. &e sum of estimated measurement
variance is given as

J
⌢

� r
⌢T

R
− 1

r
⌢

,

� (z − z
⌢

)
T
R

− 1
(z − z

⌢
),

� (z − Hx
⌢

)
T
R

− 1
(z − Hx

⌢
),

� (z − Gz)
T
R

− 1
(z − Gz),

� z
T
(I − G)

T
R

− 1
(I − G)z,

(8)

where r
⌢ is the estimated measurement residual, r

⌢
� z − z

⌢, z
⌢

is the estimated measurement, z
⌢

� Hx
⌢, I is an identity

matrix, and G�H(HTR− 1H)− 1HTR− 1.
&e bad data can be detected by the following judgement:

J
⌢
≤ ε, no bad data,

J
⌢
> ε, bad data exist.

⎧⎪⎨

⎪⎩
(9)

If the measurements experience bad data, the mea-
surements would be removed one by one, and the states are
estimated again until all bad data are removed.

3. False Data Injection Attacks

Aiming at the above bad data detection, FDI attack can
construct an attack vector to the measurements that are able
to bypass the bad data detection, but the estimated states
deviate from the true values seriously. Assuming that the
attackers can obtain the system typologies and parameters,
the FDI attacks are formulated as follows:

za � z + a, (10)

where za is the attacked measurement and a is the attack
vector. If a is not artificially designed, the sum of estimated
measurement variance would exceed the threshold, and the
attack would be detected. As a result, the attacker must find
out a proper vector a that will satisfy the following constrain:

r
⌢

a − r
⌢

� za − Hx
⌢

c􏼐 􏼑 − (z − Hx
⌢

),

� za − H(x
⌢

+ c) − (z − Hx
⌢

),

� z + a − Hx
⌢

− Hc − z + Hx
⌢

,

� a − Hc,

� 0,

(11)

where r
⌢

a is the estimated measurement residual under the
bad data condition, x

⌢

c � x
⌢

+ c, x
⌢

c is the estimated states
under attack condition, and c is the estimated deviation with
attacked measurements. It can be seen from (11) that esti-
mated measurement residual r

⌢

a under attack condition is
equal to the residual r

⌢ if the FDI attack vector a satisfies
a�Hc. As a result, the FDI attack can bypass the bad data
detection of (9). If the attacker obtains the overall structure
and parameters, he can launch the attack by injecting
malicious vectors to the measurements to change the
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estimating results as he wanted. &is will cause serious
consequences on power systems, while it cannot be detected.

&e attacked measurements satisfy all constraints as the
normal measurements, which can be presented as follows:

za � z + a,

� Hx + Hc,

� H(x + c).

(12)

Equation (12) shows that if the attacked measurement za
satisfies constraints (5), the estimated states will deviate from
actual values. &is character leads to the hardness of
detecting the FDI attacks using the traditional methods. In
this paper, the stacked autoencoder is proposed to abstract
the intrinsic features of the attacked measurements.

4. False Data Injection Attack Detection

4.1. Stacked Autoencoder. &e autoencoder is a typical un-
supervised learning neural network; the inputs of it are a set
of unlabeled data. An autoencoder includes two parts: en-
coder and decoder. A reduced dimensional feature repre-
sentation can be obtained by the encoder, which is taken as
the inputs of decoders. &e decoder tries to reconstruct the
original input according to the reduced dimensional feature.
&e structure of the autoencoder is shown in Figure 1. z is
the measurement vector, which is taken as inputs of the
autoencoder. y is the reduced dimensional feature of z
abstracted by the encoder, which is the decoder input. &e
output 􏽥z is the reconstruction of the original input z. &e
objective of the autoencoder is to try to copy its input to its
output by two transformations:

y � f W1z + b1( 􏼁,

􏽥z � g W2y + b2􏼐 􏼑,
(13)

where f and g are the activation functions of the encoder and
decoder, respectively, W1 and W2 are the weight matrixes,
and b1 and b2 are the bias vectors.

W1, W2, b1, and b2 can be obtained by training the
autoencoder using the unlabeled data z. It must be noted that
the autoencoder can reconstruct different original inputs
accordingly, which means that the feature representation y
contains all information of the original input z in a lower
dimensional form. As a result, the objective of the
autoencoder is to minimize the gap between the output 􏽥z

and input z. &us, in the training process, the reconstruction
loss function is

Ja W1, W2, b1, b2,( 􏼁 � argmin‖z − 􏽥z‖
2
, (14)

where Ja is the loss function of autoencoders.
In our FDI attack detection, once an autoencoder is

