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In order to resolute the micro-Doppler frequency ambiguity caused by radar pulse repetition frequency not high enough (i.e.,
pulse dimension does not satisfy the requirement of Nyquist sampling theorem), this paper presents a micro-Doppler frequency
ambiguity resolution method based on complex-valued U-net. 'e echo sequence is interpolated by zeros in the pulse dimension
to increase the equivalent pulse repetition frequency, so that the echo sequence after zero interpolation contains the real micro-
Doppler frequency; at the same time, some new frequency components are generated. 'e variation law of the echo sequence
frequency after zero interpolation is analyzed. 'en, the echo sequence in time domain after zero interpolation is transformed to
the time-frequency domain by short-time Fourier transform (STFT). Finally, the time-frequency results can be segmented by the
model, which is trained by complex-valued U-net to eliminate the redundant frequencies generated by zero interpolation; thus,
the reconstruction of real micro-Doppler frequency is realized.'eoretical analysis and simulation results show that the proposed
method can solve the problem of micro-Doppler frequency ambiguity. Compared with fully convolution network (FCN) and fully
convolution residual network (FCRN), the proposed method has better performance and robustness.

1. Introduction

In modern warfare, helicopter has the advantages of
vertical take-off and landing and strong transportation
capabilities. It has become the preferred equipment for
military operations such as ground attack, weapon de-
livery, and strategic support [1, 2]. At the same time,
helicopter has become one of the main targets of air de-
fense operations in various countries. When this kind of
target is hovering or flying at a slow speed, it is difficult to
meet the requirements of detection and recognition by
using traditional means, so it is particularly important to
use micromotion characteristics for feature extraction and
recognition [3–5]. However, for helicopter with fast ro-
tation speed or long length, when the radar pulse repe-
tition frequency cannot satisfy the Nyquist sampling
theorem, the phenomenon of micro-Doppler frequency
ambiguity will occur, which makes the feature extraction,
parameter estimation, and recognition of rotor targets
more difficult.

For modern radar, especially pulse-Doppler (PD) radar,
it usually adopts different working modes [6, 7] to deal with
different tasks. 'e main working modes are low pulse
repetition frequency (LPRF) mode [8], medium pulse rep-
etition frequency (MPRF) mode [9–11], and high pulse
repetition frequency (HPRF) mode [12, 13]. However, range
ambiguity or doppler ambiguity exists in different working
modes. In view of this kind of problems, a lot of researches
have been carried out on ambiguity resolution algorithms.
At present, the methods of doppler ambiguity resolution are
usually to form a group of pulse repetition frequency with
multiple pulse repetition frequencies and then complete
ambiguity resolution on this basis. 'e main algorithms
include one-dimensional set algorithm [13], Chinese re-
mainder theorem [14, 15], and look-up table method
[16, 17]. Compared with the traditional doppler frequency
ambiguity, the micro-Doppler frequency ambiguity is dif-
ferent. From the mechanism point of view, the micro-
Doppler frequency is generated by the rotating parts of the
target rather than the radial motion of the target. In addition,
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the relationship between traditional Doppler frequency and
phase is generally linear, while the micro-Doppler frequency
and phase satisfy the sinusoidal modulation relationship
[18–20].

As a machine learning method [21–23], deep learning
will classify and recurse according to the input data. Deep
learning is mainly realized by neural network, which is an
extensive, parallel, and interconnected network composed of
adaptive simple units. Its structure can simulate the inter-
action of biological neural system to real world objects
[24–28]. 'e deep learning algorithm used in this paper is
U-net [29]. U-net is a symmetric coded-decoding network,
which fuses the feature map generated by the coding layer
with the feature map of the corresponding decoding layer to
generate the final feature map of the decoding layer. U-net is
mainly composed of convolution layers, pooling layers
(downsampling layers), and upsampling layers and uses
residual network for feature extraction with strong extrac-
tion performance. Because U-net uses convolution layers to
replace the fully connected layer in convolutional neural
network, the network carries out symmetrical coding and
decoding, which causes the output vector of the network to
be related to the input vector. 'erefore, U-net has good
applications in target segmentation, semantic segmentation,
and target detection, especially in the field of image seg-
mentation [30–32].

