
Research Article
AHybrid Genetic Algorithm for Integrated Truck Scheduling and
Product Routing on the Cross-Docking System with Multiple
Receiving and Shipping Docks

Wooyeon Yu ,1 Chunghun Ha ,2 and SeJoon Park 3

1Department of Industrial and Management Engineering, Myongji University, 116 Myonggi-Ro, Cheoin-Gu, Yongin-Si,
Gyeonggi-Do 17058, Republic of Korea
2Dept. of Industrial Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Republic of Korea
3Division of Energy Resources Engineering and Industrial Engineering, Kangwon National University, KNU Chuncheon Campus,
1 Gangwondaehakgil, Chuncheon-Si, Gangwon-Do 24341, Republic of Korea

Correspondence should be addressed to SeJoon Park; sonmupsj@hanmail.net

Received 29 July 2020; Revised 10 November 2020; Accepted 10 March 2021; Published 18 March 2021

Academic Editor: Ricardo Aguilar-Lopez

Copyright © 2021Wooyeon Yu et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this research, a truck scheduling problem for a cross-docking system with multiple receiving and shipping docks is studied.
Until recently, single-dock cross-docking problems are studied mostly. -is research is focused on the multiple-dock problems.
-e objective of the problem is to determine the best docking sequences of inbound and outbound trucks to the receiving and
shipping docks, respectively, which minimize the maximal completion time. We propose a new hybrid genetic algorithm to solve
this problem.-is genetic algorithm improves the solution quality through the population scheme of the nested structure and the
new product routing heuristic. To avoid unnecessary infeasible solutions, a linked-chromosome representation is used to link the
inbound and outbound truck sequences, and locus-pairing crossovers and mutations for this representation are proposed. As a
result of the evaluation of the benchmark problems, it shows that the proposed hybrid GA provides a superior solution compared
to the existing heuristics.

1. Introduction

A distribution center (or a warehouse) employing cross-
docking unloads, sorts, and reorganizes the products that
were delivered by the inbound trucks depending on cus-
tomer orders and then immediately transfers and loads the
consolidated products into the outbound trucks as shown in
Figure 1. -e products are not normally stored, even if they
are stored temporarily for less than 24 hours. Such just-
in-time scheme of the cross-docking system enables to
eliminate (or reduce) storing and retrieving operations. -e
following are the most expensive operations among fun-
damental warehouse operations: receiving, sorting, storing,
retrieving, and shipping. -e cross-docking system also
improves customer service through quick responsiveness of
customer needs and high accuracy of product shipments. So,

it has become an integral part for the supply chain’s com-
petitive advantage.

Factors affecting the performance of a cross-docking
system can be broadly classified into design factors and
operational factors. Design factors such as location, layout,
number of receiving and shipping docks, and size of tem-
porary storage determine the capacity and inherent effi-
ciency of the cross-docking system at the distribution center.
-ese factors become constraints for optimization because
they are already determined at the time of construction of
the distribution center. On the contrary, operational factors
such as processes of sorting and consolidation and schedules
of inbound and outbound trucks need to be optimized
according to changing conditions of the cross-docking
system to increase efficiency. -e problem of optimizing
operational factors under design constraints to maximize the
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performance in a cross-docking system is commonly re-
ferred to as truck scheduling problem (TRSP). In the TRSP,
representative decision variables are sequences of inbound
and outbound trucks and routing procedures for the
products that are transferred from inbound trucks to out-
bound trucks. In the cross-docking system, all decision
variables must be determined simultaneously because the
types and quantities of the transferred products must be
matched at the inbound and the outbound trucks each other.
-e TRSP, which has a strong NP-hard complexity, is
generally modeled as mixed-integer programming (MIP)
[1]. Many researchers have dealt with various TRSPs
depending on the configuration of the distribution center
and organizational and operational environments. However,
realistic TRSPs are not easy to define exact mathematical
programming models and find optimal solutions because of
their high complexity. -us, research on simplified models,
which are somewhat different from actual ones, has become
the mainstream [2]. Recently, studies dealing with TRSPs on
cross-docking systems of practically configurable complex
configurations have been increasing to overcome this
problem [3–6].

-e purpose of this study is to develop an improved
algorithm to derive the pseudo-optimal solution of the TRSP
for cross-docking systems with complex configurations. -e
proposed hybrid genetic algorithm (GA) uses GA for op-
timization of inbound and outbound truck sequences and
greedy heuristic for routing of products. In general, the
schedule of outbound trucks depends on customer orders
(and products). Inbound trucks must have appropriate
products in order to load the products required by outbound
trucks just in time. -erefore, the optimal inbound truck
sequence depends on the outbound truck sequence. It is
difficult to solve this complex and integrated chain process

with only one approach. For this reason, we propose a hybrid
GA. -e proposed hybrid GA is verified by a cross-docking
system with multiple receiving and shipping docks and
temporary storage by Yu [3].

-e single-dock cross-docking system has been
researched until recently.-e 20 TRSP benchmark problems
for the single-dock cross-docking system are provided in [7].
-en, Golshahi-Roudbaneh et al. solved these benchmark
problems with their heuristic and provided additional 15
benchmark problems [8]. -ese 35 benchmark problems are
solved by red deer algorithm, virus colony search, water
wave optimization, and social engineering optimization
[9, 10]. -is study contributes to improving the solution of
the 20 TRSP benchmark problems presented by Yu [3].

-is paper is organized as follows. After this introduc-
tory section, a brief literature review is performed in Section
2. Section 3 describes the cross-docking model studied in
this research and analyzes characteristics of the model.-en,
in Section 4, a thorough explanation of the proposed hybrid
genetic algorithm for the cross-docking system is given.
Section 5 compares the genetic algorithm performance to
that of previously introduced methods. Finally, Section 6
concludes the paper and provides an outlook toward future
research areas.