trained, the output layer is useless. Only the hidden layer of
the encoder is used to abstract the features of inputs.
However, the application of a single encoder is limited.
Aiming at this problem, the stacked autoencoder is pro-
posed; the structure of it is shown in Figure 2. It can be seen
that the outputs of one encoder are taken as the inputs of the

next encoder. By this way, several encoders are stacked
together to form a multilayer autoencoder. &e features of
original data are abstracted layer by layer. &e stacked
autoencoder is trained by the layer-wise unsupervised
pretraining method. &e encoder 1 is trained using the
original data z by (14). &e output of encoder 1 y1 is taken as
the input for training encoder 2.&is process continues until
the last encoder is trained. &e output of each encoder is less
than the former one. In the last, a softmax layer is trained by
supervised learning using the output of the last encoder as
input. &e softmax layer function maps input scalars to a
probability distribution; the values of it range from 0 to 1.
&e softmax layer is always used as the output layer for the
classification problem. &e probability function of the
softmax layer is

ϕ(s) �
e

sl

􏽐
C
c�1 e

sl
, l � 1, 2, . . . , C, (15)

where ϕ is the probability function of the softmax layer, s is
the input of the softmax layer, sl is the lth input element, and
C is the total number of inputs. &e sum of the softmax layer
output elements is 1, and the value of each element rep-
resents the probability of the according classification.

4.2. Framework of False Data Injection Attack Detection.
&e flowchart of the proposed FDI attack detection is shown
in Figure 3. After the measurement zk is obtained, the linear
state estimation should be taken first. &en, the value of the
objective function is used to detect bad data. If the value
exceeds the threshold, the bad data is deleted, and the state
estimation is taken again, until all bad data are deleted. FDI
attacks can bypass the bad data detection, so the proposed
FDI attack detection is taken in the next step. If the attack is
detected, the attacked measurements should be identified,
which is not the research topic of this paper.
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Figure 1: Basic structure of autoencoders.
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Figure 2: Structure of stacked autoencoders.
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5. Case Studies

5.1.Descriptionsof the TestingSystemandData. To testify the
validity of the proposed FDI attack detection method, the
IEEE 39-bus testing system [16, 19] is used in this study. &e
voltage and current phasors can be measured by PMUs,
which are taken as the inputs of the FDI attack detector. &e
power system states are obtained by power flow calculation
usingMATPOWER [30]. To simulate the practical operating
condition, the generator and load powers are created by
Monte Carlo simulations. &e simulated values are true
values, while the measured values are generated by adding
specific distributed random numbers to the true values. &e
measurement errors of amplitudes and angles are 2% and 2°,
respectively. Assume that the attacker chooses 5 states to be
attacked, and the estimated deviation c ranges from − 2 to 2.
&e attacked value a�Hc is added to measurement z to form
za. In practice, the attacked measurements are far less than
the normal measurements. In this simulation, the training
set includes 5000 normal measurement samples and 500
attacked samples; the testing set includes 3000 normal
samples and 300 attacked samples.

In this study, two encoders and a softmax layer are
stacked to form the stacked autoencoder-based FDI attack
detection framework. &e overall structure as well as the
input and output numbers of the stacked encoders are
shown in Figure 4.

5.2. :e Performances of the Method. To evaluate the per-
formance of the detection method, the confusion matrix is
used to analyze the detection results quantitatively, which

are defined in Figure 5. &e true positives (TP) means that
actual attacks are correctly classified as attacks; the true
negatives (TN) means that actual normal measurements are
correctly classified as no attack; the false positives (FP)
means that actual normal measurements are incorrectly
classified as attacks; the false negatives (FN) means that
actual attacks are incorrectly classified as no attacks. &e
following three indexes are used to evaluate the ability of the
proposed method, which are defined as

Acc �
TP + TN

TP + TN + FP + FN
,

Pre �
TP

TP + FP
,

Rec �
TP

TP + FN
,

(16)

where Acc, Pre, and Rec are the accuracy, precision, and
recall, respectively, Acc represents the overall performances
of the method, Rec evaluates performances of the attack
detection, and Pre evaluates the probability that the normal
measurements are not detected as attacks.

&e confusion matrix of the detection results is shown in
Figure 6. It can be seen that the 300 attacks are detected out;
the others are detected as normal measurements. &e index
values of Acc, Pre, and Rec are 100%, 100%, and 100%,
respectively.

5.3. Comparison with Other Methods. &ree other detection
methods, i.e., multilayer perceptron (MLP), support vector
machines (SVM), and deep neural network (DNN), are
applied in the simulation. &e neuron number in the hidden
layer of MLP is 15. If the output of MLP is smaller than 0.5,
the classification is no attack; otherwise, the classification is
being attacked. For the DNN, the number of hidden layers is
4, and the unit number of each hidden layer is 150. &e
confusion matrixes and the methods are shown in Figure 7.
It shows that the TN numbers of the three methods are 3000,
meaning that all normal measurements are correctly de-
tected. However, the 300 attacks are not detected accurately;
the detection performance of which can be evaluated by the
index of Rec shown in Table 1. Among the three methods,
the performance of the DNNmethod is better than the other
two methods. However, it is still worse than the proposed
detection method.