In this paper, aimed at the problem of micro-Doppler
frequency ambiguity, a method of micro-Doppler frequency
ambiguity resolution based on complex-valued U-net and
zero interpolation is proposed. 'eoretical analysis is fo-
cused on the reason of micro-Doppler frequency generation,
and the change rule of micro-Doppler frequencies of echo
sequence after zero interpolation. Because the pulse repe-
tition frequency of the echo sequence is increased after zero
interpolation, the echo sequence contains real micro-
Doppler frequencies, and some redundant frequencies are
also generated. 'en, the time-frequency results of the novel
echo sequence are obtained by using STFT. 'e ambiguous
time-frequency results corresponding to the micromotion
sequence after zero interpolation are used as the input of the
U-net network, and the unambiguous time-frequency re-
sults corresponding to the micromotion sequence after
expanding the pulse repetition frequency are used as the
labels of the U-net. 'e U-net is extended to the complex
domain to train the model and generate the training model.
Finally, compared with the fully convolution network (FCN)
and fully convolution residual network (FCRN), the com-
plex-valued U-net is used to eliminate the redundant fre-
quency components to reconstruct the real micro-Doppler
frequency. 'eoretical analysis and simulation results show
that the proposed method is feasible and robust and can
solve the problem of micro-Doppler frequency ambiguity.

2. Analysis of Micro-Doppler Frequency
Characteristics of Helicopter

2.1. Echo Micro-Doppler Frequency Analysis. Figure 1 is the
geometric relationship diagram between radar and rotor
blades. According to [19, 20], different blades have the same

number of scattering points with the same interval and
scattering coefficient. At this time, the echo of the rotor
blades scattering point model can be expressed as
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where σPi
is the backscattering coefficient, R0 is the distance

between the radar and the rotor center O′, and fdPi,n
(t) is the

doppler frequency caused by the ith scattering point on the
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where β is the pitch angle, frot is the rotor rotation fre-
quency, xi ( 0≤x≤ l, l is the blade length) is the distance
between the scattering point Pi and the rotor center, and θ1
is the initial rotation angle.
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According to equation (3), the peak Doppler frequency is
closely related to radar wavelength, rotor rotation frequency,
blade length, and pitch angle. At the same time, in order to
ensure that the Doppler frequency is unambiguous, the pulse
repetition frequency (sampling frequency on pulse dimen-
sion) needs to meet the requirements.

PRF≥ 2fdmax(t) �
8πfrotl

λ
cos β. (4)

Equation (4) can be called the lower limit formula of PRF
that the radar needs to meet when detecting the echo of the
rotor blades. From the analysis of equation (4), the peak
Doppler is proportional to the rotor rotation frequency,
blade length, and pitch angle. 'e radar wavelength is de-
termined by the radar carrier frequency. 'e higher the
radar carrier frequency is, the greater the peak Doppler
frequency is. Figure 2 shows the time-frequency results of
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Figure 1: 'e geometric relationship diagram between radar and
rotor blades.
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the echo sequence when the PRF value does not meet
(1000Hz) and meets (2000Hz) the PRF lower limit formula.
'rough comparison, it is found that when the PRF value
does not meet the PRF lower limit formula, the spectrum
aliasing will occur, that is, micro-Doppler frequency am-
biguity. 'erefore, in the analysis of the rotor target, it is
necessary to select the appropriate PRF value to avoid the
adverse effects of frequency ambiguity.