2. Literature Review

Depending on the purpose of configuration and optimiza-
tion of the cross-docking system, mathematical program-
mingmodels and optimization techniques for various TRSPs
have been proposed. Most previous TRSPs dealt with have
focused on a simplified cross-docking system which is
composed of a single receiving dock, a single shipping dock,
and temporary storage. Such a simplified configuration is
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Figure 1: A cross-docking system with multiple receiving and shipping docks and temporary storage and the scope of our research.
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somewhat different from reality, but simple, so it is easy to
solve using traditional mathematical programming ap-
proaches. Yu and Egbelu [7], Vahdani and Zandieh [11],
Arabani et al. [12], Liao et al. [13], Vahdani et al. [14], and
Shiguemoto et al. [15] tackled these types of TRSPs to
minimize makespan that is the completion time of all op-
erations in the cross-docking system.

Some studies are conducted on extensions of the simple
TRSP. Soltani and Sadjadi [16] dealt with the cross-docking
system of zero temporary storage. Choy et al. [17] considered
a cross-docking system with a limited storage space. -ey
developed a mathematical programming model and a ge-
netic algorithm for minimizing the waiting time of inbound
and outbound trucks by finding the optimal job sequence of
pickup and delivery tasks in the storage zone. Sadykov [18]
investigated a TRSP with the objective of minimizing the
storage usage during the product transfer. -e author
demonstrated that the TRSP is NP-hard in the strong sense
even with only two product types. If the case of the sub-
sequences of inbound and outbound trucks is fixed, dynamic
programming is proposed.

Some research studies have considered multiple objec-
tives for the TRSP. Boysen [19] focused on minimization of
flow time, processing time, and tardiness of outbound
trucks. Arabani et al. [20] studied a TRSP to minimize total
operation time and total lateness of the outbound trucks. To
solve the problem, they proposed three multiobjective ap-
proaches based on the subpopulation concept of evolu-
tionary algorithm. Fazel Zarandi et al. [21] developed a
constraint satisfaction problem and an integer programming
model for a multicriteria TRSP. -ey proposed a two-phase
genetic algorithm approach toward solving the problem. In
the first phase, tardiness and earliness costs of products were
minimized. -en, in the next phase, optimization of the
number of preemptions for outbound trucks was performed.
Naderi et al. [22] targeted on minimizing both makespan
and total tardiness. To solve the problem, the authors
proposed a multiobjective iterative algorithm with several
advanced features such as a modified crowding selection, a
restart phase, and a local search.

Although the simplified cross-docking system is rather
impractical, studying it has provided good insights into
cross-docking operation and contributes to understanding
more complicated cross-docking systems. Recently, some
researchers have dealt with more realistic cross-docking
systems considering multiple receiving and shipping docks.
TRSP for multiple docks basically addresses the scheduling
of only inbound trucks by assuming that the outbound truck
sequence is fixed or known a priori. Since the schedule of
outbound trucks depends on customer needs, this as-
sumption is realistically valid. Konur and Golias [23] studied
the TRSP for multiple docks considering uncertainty of
inbound truck arrival time, in which the lower and upper
bounds of them were given. -ey proposed a genetic al-
gorithm to minimize the expected overall service time,
which is the sum of handling and expected waiting times of
the inbound trucks. Boysen et al. [24] also dealt with
multiple docks. -e objective was to minimize the overall
value of delayed shipments. -ey developed a mixed-integer

programming model and solved the problem using the
proposed two heuristic algorithms, including decomposition
procedures and simulated annealing for solving the problem.
Liao et al. [25] considered simultaneous dock assignment
and sequencing of inbound trucks for a cross-docking
systemwithmultiple docks, with the objective of minimizing
the overall weighted tardiness, in which a fixed departure
schedule of each outbound truck is assumed.-ey compared
the performance of six different metaheuristics: differential
evolution, simulated annealing, ant colony optimization,
tabu search, and two hybrid differential evolution algo-
rithms. -en, they concluded that the ant colony optimi-
zation is superior to others.

TRSP for the cross-docking system with multiple docks
can be extended to an integrated problem of solving inbound
truck scheduling and outbound truck scheduling simulta-
neously. If the schedule of outbound trucks is adjustable, this
extended TRSP allows for more efficient scheduling. Guo
et al. [26] studied such an extended TRSP for multiple docks
with the objective of minimizing operation cost and en-
suring punctuality, in which the operation cost depends on
the total distance traveled by the products from the receiving
docks to the shipping docks and the temporal punctuality is
measured by a combination of earliness and tardiness. To
solve the problem, the authors proposed a nondominated
sorting genetic algorithm with a novel greedy local search
strategy. Lee et al. [27] considered the TRSP to maximize the
number of products that could be shipped within a given
working horizon. -ey derived a mixed-integer program-
ming model and solved the problem using the proposed
genetic algorithms with three different chromosome rep-
resentations. Van Belle et al. [28] studied the extended TRSP
with the objective of minimizing the weighted combination
of overall travel time and overall tardiness. -ey presented a
mixed-integer programming model and proposed a tabu
search for solving the problem. Joo and Kim [29] studied the
TRSP to minimize makespan considering three different
types of trucks: trucks visiting only the receiving dock for
unloading products, trucks visiting only the shipping dock
for loading the products, and trucks visiting the receiving
dock for unloading the products and then visiting the
shipping dock for loading the products. -e objective was to
simultaneously determine door assignment and docking
sequences for all three types of trucks to minimize make-
span. To tackle it, they proposed a genetic algorithm and a
self-evolution algorithm. Kuo [30] proposed a makespan
calculation model based on the first-come and first-served
door assignment policy of a given sequence of all inbound
and outbound trucks. -e makespan calculation model was
integrated with a variable neighborhood search that tried to
optimize the sequence of all inbound and outbound trucks.
Madani-Isfahani et al. [31] considered the extended TRSP
under a limited capacity, in which trucks could come in and
out of the docks multiple times until all of their loads have
been unloaded or loaded, and the trucks could enter any of
the cross-docks. To solve the problem, the authors developed
a mixed-integer programming model and solved it by
simulated annealing and a firefly algorithm. Yazdani et al.
[32] developed a mixed-integer programming model and
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proposed a hunting search metaheuristic inspired by the
foraging group behavior of animals. Yu [3] developed a
mixed-integer programming model for the extended TRSP
and solved it by two heuristic algorithms: a neighborhood
search algorithm and a two-nested-loop search with
mutation. In order to compare the performance of them, he
derived the lower bound on the makespan for the problem.

