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)e purpose of this study was to predict the deformation of a deep foundation pit based on a combination model of wavelet
transform and gray BP neural network. Using a case of a deep foundation pit, a combination model of wavelet transform and gray
BP neural network was used to predict the deformation of the deep foundation pit. )e results show that compared with the
traditional gray BP neural network model, the relative error of the combination model of wavelet transform and gray BP neural
network was reduced by 2.38%. )is verified that the combined model has high accuracy and reliability in the prediction of
foundation pit deformation and also conforms to the actual situation of the project. )e research results can provide a valuable
reference for foundation pit deformation monitoring.

1. Introduction

At present, with the vigorous development of large-scale
infrastructure in China, the excavation process of founda-
tion pits will not only cause the deformation of foundation
pits themselves, but also cause the deformation and dis-
placement of adjacent buildings, rail transit, and under-
ground comprehensive pipe corridors. In serious cases, it
will not only cause huge economic losses, but also bring
serious social consequences [1, 2]. )erefore, how to es-
tablish a suitable deformation prediction model to monitor
the excavation deformation of the foundation pit and ensure
the construction safety of the excavation process plays an
important role. However, because there are many influ-
encing factors of deformation in the process of foundation
pit excavation construction, and since these factors have
randomness and uncertainty, it is difficult for this to be
expressed accurately with a simple mathematical model
[3–5]. For this reason, many experts and scholars have put
forward many prediction methods for the research of
foundation pit excavation deformation prediction models.

Recently, the prediction methods for foundation pit de-
formation mainly include artificial neural networks, gray
correlation degree methods, fuzzy comprehensive evalua-
tions, Kalman filtering models, and hybrid combination
models [6–8].

However, the above methods have achieved certain re-
sults in the deformation prediction of foundation pit, but
there are also shortcomings. )e convergence speed of ar-
tificial neural network is relatively slow, which makes local
optimization easy, making the prediction result error larger;
the gray correlation degree theory can easily reduce the
prediction accuracy of the model when dealing with the
situation of large data fluctuation; the fuzzy comprehensive
evaluation model still has great difficulty in choosing which
membership function. )erefore, many scholars also try to
use the hybrid combination prediction model to predict the
deformation of foundation pits. Xu et al. [9] made use of the
fact that the stability of the signal data decomposed by
wavelet transform is better than that of the original signal
and established the combination model of wavelet gray
series and parallel series, respectively, to effectively predict
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the deformation of foundation pits. Liu et al. [10, 11] used
the combination of gray model and BP neural network to
predict the deformation of deep foundation pits under the
condition of few samples and insufficient information, but
the final fitting results were too different from the measured
results. Zheng et al. [12] established the prediction model of
a wavelet BP neural network. )rough the comparison with
the prediction results of the BP neural network model, it is
concluded that the prediction results of the wavelet BP
neural network model are more accurate than those of the
BP neural network model.

)e above models use the advantages of various de-
formation prediction models to predict the deformation of
deep foundation pits using the hybrid combination model
method [13, 14], which improves the accuracy of prediction
results. In fact, foundation pit deformation is based on time-
series prediction, including the trend term and the random
term [15]. Among them, the trend term reflects the main law
of foundation pit deformation; it is the main basis of de-
formation prediction and belongs to the nonstationary se-
ries.)e random term belongs to noise series and has certain
stability, which is one of the main reasons affecting the
accuracy of the prediction method. )erefore, these mixed
combination model methods do not fully consider or dis-
tinguish the characteristics and influence of the trend term
and the random term in the prediction process, and they
have many shortcomings, such as being relatively simple and
having their own characteristics and application occasions,
so they cannot fully mine the original data information, and
the prediction accuracy needs to be improved [16].

)erefore, we tried to synthesize the advantages of three
kinds of deformation prediction models using a wavelet
denoising to remove and impute the outliers of the original
signal data to obtain a more real and reliable data signal after
denoising [17–19]. Using the GM (1, 1) model [20], which
has a better effect in processing incomplete signals and few
samples, and using the BP neural network with strong
computing ability and the advantage of a good error cor-
rection ability [21, 22], the prediction model of foundation
pit deformation based on wavelet denoising gray BP neural
network was established.