2.2. Analysis of the Influence of Zero Interpolation on the
Frequency Component of Signal. Aiming at micro-Doppler
frequency ambiguity, the method of sampling signal in-
terpolation by zeros is equivalent to enlarging its sampling
frequency, so that the processed signal satisfies Nyquist
sampling theorem, and the real frequency appears in the
spectral analysis, thus providing a new method for resolving

spectrum aliasing. By this method, the echo sequence can be
written as

x(n) � 􏽘
K

i�1
aie

j2πfintr( ), tr �
1
fs

, i � 1, 2, 3, . . . , K. (5)

where tr is the sampling period, fs is the sampling fre-
quency, fs ≥ 2 · max f1, f2, . . . , fK􏼈 􏼉, the frequency range
after sampling is [(− fs/2), (fs/2)], and the bandwidth is fs.
Interpolating zeros to the echo sequence means that the
sampling frequency changed. At the same time, it also
changes the frequency information contained in the echo
sequence and makes the sequence show new frequency
components. After interpolating Mmultiples of zeros, the
signal satisfies Nyquist sampling, and the signal can be
expressed as
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'e method of interpolating zeros is shown as above,
that is, interpolating zeros with equal interval and equal
number in the middle of the original sequence to increase
the sampling frequency by an integral multiple. 'rough
theoretical derivation, it can be found that the original
sampling sequence is equivalent to adding M new frequency
component after interpolating M multiples zeros, the energy
of the signal is evenly distributed to each frequency com-
ponent, and the amplitude of each frequency component
becomes 1/M + 1 before zero interpolation. At this time, the
sampling frequency is equivalent to fsM � (M + 1)fs, and
the frequency component is shown in Table 1.

It can be seen from Table 1 that, for the undersampled
echo sequence, we can make the sampling frequency meet
the Nyquist sampling theorem by interpolating zeros in the
signal processing, and then we can get the real frequency of

the signal. In this paper, STFT is performed after interpo-
lating zeros to the echo sequence of helicopter with three
rotor blades, as shown in Figure 3. Compared with Figure 2,
it can be found that, for the time-frequency results of rotor
targets with frequency ambiguity, the real frequency value of
the ambiguous spectrum component is shown in the time-
frequency results through the zero interpolation, and the
spectrum distribution is more uniform, which provides
favorable conditions for the next step of image segmentation
by using U-net.

3. Complex-Valued U-Net

Different from the conventional image data set commonly
used in image segmentation, grey image and RGB three-
channel image are used as input in training. In this paper,
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Figure 2: Influence of PRF change on time-frequency result. 'e time-frequency result of echo sequence when PRF (a) meets the lower
bound formula and (b) does not meet the lower bound formula.
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STFT is used to generate the time-frequency result of the
signal after the zero interpolation. Any point on the time-
frequency result is complex-valued, which is composed of
real part and imaginary part. For radar echo, both the real
part and the imaginary part contain useful information. In
order to retain more useful information, U-net is used in the
complex-valued, and the time-frequency result is divided
into real channel and imaginary channel. 'en, the output
data of the two channels are combined into a complex-value
to realize image segmentation and remove the redundant
part of the time-frequency result.

3.1. Design of Complex-Valued U-Net. 'is paper uses a
complex domain U-net, and the architecture is shown in
Figure 4.

'e input of the network is a two-dimensional complex
time-frequency result after zero interpolation. Any point on
the instant frequency result is a complex number. For
discrete echo sequences, STFT is used here to generate a
400× 400 matrix time-frequency result, with each point in
the time-frequency result set to

Pcz � acz + ibcz. (7)

In the equation, c � 1, 2, 3, . . . , 400, z � 1, 2, 3, . . . , 400.
Firstly, we take the modulus to find the maximum value
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'ese two matrices are used as two channels input data
for encoding and decoding operations in a complex U-net.
'e U-net in this paper has seven layers, and the input and
output time-frequency result sizes are 400× 400. 'e net-
work training steps are as follows:

(1) 'e time-frequency result of the input data set is
processed. 'e time-frequency result is divided into
real part matrix and imaginary part matrix. 'e
matrix is processed according to equation (9) and
equation (10) as the input of the network.

Table 1: Frequency components after zero interpolation.