In recent years, there is an increasing number of studies
attempting to deal with TRSPs formore flexible cross-docking
systems. Bodnar et al. [5] and Rijal et al. [4] studied the TRSP
for a cross-docking system that takes into account mixed-
mode doors that can be used as both receiving and shipping
docks. Fard and Vahdani [6] proposed a multiobjective
imperialist competitive algorithm and a multiobjective gray
wolf optimizer to simultaneously optimize product holding
costs and energy consumption in cross-dock systems with
mixed-mode doors.

Additional detailed reviews on the studies of cross-docking
systems can be found in Boysen and Fliedner [33], Van Belle
et al. [34], and Ladier and Alpan [2].

3. TRSP

-e cross-docking system covered in this paper operates as
follows. As depicted in Figure 1, a distribution center
consists of multiple receiving docks, multiple shipping
docks, sorting and consolidation facility, and a temporary
storage area. Inbound (outbound) trucks arriving at the
distribution center are assigned to empty receiving (ship-
ping) docks sequentially according to a predetermined in-
bound (outbound) truck sequence. If all receiving (shipping)
docks are in use, the next inbound (outbound) truck will
wait for a new assignment. An inbound truck assigned to a
receiving dock begins to unload all products on board and
exits the dock as soon as unloading is completed. -e next
turn inbound truck waiting is immediately assigned to the
empty receiving dock. Unloaded products are passed, split,
or merged through the sorting and consolidation facility
(usually a conveyor system) and eventually moved to a
shipping dock where a designated outbound truck is waiting.
An outbound truck that has loaded all the required quan-
tities of products leaves the shipping dock. -e next turn
outbound truck in standby immediately moves to its empty
receiving dock. -ese cross-docking procedures are termi-
nated when all required operations are completed, that is, all
outbound trucks load all required products and leave the
distribution center.

In this cross-docking procedure, we apply the following
assumptions. First, the type and quantity of products to
unload (load) all inbound (outbound) trucks are already
determined and do not change during the procedure. Also,
all inbound (outbound) trucks are already waiting at the
distribution center before the cross-docking procedure
begins. -ese fundamental assumptions isolate the TRSP
from other problems such as the vehicle routing problem.
Second, all receiving (shipping) docks are identical. -at is,
an inbound (outbound) truck produces the same result on
any receiving (shipping) dock. -e independence between
trucks and docks makes the truck sequences the only

decision variables. -ird, transportation time of any product
at the distribution center is a constant regardless of the type
and quantity [3]. -at is, the transportation time of all
products from the receiving dock to the shipping dock (or
temporary storage) and from temporary storage to the
shipping dock is the same. Under this assumption, the ar-
rival sequence of products at shipping docks is the same as
their unloading sequence at receiving docks. If this as-
sumption does not apply, it is almost impossible to build a
mathematical programming model because the loading and
unloading orders of all products must be considered as the
decision variables. Fourth, unlimited size of temporary
storage is introduced to increase the utilization of docks. If
the unloaded quantity of a product differs from the quantity
that must be loaded, the difference quantity is stored in the
temporary storage area until the next required quantity.
Fifth, once the truck enters the dock, the truck is allowed to
leave the dock after completion of all loading or unloading
activities. In a single dock, the assumption of preemption is
essential to increase efficiency. However, in multiple docks,
preemption is not considered as reducing the replacement
time of trucks is more efficient to achieve the goal. Sixth,
when unloading and loading a product, only one unit of the
product can be processed at a time. -erefore, loading and
unloading times are proportional to the quantity of the
product.

-e objective function of our TRSP is makespan, which
is the completion time of the last operation at a given as-
signment. Operations in a TRSP start when the first product
of the first scheduled inbound truck is unloaded onto a
receiving dock and end when the last product of the last
departing outbound truck is loaded from a shipping dock.
Yu [3] developed a mixed-integer programming (MIP)
model for the above cross-docking system, and we apply his
MIP model.

4. Proposed Hybrid GA

Since the introduction of GA by Holland [35], GA has been
proven to be one of the most successful metaheuristics to
solve NP-hard or NP-complete problems. GA is an opti-
mization technique of obtaining pseudo-optimum by
probabilistic search of solution space through the evolution
of a population consisting of a large number of individuals.
Every individual has a chromosome, usually in the form of
an array. -e population evolves through the selection of
parents, generation of offspring through genetic operations
(crossover and mutation) between the parent’s chromo-
somes, and reentry process of offspring into the population
according to fitness.

-e representation of the chromosome is an important
factor that affects the performance of the GA because it
determines the method of encoding, decoding, and genetic
operations. In general, chromosomes consist of decision
variables of the problem to be solved. Since the determinants
of the TRSP are the truck sequences and product routings,
the chromosome must be configured as them to apply GA to
the TRSP. However, the large chromosome, composed of
various types of variables, reduces the efficiency of GA by
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frequently generating infeasible solutions during genetic
operations and making it difficult to inherit dominant genes
of parents.

We propose a new hybrid GA to overcome this draw-
back. -e basic idea is that the TRSP will eventually be a
combination of truck scheduling and product routing, so an
effective approach is applied to them individually. -e
proposed hybrid GA combines GA and greedy heuristic.-e
truck sequences, which have a great effect on solution quality
and are easy to express chromosomes, are optimized using
GA, and the greedy heuristic is applied to product routing
that is difficult to express chromosomes and consumes a lot
of computation time. -e detailed procedure is explained in
the following sections.