In this study, a new gray BP neural network method
based on wavelet denoising is proposed. )e prediction
model method is widely used in the deformation prediction
of deep foundation pit excavation. Firstly, the effective and
reliable data of foundation pit deformation were obtained by
wavelet denoising; secondly, the GM (1, 1) model was used
to predict foundation pit deformation, and the predicted
value was taken as the input sample value of BP neural
network; and finally, the expected output prediction result of
foundation pit deformation was obtained by learning and
training. )e contribution of this study is twofold:

(1) )e innovation of this study is to propose a new
gray BP neural network method based on wavelet
denoising. Compared with the traditional gray BP
neural network model, this method can improve

the accuracy and stability of deformation predic-
tion of deep foundation pit, more accurately
predict the future deformation of deep foundation
pit, and be more in line with the engineering
practice.

(2) It can provide a useful reference for deformation
monitoring and prediction of deep foundation pit
excavation construction in the future and ensure the
safety of deep foundation pit excavation
construction.

)e rest of this study is organized as follows. )e related
work is described in Section 2. )e details of the proposed
combined forecasting model method are shown in Section 3.
)e application case evaluation is presented in Section 4.)e
conclusion is drawn in Section 5.

2. Related Work

2.1. Denoising Method of Deformation Signal Based on
Wavelet Transform. Foundation pit deformation monitor-
ing data are a signal including noise, and its mathematical
expression is as follows:

s(x) � f(x) + e(i), i � 1, 2, . . . , n, (1)

where s (x) represents deformation monitoring data, which
include real deformation and random noise (or system
error); f (x) represents the real deformation, and e (i) is the
random noise signal.

In the analysis of deformation monitoring data, to make
the monitoring data more real, it is necessary to deal with the
noise. Generally speaking, the noise signal is usually a high-
frequency signal, so the real signal is a stable low-frequency
signal. )e denoising principle of wavelet analysis is to
reduce part of e (i), the noise signal, which is essentially the
denoising of the signal or monitoring data s (x) so that the
real deformation signal f (x) is separated from the signal s (x).
In general, this method consists of three steps: wavelet
decomposition, threshold quantization, and high-frequency
coefficient reconstruction. In this study, the principle of
wavelet multiresolution analysis was used for signal pro-
cessing [23].

Suppose that space V0 is approximated by space L2(R),
the deformation signal f (x) is regarded as belonging to the
approximate space a, and L2(R) is decomposed into or-
thogonal components V1 and W1, then space V1 is further
decomposed into orthogonal components V2 and W2, and
so on; the approximate space V0 of space L2(R) is
decomposed into infinite orthogonal spaces:

V0 � V1 ⊕W1 � V2 ⊕W2 ⊕W1 � · · · � VN ⊕
N

j�1
Wj, (2)

where ⊕ is the sum of two approximate spaces of decom-
position, and then, any signal f(t) can be decomposed into
the sum of infinite orthogonal spaces, which can be
expressed as follows:
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f(t) � fN(t) + 
N

j�1
gj(t)

� 
k∈Z
〈f,φN,k(t)〉φN,k(t) + 

N

j�1

k∈Z
〈f,ψj,k(t)〉ψj,k(t),

(3)

where scale function ϕN,k(t) � 2− N/2ϕ(2− Nt − k) is the
standard orthogonal basis of VN; wavelet function ψj,k(t) �

2− j/2ϕ(2− jt − k) is the standard orthogonal basis of Wj and
L2(R).

)e whole energy of all finite signal spaces (L2(R) �

⊕∞j�− ∞Wj) is covered by the closure requirements of space
Wj, which is complete and satisfies the requirements of the
space Vj ⊕Wj � Vj− 1.

Taking the two-level decomposition as an example, the
structure of the signal wavelet multiresolution analysis tree is
shown in Figure 1. In Figure 1, S represents the original
signal, and Aj and Dj represent the decomposed low-fre-
quency signal and high-frequency signal on scale j, re-
spectively. )en, the low-frequency signal is further
decomposed into the approximation part of low frequency
and high frequency. )e relationship can be expressed as
follows:

S � Aj + 

j

m�1
Dm. (4)

It is worth noting that the different choices of wavelet
function and threshold processing will lead to different
signal denoising effects. At present, the Daubechies (dbN)
wavelet and the Symlet wavelet are commonly used for signal
denoising. )e Symlet wavelet is based on the improvement
of the dbN wavelet function. Its expression is as follows:

m
0
(ω) �

1
�
2

√ 

2N− 1

k�0
hke

− jiω
. (5)

)e Symlet wavelet and the Daubechies wavelet have
symmetry, which is suitable for image processing. Both
wavelet functions can reduce phase distortion in signal
analysis and reconstruction.