5.4. Sensitivity Analysis. In this section, the influences of the
following factors to the detection performances will be
studied:

Begin

zk

Linear state estimation

Bad data detection

Bad data exist?

Delete bad data

Yes
No

FDI attack detection

Attacked?

End

Yes

No

k = k + 1

Figure 3: Flowchart of the FDI attack detection.
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2 2
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Figure 4: Structure of the stacked encoder.
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(1) &e number of neurons: the influence of neuron
numbers of the encoders is studied in this section.
&e neuron numbers of encoder 1 and encoder 2 are
set in the following cases:

Case 1: 50 and 10
Case 2: 80 and 40
Case 3: 20 and 200

&e confusion matrixes of detection results are shown in
Figure 8. It shows that 20 attacks are not detected in Case 1,
meaning that the performance of the proposed method
decreases if the neuron is less. In Case 3, 16 attacks are not
detected. &e reason is that the neuron number of encoder 1
is 20, which cannot abstract the full features in the mea-
surements, although the neuron number of encoder 2 is 200.

(2) &e number of encoders: the influence of the encoder
number stacked in the detection algorithm is studied.
&e following 3 cases are considered:

Case 1: 1 encoder; 100 neurons
Case 2: 3 encoders; 200, 100, and 50 neurons for
each encoder
Case 3: 3 encoders; 50, 20, and 10 neurons for each
encoder

&e confusion matrixes of detection results are shown in
Figure 9. It can be seen that 9 attacks are not detected in Case
1 because there is only one encoder, and the features cannot
be abstracted fully. Although there are 3 encoders in Case 3,
7 attacks are not detected because the neurons of each
encoder are less.

(3) Attack proportions of the training set: in practice, the
attacked samples are much less than the normal
samples. &e influence of attack proportions in the
training set is studied also. &e detection framework
of Figure 4 is applied, and the testing samples include
3000 normal measurements and 300 attacks. &e
following training sets are considered:

Case 1: 7000 normal samples; 500 attacks
Case 2: 9000 normal samples; 500 attacks
Case 3: 9500 normal samples; 200 attacks

&e confusion matrixes are shown in Figure 10. It shows
that, with the decreasing proportion of attack samples, more
attacks cannot be detected.&e proposed method is sensitive
to the proportion of attacks in the training set. &e reason is
that the features of FDI attacks are hard to be abstracted by
the encoder when the attack proportion is low.

True positives

True negatives

False positives

False
negatives 

Figure 5: Confusion matrix.
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300 

FP
0

FN
0

TN
3000

Figure 6: Confusion matrix of detection results.
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Figure 7: Confusion matrixes of three different methods. (a) MLP.
(b) SVM. (c) DNN.

Table 1: &e values of indexes of three methods.

Acc (%) Pre (%) Rec (%)
MLP 93.8 100.0 32.3
SVM 95.6 100.0 51.7
DNN 99.4 100.0 93.0
Stacked encoder 100 100 100
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Figure 8: Confusion matrixes of different neurons. (a) Case 1. (b)
Case 2. (c) Case 3.
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Figure 9: Confusion matrixes of different encoder numbers. (a)
Case 1. (b) Case 2. (c) Case 3.
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6. Conclusion

In this paper, a stacked autoencoder-based FDI attack de-
tection framework is proposed, and it is applied on the IEEE
39-bus testing system under different conditions. &e
confusion matrix and 3 indexes are used to evaluate the
performances of the detection methods. &e simulation
results show that the neuron numbers of encoders influence
the detection performance. If the neurons are less, the
features cannot be abstracted fully, resulting in the low Rec
values. &e encoder number is another aspect influencing
the detection performances. If the encoders are less, some
attacks cannot be detected. It should be noted that if the
neurons are less, the detection performances still decrease
even when many encoders are stacked. &e proposed de-
tection method is sensitive to the attack sample proportion
in the training set. If too few attacks are in the training sets,
the features of FDI attacks cannot be abstracted fully, and the
detection performance is decreased.

&e FDI attack detection based on stacked autoencoders
can be carried out in the following areas: the method of
determining the optimal number of encoders and neurons,
denoising function of the detectors, robustness to the wrong
labeled samples, and detection with unbalanced data. An-
other interesting topic is to extend this work for detecting
cyber attacks in integrated energy systems [31–36].
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