4.1. Chromosome Representation and Population Structure.
In the TRSP, there are two sequences, the inbound truck
sequence and the outbound truck sequence, which must be
optimized simultaneously. As mentioned earlier, the two
sequences are not independent because the cross-docking
system seeks just-in-time product transfer between inbound
and outbound trucks. -e optimal outbound truck sequence
is influenced by external customer requirements and the
inbound truck sequence and the products on the truck. -e
optimal inbound truck sequence is affected by the outbound
truck sequence. -e two sequences are mutually dependent,
but they cannot be mixed because they are separate se-
quences. -erefore, we propose a form of linked chromo-
somes as a chromosome representation for GA, as shown in
Figure 2, where each gene represents a truck index and the
sequence of genes represents a truck sequence.

In GA, the population is typically composed of a set of
individuals, as shown in Figure 3(a).-is structure, however,
is not efficient for the TRSP. Because the TRSP has a very
large solution space due to its high complexity, it is necessary
to operate a very large population to obtain a good solution.
-e performance of a GA depends heavily on the balancing
between exploitation and exploration. Large solution spaces
make it difficult to balance them. To overcome this, we try to
improve the performance of the GA by improving the
structure of the population. In the TRSP, inbound truck
sequences are dependent on the outbound truck sequence,
so there are inbound truck sequences that result in excellent
performance depending on the outbound truck sequence.
-erefore, we propose the population of the nested structure
as shown in Figure 3(b).-e nested population structure can
increase the exploitation capability of the inbound truck
sequence according to the outbound truck sequence even
with a population of the same size.

4.2. Crossover Operation. Crossover is a fundamental ge-
netic operation that produces offspring from parents. An
individual with high fitness is likely to be selected as a parent.
Since the purpose of the TRSP under consideration is the
minimization of makespan, the inverse of makespan is
applied as a fitness function.

We propose a new crossover, namely, locus-paring
crossover, for the TRSP. -e offspring generation procedure

of the proposed crossover is identical to that of a typical two-
point crossover. -e difference is that linked chromosomes
of inbound and outbound work separately but in con-
junction. A typical two-point crossover consists of the fol-
lowing procedures; (1) select parents by applying a roulette
wheel based on fitness values in the population; (2) create
two random points within the range of the chromosome of
the parent; (3) inherit genes between the selected two points
to the same location of the chromosome of an offspring. -e
remaining genes in the offspring are inherited sequentially
from the other parent; (4) create another offspring by
performing subprocedure (3) on the loci not selected in
subprocedure (2).

In the nested population structure, individual chro-
mosomes are composed of inbound truck sequences and
outbound truck sequences linked together. Since a truck
sequence is a permutation, it must be crossover in only one
sequence to avoid infeasibility. -erefore, to increase fea-
sibility, crossover should be applied independently to the
inbound truck sequence and outbound truck sequence. On
the contrary, if the outbound truck sequence changes, the
required product sequence also changes, so the inbound
truck sequence for supplying it must also change. If it is close
to the optimal solution, the inbound truck sequence and the
outbound truck sequence will have a strong correlation with
each other. In this state, if the two sequences change sim-
ilarly, they are more likely to have good solutions. Based on
this intuition, we propose a locus-pairing crossover that
applies two-point crossover independently to the inbound
truck sequence and the outbound truck sequence, but the
same applies to the offspring-inherited loci. Figure 4 shows
an example of creating two offspring from parents using a
locus-pairing crossover. At this time, if the population size of
the inbound truck sequence is n, crossover is performed
between the i-th inbound truck sequence nested in each
outbound truck sequence (i � 1, 2, . . . , n).

Locus-pairing crossover performs the crossover inde-
pendently by applying the same loci to two independent
sequences, which enhances the search while maintaining the
correlation between the inbound truck sequence and the
outbound truck sequence. -us, even a small-sized pop-
ulation can efficiently pursue high solution quality.

4.3. Mutation Operation. Mutation is used to generate
chromosomes that are not identical but very similar from
existing chromosomes. We apply locus pairing to three
typical mutations for insertion, swap, and inversion muta-
tions. Figure 5 shows examples of three locus-pairing mu-
tations. Pairing insertion mutation (PIM) is a mutation that
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Figure 2: Chromosome representation of an individual in the
proposed hybrid GA.
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randomly selects two genes and inserts the second selected
gene in front of the first selected gene. Pairing swapmutation
(PSM) is a mutation that randomly selects two genes and
swaps them. Finally, the pairing inversion mutation (PVM)
is a mutation that randomly selects two genes and reverses
their order. -ese locus-pairing mutations apply only to
individuals in the truck sequence population. In the evo-
lution of the inbound truck sequence population, the
original mutation without locus pairing is applied.

4.4. ProductRoutingHeuristics. -e inbound truck sequence
and outbound truck sequence determine only the order in
which inbound trucks and outbound trucks are assigned to
receiving docks and shipping docks, respectively. Classifi-
cation, partitioning, aggregation, and movement of products
from inbound trucks to outbound trucks are another op-
timization problem. For example, suppose inbound truck I1,
which contains one unit of product A and B, arrives at a
receiving dock, and assume that outbound truck O1 and
outbound truck O2 must load one unit of product A and B,
respectively. -en, there are four ways to assign product A
and product B from I1 to O1 and O2: loading all products to
O1 only, loading all products to O2 only, product A to O1,
and product B to O2, and vice versa. -e makespan for each
case will be different. -e impact will be greater as the type
and quantity of products increase. -is optimization
problem is called product routing. Since product routing
also belongs to the NP-hard class, a simple and fast heuristic
approach is generally applied.

Yu [3] proposed a sequence-based routing (SBR), a
product routing heuristic for the TRSP that takes into ac-
count multiple docks. SBR is a greedy heuristic that se-
quentially assigns products required for outbound trucks
from inbound trucks. At this time, the priority of outbound
trucks and inbound trucks follows the outbound truck se-
quence and the inbound truck sequence, respectively. SBR is
easy to apply and requires less computation because of its
simple decision rules. On the contrary, if there is a large

discrepancy between the types and quantity of products
between inbound and outbound trucks, the turnover of
outbound trucks tends to decrease, and makespan increases.
For this reason, we propose dock-based routing (DBR) that
improves the shortcomings of SBR. -e DBR preferentially
assigns the products needed for the truck that can leave the
docks as soon as possible among the outbound trucks in the
shipping docks. DBR enables more efficient product routing
than SBR by utilizing the characteristics of multiple docks,
which allow multiple trucks to wait for product loading at
the same time on shipping docks.