In this study, there are four commonly used threshold
selection methods.

2.1.1. Fixed 2reshold (Sqtwolog)

λ �
�����
2lnN

√
, (6)

where N is the sampling length of the signal.

2.1.2. Min/Max 2reshold (Minimaxi). Its principle is to
minimize the maximum risk of the estimate, producing an
extreme value of the minimum mean square error. Its
threshold algorithm is as follows:

λ �

0, N≤ 32,

0.3936 +
0.1829lnN

ln 2
, N≻ 32.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

2.1.3. Unbiased Risk Estimation 2reshold (Rigrsure).
According to the risk curve Rish, the minimum risk point is
denoted as kmin, and then, the unbiased risk estimation
threshold is defined as follows:

λk �

�������

f kmin( 



. (8)

2.1.4. Heursure 2reshold (Heursure). Heuristic threshold
combines unbiased risk valuation threshold and fixed
threshold, and it is defined as follows:

λ �
λsqt, eat≺ crit,

min λsqt, λsig , other,

⎧⎪⎨

⎪⎩
(9)

where crit �

����������������

(1/N)(ln N/ln 2)3


and eat � (1/N)

[
N
j�1 |Sj|

2 − N].
If we can choose an appropriate threshold to denoise the

signal containing noise by the threshold method, then we
can achieve the purpose of denoising without losing truth.

To measure the effect of signal denoising, we adopted
two quality evaluation methods.)e first method is the root-
mean-square error method (RMSE), which refers to the
mean square error of the decomposed and reconstructed
signal and the original signal. Its expression is as follows:

RMSE �

�����������������

1
N



n

i�1
[f(i) − f(i)]

2




, (10)

where N is the signal length, F (i) is the original signal, and
f(i) is the signal after wavelet denoising. RMSE represents
the difference between the original signal and the denoised
signal. In practical application, when the RMSE value is
larger, the denoised signal has a low approximation to the
original signal, and the denoising effect is poor; otherwise,
the denoising effect is good.

Another method is the signal-to-noise ratio (SNR)
method, which is the ratio of signal value to noise value. It is
generally believed that the higher the SNR, the better the
denoising effect. It is defined as follows:

S

A1

A2 D2

D1

Figure 1: A tree corresponding to multiresolution analysis.
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SNR � 10 × lg
ps

pn

 , (11)

where PS is the power of the original signal and Pn is noise
power.

2.2.2eGrayModelingMethod. )e gray GM (1, 1) model is
a common prediction model, which is composed of first-
order differential equations of first-order variables. Assume
the original discrete sequence is as follows:

x
(0)

� x
(0)

(1), x
(0)

(2), . . . , x
(0)

(n) . (12)

A new sequence is generated by accumulating a sequence
at a time:

x
(1)

� x
(1)

(1), x
(1)

(2), . . . , x
(1)

(n) . (13)

Further, the first-order differential equation is estab-
lished for equation (13), and the gray GM (1, 1) model is as
follows:

dx
(1)

dt
+ ax

(1)
� u, (14)

where a and u are gray parameters, which can be solved by
the least-squares method:

a � [a, u] � B
T
B B

T
yn, (15)

where

B �

−
1
2

x
(1)

(2) + x
(1)

(2)  1

−
1
2

x
(1)

(3) + x
(1)

(2)  1

· · · · · ·

−
1
2

x
(1)

(n) + x
(1)

(n − 1)  1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

y �

x
(0)

(2)

x
(0)

(3)

⋮

x
(0)

(n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

After solving a, the result is substituted into equation
(14) to obtain:


x

(1)
(k + 1) � x

(0)
(1) −

u

a
 e

− ak
+

u

a
. (17)

For cumulative generation, the prediction model is re-
stored to:


x

(0)
(k + 1) �


x

(1)
(k + 1) −


x

(1)
(k), (18)

where x(0)(2), . . . , x(0)(n) is the signal data part for back
testing; x(0)(n + 1), x(0)(n + 2), . . . is the data part of the
predicted signal.

Finally, the residual and relative residual are calculated as
follows:

e ki(  � x
(0)

ki(  − x
(0)

ki( ,

q ki(  �
e ki( 

x
(0)

ki( 
.