Interpolating zero multiples M Including frequency component
M � 0 f1
M � 1 f1, f1 − fs

⋮ ⋮
M � 2q f1, f1 − fs, f1 + fs, . . . , f1 − qfs, f1 + qfs

M � 2q + 1 f1, f1 − fs, f1 + fs, . . . , f1 + qfs, f1 − (q + 1)fs

q � 1, . . . , L，L � ⌊M/2⌋，⌊∗ ⌋ is the rounding down symbol
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Figure 3: Time frequency results of echo sequence after zero interpolation. 'e time-frequency result of echo sequence after interpolating
(a) once of zeros, (b) double of zeros, and (c) triple of zeros.
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(2) 'e first four layers are convolution and pooling,
which compresses the data and extracts some simple
features. 'e last three layers are upsampling and
convolution. Some deeper features can be obtained
through upsampling convolution. 'rough the jump
structure, the data of the first three layers can be
combined with the data of the last three layers and
get better image segmentation performance by
combining with the data of the deep layer. At last, the
image segmentation is realized by the 1× 1 convo-
lution kernel of the seventh layer. 'e structure and
operation flow of complex-valued U-net are shown
in Figure 5.

'e network structure is as follows:

Layer 1: conv, filters: 16, kernel_size: 3 × 3, strides: 1,
BN, activation function: ReLU
Conv, filters: 16, kernel_size: 3 × 3, strides: 1, BN,
activation function: ReLU
Conv, filters: 16, kernel_size: 3 × 3, strides: 1, BN,
activation function: ReLU
Layer 2: max pooling, filters: 16, pool_size: 2 × 2, strides:
2
Conv, filters: 32, kernel_size: 3 × 3, strides: 1, BN,
activation function: ReLU
Conv, filters: 32, kernel_size: 3 × 3, strides: 1, BN,
activation function: ReLU
Layer 3: max pooling, filters: 32, pool_size: 2 × 2,
strides: 2
Conv, filters: 64, kernel_size: 3 × 3, strides: 1, BN,
activation function: ReLU
Conv, filters: 64, kernel_size: 3 × 3, strides: 1, BN,
activation function: ReLU
Layer 4: max pooling, filters: 64, pool_size: 2 × 2,
strides: 2
Conv, filters: 128, kernel_size: 3 × 3, strides: 1, BN,
activation function: ReLU
Conv, filters: 128, kernel_size: 3 × 3, strides: 1, BN,
activation function: ReLU
Layer 5: upconv, filters: 64, kernel _size: 3 × 3, strides: 2,
BN, activation function: ReLU

Copy and crop: layer 3 and layer 5
Conv, filters: 64, kernel_size: 3 × 3, strides: 1, BN,
activation function: ReLU
Conv, filters: 64, kernel_size: 3 × 3, strides: 1, BN,
activation function: ReLU
Layer 6: upconv, filters: 32, kernel _size: 3 × 3, strides: 2,
BN, activation function: ReLU
Copy and crop: layer 4 and layer 6
Conv, filters: 32, kernel_size: 3 × 3, strides: 1, BN,
activation function: ReLU
Conv, filters: 32, kernel_size: 3 × 3, strides: 1, BN,
activation function: ReLU
Layer 7: upconv, filters: 16, kernel _size: 3 × 3, strides: 2,
BN, activation function: ReLU
Copy and crop: layer 1 and layer 7
Conv, filters: 16, kernel_size: 3 × 3, strides: 1, BN,
activation function: ReLU
Conv, filters: 16, kernel_size: 3 × 3, strides: 1, BN,
activation function: ReLU
Conv, filters: 2, kernel_size: 1 × 1, strides: 1
Copy and crop: layer 1 and layer 7

In this network structure, Conv is convolution, BN is
batch normalization, upconv is upconvolution for upsam-
pling, and the activation function is ReLU, which is called
rectified linear unit shown in the following equation:

ReLU(x) �
x, if x> 0,

0, if x≤ 0.
􏼨 (11)

3.2. Save the Training Model

3.2.1. Design of Training Model. 'e ambiguous time-fre-
quency results corresponding to the micromotion signal
after zero interpolation and the unambiguous time-fre-
quency results corresponding to the micromotion signal
after expanding the pulse repetition frequency are taken as
the input and the label of the dataset, respectively. 'en, the
complex-valued U-net is trained to generate the training
model and compared with the full convolution network
(FCN) and full convolution residual network (FCRN).'en,
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Figure 4: 'e architecture of our complex-valued U-net.
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the performance of the designed U-net is tested.'e training
model flow is shown in Figure 6.