-e procedure of DBR is as follows: (1) calculate the
minimum required loading time (MLT) of products that
have not yet been loaded for all outbound trucks that are
standby in the shipping docks. (2) Select the truck with the
smallest MLT. If there is a tie, the higher-rank truck is
selected from the outbound truck sequence. (3) Find the
inbound trucks that can send the products required by the
selected outbound truck as soon as possible, and investigate
the remaining quantity of each product. (4) Among them,
send the required quantity of the product from the inbound
truck with the smallest remaining quantity for each product
to the outbound truck, and recalculate the MLTof the truck.
(5) Repeat steps (1)–(4) until all products have been shipped.

A detailed step-by-step procedure is described with an
example in the Appendix.

4.5. Overall Procedure of the Proposed Hybrid GA.
Figure 6 shows the overall flowchart of the proposed hybrid
GA proposed in this paper. -rough the previous sections, we
have already proposed a new population structure, crossover,
mutation, and product routing heuristics to address TRSPs
withmultiple docks. All proposed subprocedures are combined
and employed through the overall hybrid GA procedure in
Figure 6. First, an initial population of outbound truck se-
quences is generated. At this time, chromosomes of all indi-
viduals are generated by random permutation of outbound
trucks. Next, for each outbound truck sequence, a nested initial
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Figure 3: Comparison of population structures: (a) a typical structure of the population; (b) the proposed nested structure of the population
for the proposed hybrid GA.
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population of inbound truck sequences is also randomly
generated. At this time, chromosomes of all individuals are also
generated by random permutation of inbound trucks and
linked to the corresponding outbound truck sequence. We will
now refer to the linked chromosomes as individual truck se-
quences for convenience.

-e routing of all products is determined by each indi-
vidual truck sequence through the designated product routing
heuristic. -e makespan and fitness for each individual truck
sequence are also calculated. Two offspring are generated
through the locus-pairing crossover of the selected parents via
the roulette wheel. Locus-pairing mutations are optionally
applied to offspring. Additional independent evolutionary
processes are performed through selection, crossover, and
mutation for the nested population of inbound truck se-
quences. Due to elitism, the excellent inbound truck sequences
are transferred to the next generation in a constant proportion.
-e termination condition of the evolution of inbound truck
sequences is the number of generations. Once the evolution of
the nested population is complete for all outbound truck se-
quences, the process returns to the evolution of the individual

truck sequence. Elitism also applies to this outer evolution.-e
termination condition is also the number of iterations.

5. Implementation and Computational Results

5.1. Benchmark Problems and Testing Environment. -e
proposed hybrid GA was verified against 20 benchmark
problems [3] summarized in Table 1.-e problem consists of a
combination of docks, trucks, and products of various sizes.
-e biggest problem consists of eight receiving docks, eight
shipping docks, 20 inbound trucks, 30 outbound trucks, 18
product types, and 8460 units of products. It is assumed that
the changeover time (D) of the truck is 75 time units, and
moving time (V) of the product is 100 time units [3]. -e
proposed hybrid GA was coded in Visual Basic 2017 and was
run on Intel® Core™ i7-8799 CPU@ 3.20GHz, 8GB RAM.

5.2. Parameter Determination for the Hybrid GA. -is sec-
tion determines the design parameters of the proposed
hybrid GA for the TRSP that affect solution quality and
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45O

Locus pairing

O’

Insertion Insertion

1 3 2 6 4 3 1 6 2 5 4 3 2 1 6 55 1 6 3 2 4

Random Selection

(a)

O

Locus pairing

O’

Swap Swap

5 1 3 2 6 4 4 3 1 6 2 5 4 3 2 6 1 55 1 6 2 3 4

Random Selection

(b)

O

Locus pairing

4O’

Inversion Inversion

5 1 3 2 6 4 4 3 1 6 2 5 3 2 6 1 55 1 6 2 3 4

Random Selection

(c)
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computational performance. In addition, we evaluate the
performance of the population structure, crossover, muta-
tion, and product routing heuristic implemented in our
proposed hybrid GA compared with conventional methods.

5.2.1. Default Parameter Settings for Performance
Comparison. Evaluating our methods simultaneously is
cumbersome, so we evaluate and determine them sequen-
tially. First of all, the values of the basic design parameters of
hybrid GA were selected for comparative evaluation of
performance. -e parameters considered and their default
values are summarized in Table 2. Each default value is
selected from the range normally applied in GA. -e
crossover rate and mutation rate refer to the probability that
crossover and mutation operations will be performed, re-
spectively. After generating a random number, if it is less
than or equal to the rate value, each operation is executed.
Elitism rate is the ratio of the superior individuals that
transfer from one generation to the next. -e evaluation
criterion is fitness. Offspring insertion method determines
the method of incorporating offspring generated in the
current generation into the population of the next genera-
tion. -ere are two ways: competence and replacement. -e
competition constitutes the next generation of individuals
with excellent fitness among the population of the current
generation and the generated offspring. Replacement, on the

contrary, constructs all generated offspring into the next
generation without contention. Product routing heuristic is
selected from the SBR or DBR described in Section 4.4. -e
initial sequence is determined by random permutation for
inbound trucks and outbound trucks, respectively. -e final
solution is determined to be the best solution through five
repetitions.

5.2.2. Performance Verification of the Proposed Nested
Structure of the Population. First, we verify the performance
of the nested structure of the population. In order to
compare the population of the independent conventional
individual with the population of the proposed nested
structure, the same-sized populations were constructed as
shown in Table 3.-e total number of individuals is 200.-e
nested population consists of 20 outbound truck sequences
and 10 nested inbound truck sequences for each outbound
truck sequence. -e termination condition of the outer
evolution is set to 200 iterations, and the inbound truck
sequence evolution is set to 20 iterations. -e other pa-
rameters are the same as the settings in Section 5.2.1. -e
performance of the algorithm was measured as the mean
total makespan (MTM), which is the average of five ex-
periments on the sum of makespans for 20 benchmark
problems.
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Select parents via the roulette 
wheel

Execute locus-pairing 
crossover

Evolve inbound truck 
sequence populations

Termination 
condition?