(19)

)e accuracy of the gray GM (1, 1) model can be
evaluated by the posterior variance ratio and small error
probability. )e posterior variance ratio and small error
probability are, respectively:

C �
S2

S1
,

P � P e(k − e)≺ 0.6745S1


 ,

(20)

where S1 and S2 are the variances of model sequence x(0)(k)

and residual sequence e(0)(k), respectively. e is the mean
value of e(0)(k).

)e smaller the C, the more discrete the original se-
quence, and the larger the variance; the smaller the residual,
the higher the accuracy of the simulation model. )e model
accuracy level can be expressed as follows: the level of Max
{P, the level of C}, as shown in Table 1.

2.3. BP Neural Network Model. A BP neural network is a
multilayer feedforward network with error propagation (the
sum of squares of network error reaches the minimum
value). A BP neural network model is shown in Figure 2.

Assume the following: input node xi, hidden node yj,
output node zk, network connection weight wij of input
node and hidden layer node, and network connection weight
vjk of hidden layer node and output node. )e expected
value of the output node is tk.

)e output of hidden layer node is as follows:

yj �  
i

wijxi − Qj
⎛⎝ ⎞⎠ � f netj . (21)

)e calculated output of the output node is as follows:

zk �  
j

vjkyj − Qk
⎛⎝ ⎞⎠ � f netk( , (22)

where netj � iwijxi − Qj and netk � jvjkyj − Qk

)e error of the output node is as follows:

E �
1
2

k

tk − zk( 
2

. (23)

If E meets the requirements, the sample meets the ex-
pected output; if E does not meet the requirements, the
network connection weight needs to be corrected.
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Δvjk � − η
zE

zvjk

� ηδkyj,

vjk(k + 1) � vjk(k) + Δvjk,

Δwij � − η
zE

zwij

� ηδjxi,

wij(k + 1) � wij(k) + Δwij,

(24)

where δk � − (tk − zk)f′(netk), δj � f′(netj)kδkvjk, η is
the training times, and α is the momentum factor.

To improve the generalization ability of BP network, we
adopted the early termination method. At the same time, the
foundation pit monitoring data were divided into three
subsets: the first subset was the training sample set, which
was used to calculate the gradient and correct the weight and
threshold of the network. )e second subset was the vali-
dation sample set, which was used to minimize process
fitting and monitor the error of the validation sample set
during the training process. )e third subset was the test
sample set, which was used to test the final solution to
confirm the actual predictive ability of the network.

)is study studied the use of a three-layer BP neural
network (input layer, hidden layer, and output layer com-
position structure) for foundation pit deformation predic-
tion. )e specific selection of the parameters of the
foundation pit deformation prediction model was to use the
previous 12monitoring data to construct training samples. If
there were too many nodes in the input layer, the calculation
cycle and workload would increase, and it would also have a
certain impact on the prediction accuracy of the model.
)erefore, the first n–4 displacement values of the original
data were used as the training sequence of the BP neural
network, and the last four actual measurements were used as
the predicted values (verification samples). Certain moni-
toring data of the designated measuring point were the
output, and the eight monitoring data before the measuring
point were the input. )e eight input data and one output

data of the measuring point constituted a training sample. In
this way, 11 sets of training samples could be constructed
using the previous 12 monitoring data.

)e BP neural network model of foundation pit de-
formation prediction had 8 input variables and 1 output
variable, and the hidden layer had a three-layer network
model with 11 nodes. On the premise that the training
accuracy could be guaranteed, it was enough to ensure that
the hidden layer node was larger than the input layer node;
otherwise, it would affect the training speed. In the calcu-
lation of the network topology, the tansig transfer function
was used to build the network, the gradient descent training
was used as the training function, the training accuracy was
set to 0.0001, and the maximum number of training steps
was 10 000. )e training simulation calculation was per-
formed to obtain the corresponding fitting value of the
foundation pit deformation.

3. Proposed Combination Model of Wavelet
Transform and Gray BP Neural Network

Based on wavelet analysis and gray BP neural network
modeling method, we constructed a series combination
model of wavelet transform and gray BP neural network.)e
series combination model uses the gray model to predict the
data sequence after wavelet denoising and then takes the
predicted value as the input sample value of BP neural
network. After learning and training, the expected output
prediction result is finally obtained. )e specific modeling
steps are as follows:

(1) After preprocessing the original data sequence, the
signal data sequence after wavelet denoising is
obtained.

(2) )e processed signal data are judged to see whether
they meet the conditions of gray modeling, and the
nonconformed signal data series is transformed.