'e training environment configuration and hardware
are shown in Table 2.

4. Dataset

According to equation (2), there are many factors that
affect the time-frequency results of the rotor targets’ echo
sequence, such as the number of rotor blades, rotational
speed, initial phase, and signal-to-noise ratio (SNR). In this
paper, the method of controlling variables, setting pa-
rameters, and generating data sets are used for training.
'e initial phase of the echo is random. According to the
number of blades, the range of the initial phase satisfies
phase Φ ⊂ [0, 2π/N] and N is the number of blades. 'e
carrier frequency fc � 1GHzand the wavelengthλ � 0.3m.
'e rotational speed and blade length are set according to
the value range of the highest frequency. 'e performance
of the network model is analyzed under different inter-
polating zero multiples, different number of blades, and
different SNR.

4.1. Different Interpolating Zero Multiples. For zero inter-
polation, the number of interpolating zeros directly affects
the number of frequency components and the magnitude of
the spectrum. Based on the target echo of three blades rotor
targets, the highest frequency in the echo is set to
1000Hz ∼ 2000Hz, 2000Hz ∼ 3000Hz, 3000Hz ∼ 4000Hz,
and the sampling frequency is set to 2000Hz. 'e original
echo sequence is interpolated by the zero interpolation, and
the time-frequency result is generated by using STFT as the
input data. Increase the sampling frequency to
4000Hz,6000Hz, 8000Hzand the time-frequency results after
STFT as output training labels for training. 'e specific
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Figure 5: 'e structure and operation flow of complex-valued U-net.
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Table 2: Configuration of deep learning platform.

Configuration Content
System Windows7
Framework of deep learning tensorflow1.12.0
GPU Tesla T4
CPU Intel core i7 2.8 GHz
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parameter settings are shown in Table 3. 'e input time-
frequency results and the output training label time-fre-
quency results are shown in Figures 7 and 8.

4.2. Different Number of Blades. For rotor targets, when the
number of rotor blades is different, the characteristics of
time-frequency results are different. Parameters are set to
make the rotational speed of the blade 5 ∼ 7.5rad/sand the
length of the rotator 5 − 7.5m.'e highest frequency in the
echo sequence is 1000Hz ∼ 2000Hz, and the sampling fre-
quency is 2000Hz.By using the zero interpolation, the
sampling frequency is expanded to 4000Hz, and the time-
frequency result is generated by using STFTas the input data
of the U-net. 'e time-frequency result generated by STFT
after increasing the sampling frequency to 4000Hzis as an
output training label. 'e input time-frequency results and
the output training label time-frequency results are shown in
Figure 9 and Figure 10.

4.3. Different Signal-to-Noise Ratios. For radar echo, the
time-frequency result after STFT is not so clear, due to the
presence of noise. 'e initial parameters under different
SNR are used to generate dataset by using parameters in
Section 4.2. An input time-frequency result and an output
training label are shown in Figure 11.

4.4. Composition of Dataset. 'e dataset consists of the
training set and the test set. 'e training set is composed of
three parts, the data set of different interpolating zero
multiples, the data set of different number of rotor blades,
and the data set of different SNRs. 'e composition of the
test set is the same as the data set. 'e composition of
training set is shown in Table 4, and the composition of test
set is shown in Table 5.