End

True

False

For each inbound truck sequence 
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Execute mutation using 
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Figure 6: Overall procedure of the proposed hybrid GA for the TRSP.
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MTM is 27,028.0 for the typical individual population and
26,724.0 for the nested population. -e nested population
provides a better solution for the TRSP in terms ofMTM.Equal
variances and t-test results for the two population types are
shown in Table 4 and boxplot in Figure 7. In conclusion, the
nested population outperforms the individual population.

5.2.3. Performance Verification of the Product Routing
Heuristic. Next, we verify the performance difference of the
product routing heuristics. Reflecting the results of Section 5.2.2,
a comparison experiment was conducted using SBR or DBR
only for product routing heuristics based on the hybrid GA
using the nested population of Table 4. MTM is 26,724.0 when
SBR is applied and 26,259.8 when DBR is applied. -is dif-
ference is also significant for t-test as shown in Table 5 and
boxplot in Figure 8. -erefore, we can conclude that DBR is
better than SBR.

5.2.4. Determination of the Offspring Insertion Method.
In this section, we decide how to transfer the generated off-
spring to the next generation. For the experiment, the hybrid
GA was constructed by applying the nested population and
DBR to the basic parameter set in consideration of the previous
experimental results. -e competition and replacement were
applied alternately and then evaluated. -e MTM is 26,259.8
for the competition and 26,202.4 for the replacement. As
Table 6 shows, it is statistically certain that replacement is
superior to competition at the significance level of 0.05 in terms
of MTM. -e boxplot in Figure 9 also shows the difference
between competition and replacement.

5.2.5. Determination of Operational Parameters. In order to
reduce the number of experiments, the experiments have
been performed so far with the operating parameters fixed at

the default values. However, operating parameters such as
crossover rate, mutation rate, and elitism rate also have a
significant effect on the performance of hybrid GA. In this
section, the optimal operating parameters are determined
for the hybrid GA with the nested population, DBR, and
replacement offspring insertion policy. -e levels of each
parameter evaluated are as follows: crossover rate is (0.5, 0.7,
0.9), mutation rate is (0.1, 0.3, 0.5), and elitism rate is (0.1,
0.2). ANOVA was performed to determine the significance
of the factors except the interaction effect of the three factors.
ANOVA table is summarized in Table 7. Residual plots,
main effect plots, and interaction effect plots are shown in
Figures 10–12.

All main effects and all interactions except the inter-
action of crossover rate and elitism rate were statistically
significant at the significance level of 0.05. Pooling was not
performed because all other factors were significant. Re-
sidual plots in Figure 10 show that ANOVA is valid because
there are no singularities in all subplots. Since interactions
are significant, the optimal combination of parameters was
chosen from the interaction plots in Figure 12; the crossover
rate is 0.7, the mutation rate is 0.5, and the elitism rate is 0.2.
-is combination is the same as the optimal combination of
the main effects in Figure 11.

Table 1: Configuration of benchmark problems.

Problem Number of
receiving docks (R)

Number of
shipping docks (S)

Number of
inbound trucks (I)

Number of
outbound trucks (O)

Number of
product types (P)

Total number of
products in the set

1 2 2 4 4 5 1020
2 2 2 4 5 4 990
3 2 2 5 5 8 1000
4 2 2 5 6 8 1610
5 2 2 6 6 9 2020
6 2 2 8 7 7 2300
7 2 2 7 8 8 2350
8 3 3 12 9 8 2370
9 3 3 7 10 12 3490
10 3 3 8 11 10 3780
11 3 3 10 12 9 3790
12 4 4 15 12 11 3120
13 4 4 9 13 8 4430
14 4 4 8 14 12 4260
15 5 5 15 15 10 3230
16 5 5 18 16 10 3220
17 6 6 22 20 12 6180
18 6 6 20 24 12 5740
19 8 8 18 26 15 6240
20 8 8 20 30 18 8490

Table 2: Default parameters for performance comparison.

Parameter Value
Crossover rate 0.7
Mutation rate 0.3
Elitism rate 0.1
Offspring insertion method Competition
Product routing heuristic SBR
Initial sequence generation method Random permutation
Number of repetitions 5
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Table 3: Basic parameter set for the GA and the proposed hybrid GA.

Parameter
Value

Individual population Nested population
Population size of the outbound truck sequence 200 20
Population size of the inbound truck sequence — 10
Termination condition for the individual truck sequence 200 iterations 200 iterations
Termination condition for the nested population — 20 iterations

Table 4: Statistical test result for the type of population.

Test (α � 0.05) Hypothesis T p value

Equal variances (Levene’s test) H0: all variances are equal
H1: at least nine variances are different — 0.782

t H0: μIndividual Pop. � μnested Pop.

H1: μIndividual Pop. > μnested Pop.

7.01 <0.001

Boxplot of MTM

Nested populationIndividual population
Type of population

26600

26700

26800

26900

27000

27100

27200

M
TM

Figure 7: Boxplot of MTM for the type of population.

Table 5: Statistical test result for the product routing heuristic.

Test (α � 0.05) Hypothesis T p value

Equal variances (Levene’s test) H0: all variances are equal
H1: at least one variance is different — 0.625

t H0: μSBR � μDBR
H1: μSBR > μDBR

12.04 <0.001

Boxplot of MTM

SBRDBR
Product routing

26200

26300

26400

26500

26600

26700

26800

M
TM

Figure 8: Boxplot of MTM for the product routing heuristic.
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5.3. Performance Comparison with Existing Methods.
Finally, we verify the superiority of the proposed hybrid GA.
For comparison, two existing heuristics for the TRSP, NS
and TNLSM by Yu [3], were considered. -e parameters of
the hybrid GAs applied in the comparative experiments are
summarized in Table 8. -e population size of the outbound
truck sequence was increased to 80 for enough iterations.