(3) )e signal data after denoising are predicted by the
gray GM (1, 1) model.

(4) According to the characteristics of the BP neural
network, the prediction value of the gray GM (1, 1)
model is taken as the input signal data sequence of
the network.

(5) By learning and training BP neural network, the
predicted value of the expected output is finally
obtained.

In the second point of the above steps, it is worth noting
that the purpose of modeling was deformation prediction.
To improve the simulation accuracy of post-prediction, it
was necessary to delete old information and add new in-
formation consecutively; in particular, when the quantitative
change accumulated to a certain degree and qualitative
change occurred, we removed the old data that could no
longer reflect the current characteristics of the system.
)erefore, from the perspective of prediction, the metabolic
model was the most ideal prediction model.

After appropriate changes, the expression of the
GM (1, 1) model can be written as follows:

Table 1: Model accuracy grade and evaluation.

Model accuracy P C

Level 1 (good) 0.95≤P C≤ 0.35
Level 2 (qualified) 0.8≤P< 0.95 0.35<C≤ 0.5
Level 3 (general) 0.7≤P< 0.8 0.5<C≤ 0.65
Level 4 (unqualified) P< 0.7 0.65<C

Input layer Hidden layer Output layer

xi yj
zk

wij vjk

Figure 2: BP neural network model.
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x
(0)

(k) �
1 − 0.5a

1 + 0.5a
 

k− 2 b − ax
(0)

(1)

1 + 0.5a
 ; k � 2, 3, . . . , n.

(25)

Considering the accuracy of fitting and prediction, the
applicable conditions of the model are as follows [24]:

When − a< − 0.5, the GM (1, 1) model is used for me-
dium- and long-term prediction. When 0.5< − a − < 0.8, the
GM (1, 1) model can generally be used for short-term
forecasting. When 0.8< − a< − 1, the GM (1, 1) model should
use residual correction. When − a> 1, the GM (1, 1) model
should not be used.

)e gray modeling feasibility test was performed on the
original data series, generally including grade ratio test,
smoothness, and smoothness ratio test.

First, the grade ratio test is carried out for a given data
sequence: x(0) � x(0)(1), x(0)(2), . . . , x(0)(n) , and the grade
ratio is calculated as follows: σ(k) � (x(0)(k − 1)/x(k)). If
σ(k) ∈ (e2/n, e2/(n+1)) is true for k� 2, 3, . . ., n, it is considered
that the original data sequence x(0) � x(0)(1), x(0)(2), . . . ,

x(0)(n)} can be used for GM (1, 1) modeling and gray series
prediction.

Secondly, the smoothness and smoothness ratio of
data series x(0) are tested; the condition for x(0) to be a
smooth discrete function is as follows:(x(0)(k)/


k− 1
i�1 x(0)(i)) � (x(0)(k − 1)/x(1)(k))< ε, and ε is as small as

possible.
If the original data sequence x(0) canmeet the conditions

of the grade ratio test, smooth ratio, and smoothness test, it
can be modeled in gray. If the above conditions are not met,
the gray modeling conditions are not met, and the data need
to be transformed. )en, the rank ratio of the transformed
sequence of the original data sequence x(0) must be within
the coverage range.

In this study, the horizontal displacement data of foun-
dation pit pressure were used as the input data, and the initial
value of the original data sequence was used as the initial value
of the cumulative sequence. Because the graymodel needed to
be trained first, and several measured data needed to be
reserved to verify the accuracy of the model, the first n− 4 data
of the original data were used as training samples, and the last
four data were used to test the network. )ey were then
substituted into the already built gray GM (1, 1) model for
training.

)e whole research process is summarized, and the
technical route is given as follows (Figure 3).

4. Application Studies

In this section, a real-time dataset from the deformation
measurement of a foundation pit is used to evaluate the
effectiveness of the proposed method.

4.1. General Situation ofDeep Foundation Pit Engineering and
Description ofMonitoringData. )e basement of the project
was two floors, the excavation depth of the foundation pit
was about 10m, and the area of the foundation pit was about
10408m2. )e foundation pit is located at main traffic

arteries, and the excavation of the foundation pit has a safety
impact on the surrounding buildings and roads. )e site
survey results of the foundation pit showed that themain soil
layers within the influence range of the excavation depth of
the foundation pit on the site were as follows: ① miscel-
laneous fill, with a thickness of 3.50–6.10m; ② silt, with a
thickness of 3.50–14.30m; ③ silty soil, with a thickness of
1.70–5.30m; ④ silt (including mud), with a thickness of
2.90–15.10m; ⑤ silty clay, with a thickness of 1.20–3.60m;
and ⑥ coarse medium sand (including mud), with a
thickness of 8.00–12.30m.