5. Simulation Results and Analysis

5.1. Network Performance Comparison. 'ree full convolu-
tion neural networks are used to compare the performance
including FCN, FCRN, and U-net. Figure 12 shows the loss
curves of the three networks during training. By comparing
the loss curves of three networks, we can find that the loss of
FCN and FCRN is much greater than the loss of U-net. With
the increase of training cycles, the loss of U-net tends to be
stable and less. For the other two networks, the loss decreases
with the training cycles, but the fluctuation of the network is
violent, which indicates that the training effect and ro-
bustness of the U-net model are the best.

Enter a picture of the test set and input three network
training models to compare the output time-frequency re-
sults. From the results, we can find that the FCN and FCRN
of image segmentation performances are extremely poor;
not only do they not remove the extra flicker components,
but also they blur the original time-frequency results,
making it more difficult to extract useful information. 'e
U-net can effectively remove redundant flickers while
retaining the required flicker and envelope information.

Figure 13 shows the results of the same input picture test
with three network training models.

5.2. Impact Analysis of Zero Interpolation on U-Net
Performance. Figure 14 is training loss curves of the rela-
tionship between training rounds with different interpo-
lating zeros multiples. In Figure 14, fs2/fs3/fs4 means
interpolating once/double/treble of zeros. By comparing the
loss curves of different zero interpolating multiples, we can
see that, with the increasing of training cycles, the loss rate
decreases and finally tends to be stable. However, with the
increasing of interpolation zeros, the parameter quantity of
time-frequency results increases, the parameter quantity of
network model increases, the range value of loss tends to
increase stably, and loss tends to fluctuate more easily.

As the number of interpolating zero multiples increases,
there is a greater difference in the details of the output
results, the number of interpolation zeros increases, the
envelope part of the flicker is fragile, and the envelope part of
the package flicker is ambiguous. Figure 15 is the outputs
after the part of test set using the training model.

'e simulation results show that the zero interpolation
and the complex-valuedU-netmodel can remove the problem
of micro-Doppler ambiguity due to sampling frequency
limitation of the target echo, which creates the possibility for
the next step in parameter estimation and feature extraction.

5.3. Performance Analysis of Complex-Valued U-Net. Due to
the more zeros interpolated by the zero interpolation, the
amount of data became larger, and the network model image
segmentation effect will be affected. In this paper, the U-net
model is analyzed by using the echo sequences with zero
interpolation of once of zeros. Performance analysis is di-
vided into two parts: one is performance analysis under
different SNRs, and the other is performance analysis under
different number of rotor blades.

5.3.1. Different Interpolating Performance Analysis under
Different SNR. For the complex-valued U-net, the test set is
tested and validated with the generated training model when
it performs performance analysis under different SNRs. 'e
input parts of the test set are shown in Figure 16, and the
output results are shown in Figure 17. Due to the SNR range,
the training set and the test set in this study select
0 dB, 3 dB, 10 dB for testing. 'e result shows that the flicker
does not change much with the increase of SNR, but the
envelope becomes weaker with the decrease of SNR. 'e
envelope is more obvious than the input of test set, and there
is still some loss compared to the label of test set. 'rough

Table 3: Parameter settings.

Inter
polating multiples

'e
speed of the blade 'e length of the rotator

1 5 ∼ 7.5rad/s 5 ∼ 7.5m
2 6 ∼ 8rad/s 6 ∼ 8m
3 7 ∼ 9rad/s 9 ∼ 12m
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comparison, it is found that the complex-valued U-net has
better performance under different SNRs and can effectively
solve the problem of frequency ambiguity in the case of noise.

5.3.2. Performance Analysis under Different Number of Rotor
Blades. For rotor targets, the number of rotor blades is
different, but the time-frequency characteristics are very
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Figure 9: 'e input time-frequency results of echo sequence of different rotors. (a) One rotor. (b) Two rotors. (c) 'ree rotors.
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Figure 7:'e input time-frequency results after interpolating different multiples of zero.'e time-frequency result interpolating (a) once of
zeros, (b) double of zeros, and (c) triple of zeros.
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Figure 8:'e output training label time-frequency results. Training label of echo sequence after interpolating (a) once of zeros, (b) double of
zeros, and (c) triple of zeros.
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Figure 10: 'e output training label time-frequency results of echo sequence of (a) one rotor, (b) two rotors, and (c) three rotors.
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Table 4: Composition of training set.