-emeasure of performance is the percent deviation rate
from the lower bound of the following equation:

Cmax ,l − C
lb
max ,l

C
lb
max ,l

× 100, (1)

where Cmax ,l denotes the makespan for the lth problem and
Clb
max ,l is the lower bound of the lth problem. -e experi-

mental results of NS, TNLSM, and hybrid GA are sum-
marized in Table 9. Cmax ,l of NS and TNLSM is the best of
100 repetitions, and hybrid GA is the result of 5 repetitions.
-e best results among the three heuristics are shown in
bold. As shown in Table 9, hybrid GA provides the best
solutions among 20 benchmark problems except for

problems 1, 9, 11, 13, and 15. Problems 1, 9, 11, and 13 differ
only by one time unit, so hybrid GA is superior to almost all
benchmark problems. -e improved rate represents the
degree of improvement of the hybrid GA solution compared
to the best solution among the existing heuristics. -e av-
erage improvement rate is 9.76%, and the maximum reaches
78.16%. -e hybrid GA solves the problems in a reasonable
amount of time. Usually, the hybrid GA solves the problem
between 0 seconds and 10 minutes. In the worst case, when
the hybrid GA solves problem 20, the average computation
time is less than 60 minutes.

ANOVA was performed to statistically verify the dif-
ference in performance between heuristics, where heuristic
is the fixed factor and problem is the random factor by
applying randomized block design. -e results are presented
in the ANOVA table in Table 10 and the residual plots in
Figure 13. -e difference between heuristics was significant
at the significance level of 0.05.-e adjusted R-squared value
is also 85.90%, and there is no unusual pattern in the residual
plots. Based on the above results, it can be concluded that
hybrid GA outperforms existing NS and TNLSM.

Table 6: Statistical test result for the offspring insertion method.

Test (α � 0.05) Hypothesis T p value

Equal variances (Levene’s test) H0: all variances are equal
H1: at least nine variances are different — 0.233

t H0: μcompetition � μreplacement
H1: μcompetition > μreplacement

2.37 0.023

Boxplot of MTM

ReplacementCompetition
Offspring insertion

26160

26180

26200

26220

26240

26260

26280

26300

26320
M

TM

Figure 9: Boxplot of MTM for the offspring insertion method.

Table 7: ANOVA table for operational parameters.

Source of variation Degree of freedom Sum of squares Mean square F p value
Crossover rate 2 13,284 6642 3.48 0.036
Mutation rate 2 170,600 85,300 44.71 <0.001
Elitism rate 1 12,912 12,912 6.77 0.011
Crossover rate∗mutation rate 4 30,833 7708 4.04 0.005
Crossover rate∗ elitism rate 2 9830 4915 2.58 0.083
Mutation rate∗ elitism rate 2 28,630 14,315 7.50 0.001
Error 76 145,011 1908
Total 89 411,100
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Table 9: Comparison of TRSP heuristics for 20 benchmark problems.

Problem (l) Clb
max ,l

Cmax ,l Percent deviation rate from the lower bound (%)

NS TNLSM Hybrid GA NS TNLSM Hybrid GA
Improved rate

Best Best Best Mean Best Best Best Mean

1 685 778 778 779 779.0 13.58 13.58 13.72 13.72 −1.08
2 708 757 759 753 753.0 6.92 7.20 6.36 6.36 8.16
3 713 829 829 818 818.0 16.27 16.27 14.73 14.73 9.48
4 1055 1182 1182 1181 1181.0 12.04 12.04 11.94 11.94 0.79
5 1260 1420 1336 1335 1335.0 12.70 6.03 5.95 5.95 1.32
6 1475 1677 1689 1586 1593.0 13.69 14.51 7.53 8.00 45.05
7 1500 1665 1665 1619 1623.6 11.00 11.00 7.93 8.24 27.88
8 1115 1211 1202 1134 1137.0 8.61 7.80 1.70 1.97 78.16
9 1439 1617 1596 1597 1598.2 12.37 10.91 10.98 11.06 −0.64
10 1560 1695 1712 1658 1664.8 8.65 9.74 6.28 6.72 27.41
11 1589 1738 1776 1739 1739.0 9.38 11.77 9.44 9.44 −0.67
12 1087 1157 1145 1123 1133.0 6.44 5.34 3.31 4.23 37.93
13 1377 1659 1659 1660 1660.0 20.48 20.48 20.55 20.55 −0.35
14 1353 1534 1512 1501 1502.0 13.38 11.75 10.94 11.01 6.92
15 896 968 972 974 981.2 8.04 8.48 8.71 9.51 −8.33
16 939 1041 1026 1016 1016.0 10.86 9.27 8.20 8.20 11.49
17 1330 1489 1533 1487 1496.0 11.95 15.26 11.80 12.48 1.26
18 1282 1417 1438 1416 1418.6 10.53 12.17 10.45 10.66 0.74
19 1049 1232 1230 1229 1229.0 17.45 17.25 17.16 17.16 0.55
20 1369 1502 1494 1486 1486.4 9.72 9.13 8.55 8.58 6.40
Sum 23781 26568 26533 26091 26144 234.05 229.98 196.24 200.51 195.22
Avg. 1189.05 1328.4 1326.7 1304.6 1307.2 11.70 11.50 9.81 10.03 9.76

Table 10: ANOVA table for the best percent deviation rate from the lower bound of heuristics.

Source of variation Degree of freedom Sum of squares Mean square F p value
Heuristic (fixed factor) 2 43.10 21.55 9.49 <0.001
Problem (random factor) 19 821.53 43.24 19.03 <0.001
Error 38 86.33 2.27
Total 59 950.96

Table 8: Best parameter set for the proposed hybrid GA.