)e hydrological conditions within the influence range
of the excavation depth of the foundation pit were the
following: the aquifer in the site was mainly the pore
confined water in layers③ and⑤. )e confined water level
was about 3.73m, and the permeability coefficient was
Km � 10.23m/d. )e buried depth of the stable water level of
the borehole measured during the survey was about 2.50m.

)e supporting structure of foundation pit was a single
row of SMW piles with two concrete supports. )e first
support bottom elevation was − 3.20m, and the second
support bottom elevation was − 7.7m.)e protection level of
foundation pit was level I. In this project, 18 horizontal
displacement observation points (S1–S18) were arranged
along the edge of the support structure to measure the
horizontal displacement (pile top). )e layout of the mea-
surement points is shown in Figure 4. )e observation time
was 152 days. )e whole construction process of the
foundation pit excavation was divided into the following
four working conditions:

(1) )e first working condition: initial stress solution of
undisturbed soil and initial displacement return to
zero (30 days)

(2) )e second working condition: construction of pile
foundation enclosure, excavation of the first layer of
soil (the thickness of the soil layer was 1m), con-
struction of purlin, and the first concrete support
(52 days)

(3) )e third working condition: construction of the
second concrete support and excavation of the
second soil layer (the thickness of the soil layer was
5m) (40 days)

(4) Fourth working condition: excavation of the third
layer of soil (the thickness of the soil layer was 4m) to
the bottom of the foundation pit (30 days)

Because the space was limited, and the middle part of the
long side of the foundation pit was in a weak position, its
monitoring data played a control role in the deformation of
the support structure.)erefore, to verify the effectiveness of
the method in this study, the S18 point was selected as the
research object. )e original records of horizontal dis-
placement observation of pile foundation are shown in
Table 2.

It is worth noting that to ensure the reliability of the
actual monitoring data of the deformation of the foundation
pit, in the model prediction and processing stage, the net-
work model adopted a multistep rolling real-time prediction
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method, taking the current horizontal displacement of the
pile top as the new input and replacing the horizontal
displacement of the previous period; this method was used
to continuously replace the input data, and it carried out a
rolling dynamic forecast for the next time. In addition, the
GM (1, 1) model uses the original certain information to
predict and analyze unknown information. )erefore, it is
more sensitive to the original data. According to the new
information principle, we know that the more newly ac-
quired signals have the smallest noise error. At the same

time, a single-sequence GM (1, 1) model can be constructed
according to the time-accumulated deformation, and to
meet the prediction requirements of the GM (1, 1) model,
the data series must be positive. )erefore, this study
presents another expression for the horizontal deformation
data measurement, which is expressed in terms of cumu-
lative horizontal displacement and is beneficial in reducing
the error; this is suitable for the original data sequence with a
small number of calculations and a small sample, and the
calculation accuracy can also meet the requirements.

Figure 4: Layout of foundation pit of monitoring points.

�reshold selection

Scal selection

Wavelet basis function
determination

Decomposition level
Determination

Foundation pit deformation data collection

Data processing

Wavelet denoising Foundation pit deformation data

Grey BP network prediction Grey BP network prediction

Comparative analysis

Conclusion

Figure 3: Technical route of the research process.
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4.2. Results and Discussion

4.2.1. Horizontal Displacement Data (Pile Top) Based on
Wavelet Denoising. A different selection of wavelet function
and threshold processing will lead to different denoising
effects. In this study, the threshold value and the different
parameters of wavelet basis function were selected to make a
comparative study of the data effect after denoising, and the
best model of wavelet denoising for the horizontal dis-
placement of S18 point pile top was determined, and then,
the next stage of analysis and prediction was carried out.

For the evaluation of a different threshold selection,
unified scale� SLN, soft threshold, Daubechies’ 3 wavelets,
and one-level decomposition were used. A fixed threshold
(sqtwolog), unbiased risk estimation threshold (rigrsure),
and heuristic threshold (heursure) were used to denoise the
original data, and different filtering effects were obtained.
)e evaluation results of three different threshold selections
are shown in Table 3.

