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In this paper, a BLSTM-based adaptive finite-time control structure has been constructed for a class of aerospace unmanned
systems (AUSs). Firstly, a novel neural network structure possessing both the time memory characteristics and high learning
speed, broad long short-termmemory (BLSTM) network, has been constructed. Secondly, several nonlinear functions are utilized
to transform the tracking errors into a novel state vector to guarantee the output constraints of the AUSs. .irdly, the fractional-
order control law and the corresponding adaptive laws are designed, and as a result, the adaptive finite-time control scheme has
been formed. Moreover, to handle the uncertainties and the faulty elevator outputs, an inequality of the multivariable systems is
utilized. Consequently, by fusing the output of the BLSTM, the transformation of the tracking errors, and the adaptive finite-time
control law, a novel BLSTM-based intelligent adaptive finite-time control structure has been established for the AUSs under
output constraints..e simulation results show that the proposed BLSTM-based adaptive control algorithm can achieve favorable
control results for the AUSs with multiple uncertainties.

1. Introduction

As is well known, the adaptive control methodology can
adjust control parameters automatically according to the
variation of the environment and the system uncertainties
and can improve the adaptability with respect to the un-
certain factors mentioned above [1–5]. In recent years, a lot
of research has been done on adaptive control in China. In
[6], a novel adaptive switching dynamic surface control
(DSC) strategy is first presented for fractional-order non-
linear systems in the nonstrict feedback form with unknown
dead zones and arbitrary switching. In [6], a novel adaptive
prescribed performance tracking control scheme has been

proposed for stochastic nonlinear systems with unmodeled
dynamics in finite-time prescribed performance. In [7], a
novel event-triggered-based fuzzy adaptive finite-time
control method has been proposed for stochastic nonlinear
nonstrict feedback systems with unmodeled dynamics. In
[8], a novel fault-tolerant IGC structure has been con-
structed for a class of skid-to-turn (STT) missiles subjected
to rapidly changing actuator failures and coupled multi-
source uncertainties. In [9], a novel adaptive fault-tolerant
attitude control approach has been designed based on the
long short-term memory (LSTM) network for the fixed-
wing UAV subject to the high dynamic disturbances and
actuator faults. In [10], a novel evasion-faced fast adaptive
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feed-forward control structure has been established for the
hypersonic vehicles. Adaptive robust control is also a typical
representative of adaptive control methodology, which can
effectively realize the stable control of the system. In [11], a
vehicle mass estimation algorithm based on the least squares
method and sliding mode observer is proposed for variable
mass unmanned aircraft systems. In [12], the fuzzy neural
network (FNN) control method using impedance learning
has been proposed for coordinated multiple constrained
robots carrying a common object. In [13], the adaptive
control-based design strategies have been proposed for a
pressurized water (PWR) nuclear power plant (NPP) system.
In [14], a reinforcement learning (RL) structure control
strategy based on actor-critic has been developed for a
flexible two-link manipulator (FTLM) system. In [15], ro-
bust fault-tolerant control for a class of second-order
nonlinear systems using an adaptive third-order sliding
mode control was proposed. In [16], an adaptive control
scheme under the hierarchical framework has been pro-
posed for the trajectory tracking problem of flapping-wing
microaerial vehicles (FWMAVs). In [17], the adaptive robust
tracking control scheme based on backstepping technique
has been proposed for a class of multi-input and multi-
output (MIMO) nonaffine systems with uncertain structure
and parameters, unknown control direction, and unknown
external disturbance. Furthermore, the adaptive control is
usually used together with some other control laws,
inheriting the original advantages of these control laws, as
well as taking advantages of the automatic regulation of the
adaptive control [18–20]. In practice, since the attitude
control performance of the aerospace unmanned systems is
always affected by aerodynamic uncertainties and external
disturbances, the adaptive control method has been introduced
into the control design process of AUS. For instance, the
adaptive sliding mode control [21, 22], adaptive fuzzy control
[23–25], model reference adaptive control (MRAC) [26],
adaptive dynamic inversion control [27], adaptive back-
stepping control [28–30], adaptive super-twisting approach
[31], and adaptive anti-disturbance control [32, 33] have all
been applied to the attitude control design of the AUSs.
Nevertheless, it is difficult to utilize the aforementioned control
technique to guarantee rapidity of the closed-loop control
system, especially when the external circumstance is fickle.