Data set Training set Size Classes

Different interpolating zero multiples 1000/1000/1000
400× 400 1
600× 600 2
800× 800 3

Different number of blades 200/200/200/200/200/200 400× 400 1/2/3/4/5/6
Different signal-to-noise ratio 1000 400× 400 0 ∼ 10dB

Table 5: Composition of test set.

Data set Test set Size Classes

Different interpolating zero multiples 100/100/100
400× 400 1
600× 600 2
800× 800 3

Different number of blades 20/20/20/20/20/20 400× 400 1/2/3/4/5/6
Different signal-to-noise ratio 100/100/100 400× 400 0/3/10dB
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Figure 12: 'e loss curves of three networks during training.
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Figure 11: 'e input time-frequency results with SNR � 2.875 dB. (a) 'e time-frequency result. (b) 'e training label.
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Figure 13:'e outputs of the time-frequency results of the same input picture test with different models. (a)'e label of the time-frequency
results. 'e output of the time-frequency result with (b) FCN, (c) FCRN, and (d) U-net.
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Figure 14: 'e loss curves of different zero interpolating multiples.
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similar. 'e performance of complex-valued U-net in the
case of different number of blades is tested in this paper, and
the training model is generated and tested by using the
dataset of different number of blades. 'e results of time-
frequency results of different number of blades are shown in

Figure 18. By comparing the input and output images of 1–6
blades in the test set, it can be found that the training model
has a better capability in removing redundant flicker, and a
large amount of useful information is retained in envelope
preservation.
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Figure 15:'e outputs of time-frequency results of echo sequence after different interpolating zero multiples.'e output of time-frequency
result of echo sequence after interpolating (a) once of zeros, (b) double of zeros, and (c) triple of zeros.
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Figure 16: 'e input parts of the test set of time-frequency results with different SNRs. 'e test set of time-frequency result with
(a) SNR � 0 dB, (b) SNR � 3 dB, and (c) SNR � 10 dB.
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Figure 17: 'e outputs of time-frequency results with different SNRs. (a) SNR � 0 dB. (b) SNR � 3 dB. (c) SNR � 10 dB.
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6. Conclusions

In order to resolute the problem of micro-Doppler fre-
quency ambiguity, that is, the highest frequency in echo,
which is higher than the sampling frequency, zero inter-
polation is proposed to increase the sampling frequency, and
the complex-valued U-net is proposed to remove the re-
dundant frequency components generated by zero

interpolation after the real frequency is restored by zero
interpolation. 'is method achieves the purpose of recon-
structing the real micro-Doppler frequency.

'rough the experimental analysis, the zero interpola-
tion and complex-valued U-net can effectively solve the
problem of micro-Doppler ambiguity in helicopter rotor
echo. Compared with FCN and FCRN, the complex-valued
U-net can effectively remove redundant flickers while
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Figure 18: 'e results of time-frequency results of different number of blades. (a) One rotor. (b) Two rotors. (c) 'ree rotors. (d) Four
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retaining the required flicker and envelope information and
has excellent performance to segment the time-frequency
image of rotor targets as follows:

(1) It can remove the redundant frequency components
generated by zero interpolation in different zero
interpolating multiples. With the number of inter-
polation zeros increasing, it still has good
performance.

(2) In a large signal-to-noise ratio range, it can effec-
tively reduce the influence of noise on time-fre-
quency results and remove the redundant frequency
components generated by zero interpolation.

(3) For rotor targets, it can generate a training model to
remove redundant frequency components generated
by zero interpolation effectively for different number
of rotor blades. 'e training model can save real
flicker, and a large amount of useful information is
retained in envelope preservation for feature ex-
traction, parameter estimation, and recognition.

However, due to the limitation of experimental hardware
and the amount of experimental data, the performance of the
model is not optimal. 'e performance of the model will be
tested by using the measured data for further research.
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