According to the comparison of Table 3, in relation to the
definition of root-mean-square error (RMSE) and the signal-
to-noise ratio (SNR), the smaller the RMSE value, the higher
the approximation between the denoised signal and the
original signal, and the better the denoising effect; the larger
the signal-to-noise ratio, the better the denoising effect.
From these two evaluation indexes, the denoising effect
based on the unbiased risk estimation threshold (rigrsure)
method is relatively better. )erefore, to predict more ac-
curately, we chose the principle of rigrsure for wavelet
denoising.

We performed a comparison and evaluation of different
wavelet basis functions. )ere are many choices of wavelet
basis functions, and the denoising effect of different wavelet
basis functions is different. In this study, only Db6 and Sym6
wavelets with orthogonality and compactness were selected.
We used the principle of the rigrsure threshold, scale� SLN,
and one-level decomposition to denoise the original data;
the evaluation results are shown in Table 4.

It can be seen from Table 4 that the root-mean-square
error of the Db6 wavelet function was relatively smaller, and
the signal-to-noise ratio was larger. )erefore, Db6 was
chosen as the wavelet basis function of wavelet denoising.
Finally, we decided to use the Db6 wavelet function, one-

level decomposition, rigrsure function, and scale� SLN to
denoise the original observation data and obtained the
denoised data as shown in Table 2.

4.2.2. Predicting the Deformation Based on the Gray BP
Network Model Based on the Measured Data. According to
the method introduced in the second part, the 8-step gray GM
(1, 1) model was selected to predict the 9–12 horizontal
displacement data using the measured horizontal displace-
ment data of the pile top in the period of 1–8.)e fitting value
test and prediction value test of the 8-step gray GM (1, 1)
model are shown in Table 5.

It can be seen from Table 5 that the posteriori difference
ratio of the fitting value of the GM gray (1, 1) model was
0.31, less than or equal to 0.35, and its model accuracy grade
was grade I; its prediction result was very good, and its
reliability was high. In addition, it can be seen from the test
results that, with the increase in observation periods, the
relative error was also gradually increasing, mainly because
the data change trend in this period suddenly slowed down,
and the prediction error of the gray model itself also
gradually increased with the increase in observation periods,
which makes the prediction accuracy not high.

)erefore, the BP neural network prediction was carried
out according to the GM (1, 1) fitting results. Considering
the small amount of data, we took the GM (1, 1) fitting value
of the pile top horizontal displacement data from the first
period to the eighth period as the input sample, took the

Table 2: Data of measured horizontal displacement of pile foundation and wavelet denoising (mm).

Measured period Time interval Measured displacement Displacement (wavelet denoising)
1 30 0.64 0.62
2 13 1.25 1.21
3 13 1.84 1.89
4 13 2.36 2.32
5 13 2.65 2.59
6 10 3.83 2.93
7 10 4.67 4.56
8 10 5.38 5.31
9 10 6.45 6.51
10 10 6.67 6.58
11 10 6.78 6.81
12 10 6.87 6.91

Table 3: Denoising evaluation of three thresholds.

)reshold principle RMSE SNR
Sqtwolog 0.786 27.563
Rigrsure 0.243 39.623
Heursure 0.412 35.426

Table 4: Denoising evaluation of two wavelet functions.

Wavelet functions RMSE SNR
Db6 0.316 38.156
Sym6 0.493 33.156
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ninth period to the twelfth period as the expected prediction
output, and obtained the prediction results of the gray BP
network model, as shown in Table 6.

It can be seen from Table 6 that the accuracy of the gray
BP combined model was improved to a certain extent
compared with the single gray GM (1, 1), and the average
relative error of the final model prediction was reduced by
1.47%, indicating that the prediction of the gray BP model is
relatively reliable and effective.

4.2.3. Deformation Prediction of Gray BP Neural Network
Based on Wavelet Denoising. In the same way, according to
the method in the previous section, considering the small
amount of data, we used the GM (1, 1) fitting prediction
result of the horizontal displacement of the pile top (wavelet
denoising data) from the first period to the eighth period as
the output value is used to predict the horizontal dis-
placement of the BP neural network in periods 9–12, as
shown in Table 7.

As can be seen from Table 7, with the increase in ob-
servation periods, the relative error had not simply in-
creased. )e relative error in the 10th and 11th periods was
smaller and better, while the relative error in the 9th and
12th periods was larger. )is shows that the deformation

data after wavelet denoising can better reflect the real
horizontal displacement of the pile top.