Parameter Value
Population size of the outbound truck sequence 80
Population size of the inbound truck sequence 10
Termination condition for the individual truck sequence 200 iterations
Termination condition for the nested population 20 iterations
Crossover rate 0.7
Mutation rate 0.5
Elitism rate 0.2
Offspring insertion method Replacement
Product routing heuristic DBR
Initial sequence generation method Random permutation
Number of repetitions 5
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Figure 13: Residual plots for percent deviation rate from lower bound of heuristics.
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6. Conclusions

TRSP is a problem that must be solved for operational ef-
ficiency of a cross-docking system. -e existing TRSP is
different from the realistic cross-docking system by mainly
considering simple configuration. -is paper addresses a
more realistic problem by dealing with the TRSP for the
cross-docking system with multiple receiving and shipping
docks and temporary storage. As the configuration of the
cross-docking system becomes more realistic, the TRSP
becomes more complicated and requires a new approach.
Our proposed hybrid GA can be a solution in this situation.
-e proposed hybrid GA is designed to utilize the properties
of the cross-docking system considered as much as possible.
In addition to improving the performance of the GA by
applying the linked-chromosome representation, the nested
population scheme, and the locus-pairing genetic opera-
tions, the performance of the product routing is also im-
proved through the proposed dock-based product routing
heuristic. In the future, we will expand our research into the
TRSP for mixed-mode doors that can be switched between
receiving docks and shipping docks, multiobjective TRSP
capable of addressing a variety of objectives, and TRSP that
simultaneously solves scheduling of inbound and outbound
trucks.

Appendix

Figure 14 shows the example results of product routing by
sequence-based routing [3] and docking-based routing. In
this example, the inbound truck sequence is 5-1, and the

outbound truck sequence is 4-3. -e two inbound trucks are
marked with the type and number of products they are
currently loading, and the two outbound trucks are marked
with the type and number of products they have to load. -e
loading and unloading order of each item is represented by a
Gantt chart of the truck location. -e graph below the Gantt
chart shows the quantity of each product stored in tem-
porary storage. Docking-based routing is more complicated
than sequence-based routing, but because routing takes into
account the current dock state, it can reduce the makespan
than sequence-based routing as shown in Figure 7.

In the case of sequence-based routing, the products
needed for truck 4 are assigned to truck 5 first, and then the
products not assigned to truck 5 are assigned to 3. -en, the
products needed for truck 1 are assigned from truck 5 and
then from truck 1. -erefore, the product is assigned as
follows:

(1) From truck 5 to truck 4, 20 products (product A)
(2) From truck 5 to truck 4, 20 products (product C)
(3) From truck 5 to truck 4, 60 products (product D)
(4) From truck 1 to truck 4, 20 products (product A)
(5) From truck 5 to truck 3, 20 products (product C)
(6) From truck 5 to truck 3, 20 product (product D)
(7) From truck 1 to truck 3, 20 products (product A)
(8) From truck 1 to truck 3, 30 products (product B)
(9) From truck 1 to truck 3, 20 products (product D)

Docking-based routing selects inbound trucks and their
products, taking into account the minimum required
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Figure 14: Example of product routing rules: (a) sequence-based routing and (b) docking-based routing.
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loading time (MLT) and the quantity of products. -e ex-
ample of docking-based routing is as follows:

(1) Because both MLTs of trucks 3 and 4 are zero, truck
4 is selected based on outbound truck sequence 4-3.

(2) Truck 4 can receive 20 products (product A), 50
products (product C), or 60 products (productD) from
truck 5 and 40 products (product A), 50 products
(product B), or 20 products (product D) from truck 1.

(3) -e smallest numbers of products to send truck 4
from truck 5 and truck 1 are the same (20 products
(product A) from truck 5 and 20 products (product
D) from truck 1). -erefore, 20 products (product
A) of truck 5 are selected to send truck 4 based on
outbound truck sequence 5-1. -en, the MLT of
truck 4 becomes 20.

(4) Truck 3 is selected by the MLTs. -en, truck 1 can
send 50 products (product A), 30 products (product
B), or 20 products (product D). Truck 5 cannot send
its products to truck 3 because truck 5 sends its
products to truck 4 until time 20.

(5) Since the smallest number of products to send truck
3 from truck 1 is 20 (product D), truck 1 sends 20
products (product D) to truck 3. -en, the MLT of
truck 3 is 20.

(6) Because both MLTs of trucks 3 and 4 are 20, truck 4
is selected based on outbound truck sequence 4-3.
Truck 4 can receive 20 products (product A) from
truck 1 and 50 products (product C) or 60 products
(product D) from truck 5.

(7) Since the smallest number of products to send truck
4 is 20 products (product A) from truck 1, truck 1
sends 20 products (product A) to truck 4. -en, the
MLT of truck 4 is 40.

(8) Truck 3 (MLT of truck 3� 20) can receive 20
products (product C) or 20 products (product D)
from truck 5. Since the smallest number of products
to send truck 3 is 20 products (product C) from
truck 5, truck 5 sends 20 products (product C) to
truck 3. -en, the MLT of truck 3 is 40.

(9) Truck 4 (MLT of truck 4� 40) can receive 50
products (product C) or 60 products (product D)
from truck 5. Since the smallest number of products
to send truck 4 is 50 products (product C) from
truck 5, truck 5 sends 50 products (product C) to
truck 4. -en, the MLT of truck 4 is 90.

(10) Truck 3 (MLT of truck 3� 40) can receive 50
products (product A) or 30 products (product B)
from truck 1. Since the smallest number of products
to send truck 3 is 30 products (product B) from
truck 1, truck 1 sends 30 products (product B) to
truck 3. -en, the MLT of truck 3 is 70.

(11) Truck 3 (MLT of truck 3� 70) can receive 30
products (product B) from truck 1. Truck 1 sends 30
products (product B) to truck 3. -en, the MLT of
truck 3 is 120.

(12) Truck 4 (MLT of truck 4� 90) can receive 60
products (product D) from truck 5. Truck 5 sends
60 products (product D) to truck 4. -en, the de-
parture time of truck 4 is 150.

(13) Truck 3 (MLT of truck 3�120) can receive 20
products (product D) from truck 5. Truck 5 sends
20 products (product D) to truck 2 after time 150
since truck 5 should unload its products for truck 4
until time 150.-en, the departure time of truck 3 is
170.
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