4.2.4. Comparison and Analysis of Gray BP Network Pre-
diction Model before and after Wavelet Denoising. Based on
the above analysis results, the comparison between the
measured data and the gray BP prediction data before and
after wavelet denoising is shown in Table 8.

It can be seen from Table 8 that the prediction results of
the gray BP model before and after wavelet denoising were
larger than the actual observation data, which was due to a
sudden change in the original observation data. From the
comparison of the two groups of data, the average relative
error of the prediction results of the gray BP model based on
wavelet denoising was 4.32%, while the average relative error
of the prediction results of the gray BP neural networkmodel
based on the original monitoring data was 6.70%. )erefore,
for the prediction data of the S18 pile top horizontal dis-
placement, the gray BP model based on wavelet denoising
was more accurate and reliable than the data without
denoising.

In addition, it can be seen from Table 8 that with the
increase in excavation depth of the foundation pit, the
change in horizontal displacement increased. However,

Table 5: Test for fitting value and predicted value of horizontal displacement of pile top (mm).

Measured period Measured displacement Fitting value Residual Relative error Average error
1 0.64 0.64 0 0

C � (S2/S1) � 0.31

2 1.25 1.26 − 0.01 0.87%
3 1.84 1.90 − 0.06 3.25%
4 2.36 2.42 − 0.57 2.43%
5 2.65 2.45 0.2 7.68%
6 3.83 3.92 − 0.09 2.38%
7 4.67 4.47 0.02 0.45%
8 5.38 5.58 − 0.02 3.64%

Forecast value inspection form
Measured period Measured displacement Fitting value Residual Relative error Average error (%)
9 6.45 6.79 − 0.34 5.27%

8.1710 6.67 7.02 − 0.35 5.24%
11 6.78 7.39 − 0.58 8.53%
12 6.87 7.81 − 0.94 13.62%

Table 6: Prediction of gray BP network model.

Measured period Measured displacement Fitting value Residual Relative error (%) Average error (%)
9 6.45 6.78 − 0.33 5.12

6.7010 6.67 7.01 − 0.34 5.23
11 6.78 7.24 − 0.46 6.73
12 6.87 7.54 − 0.67 9.7

Table 7: Prediction of horizontal displacement based on gray BP network model after wavelet denoising.

Measured period Measured displacement Fitting value Residual Relative error (%) Average error (%)
9 6.45 6.76 − 0.31 4.81

4.3210 6.67 6.88 − 0.19 3.12
11 6.78 7.03 − 0.25 3.65
12 6.87 7.26 − 0.39 5.68
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during the predicted observation period from the 9th to the
12th (during the fourth stage of construction), although the
horizontal displacement value of the pile top increased
gradually, the increase was relatively gentle. )is is because
the horizontal displacement of the pile top tended to be
stable with the completion of the excavation Earth pressure
release and the formation of the second support. )e sup-
porting structure system formed by retaining the pile, crown
beam, and support played a good role in controlling the
horizontal deformation of the pile top. All the predicted
results are also in line with engineering practice.

5. Conclusion

)is research combines the advantages of wavelet trans-
form, a gray model, and a BP neural network prediction
model. We established a gray BP neural network prediction
model based on wavelet transform and conducted defor-
mation prediction research on deep foundation pit engi-
neering. Studies have shown that the gray BP neural
network model based on wavelet transform has an average
relative error of 4.32% for the prediction results of deep
foundation pit deformation, which is 2.38% less than the
traditional gray BP neural network model. )e prediction
accuracy was improved, and the reliability of the method
was verified. )is method can provide a useful reference for
deformation monitoring and the prediction of the deep
foundation pit excavation construction in the future and
ensure the safety of the deep foundation pit excavation
construction process.

Due to the modeling granularity, our modeling only
considered some key information, but some details were not
considered, such as the influence of the settlement of the
foundation around the foundation pit, the change in
groundwater, and the change in the internal force of the
concrete internal support. However, in fact, if these random
factors are considered, the relative error of deformation
prediction of foundation pits will be caused. )erefore, in
future work, we will study how to use other real-time
monitoring data to predict the deformation of deep foun-
dation pits. We will also apply other algorithms, including
advanced learning algorithms, to search for the optimal
solution more quickly. In addition, how to provide a clearer
visual expression model structure to guide the safety of
foundation pit excavation and construction will be another
direction of future foundation pit deformation prediction
research work.
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