In order to tackle this problem, the concept of finite-time
control (FTC) was put forward in the middle of the last
century [34–36]. Given a limit condition of the system initial
value, if the system states never exceed a certain threshold
within a finite-time interval, the system is described as finite-
time stable. In the past decade, many studies have been built
on infinite time asymptotic convergence and can be utilized
to guarantee the system convergence under the fickle ex-
ternal circumstance [37–40]. Due to the outstanding ad-
vantages under time-constraint situations, a series of papers
have explored the potential of finite-time control laws. In
[37], the finite-time Lyapunov stability theorem has been
established. In [38], through output feedback based on a
finite-time separation principle, the global finite-time sta-
bility has been realized for the double integrator system. In
[39], a finite-time adaptive controller has been designed for a

class of strict feedback nonlinear systems. Moreover, by the
combination of a robust controller [40] and an adaptive
controller [41], the finite-time tracking task was completed
and the difficulties caused by state constraints and dead zone
were conquered. In addition, FTC has also been employed in
space missions. In [42], the finite-time stability of spacecraft
large-angle maneuver under disturbances was achieved,
avoiding the chattering phenomenon by virtue of a robust
adaptive controller. In [43], a finite-time control strategy
based on a finite-time auxiliary system has been designed for
a 12-rotor UAV. Compared with the finite-time control law,
the fixed-time control law has the outstanding advantage in
the specific situation, and it can effectively realize the stable
control at a given time. In [44], the event-triggered fixed-
time adaptive fuzzy control method has been proposed for
state-constrained stochastic nonlinear systems. In [45], a
novel adaptive fixed-time control strategy has been proposed
for a class of nonlinear bilateral teleoperation systems. In
[46], a light fixed-time controller has been designed for the
issues of chattering effects and multiple parameters.

Moreover, intelligent methods, algorithms, and theories
have achieved remarkable progress recently, providing a useful
way to improve the response speed and the tracking perfor-
mance of the control systems [47–50]. .e broad learning
system (BLS), which utilizes the self-adjusting mechanism of
node number to achieve better learning performance, has been
firstly proposed in [51]. In [52], based on the broad learning
method, a framework that can learn and fuse two modal
characteristics has been constructed, possessing better stability
and rapidity. Combining the Takagi–Sugeno (TS) fuzzy
modeling method with the BLS, the fuzzy broad learning
system (BLS) has been established in [53], which shows ad-
vantages over neuro-fuzzy models. By combining a con-
volutional neural network with broad learning system, a
framework for license plate recognition has been reported in
[54]. In [55], the least p-norm-based BLS (LP-BLS) using the
fixed-point iteration strategy has been proposed. Furthermore,
BLS has also been used to solve practical engineering problems
[56–58]. In [56], a novel quaternion broad learning system has
been proposed. In [57], the BLS has been introduced into
hyper-spectral image analysis area, providing new ideas and
technical reserves for a variety of hyper-spectral image analysis
problems. Based on BLS, Zhongdong et al. [58] proposed a
method of landscape capacity allocation and obtained a ca-
pacity allocation result that met the total investment cost and
minimized network active power loss. Moreover, in [59], the
long short-term memory (LSTM) network, which possesses
the storage functions and can effectively approximate the time
accumulative nonlinearities in the control systems, has been
established. In [60, 61], the effectiveness and robustness of the
LSTM have been demonstrated. In [62], a LSTM-based in-
telligent control structure is constructed, showing the better
approximating accuracy of the LSTM compared to the
common neural networks.

However, up to know, the broad learning methods have
rarely been introduced into the control design of the AUSs.
According to [51, 52], the broad learning methods could be
made use of to enhance the control performance and reduce the
control complexity..erefore, it is of remarkable importance to
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develop the BLS-based adaptive control methods for the AUSs.
Furthermore, in the actual flight process, the nonlinearities and
uncertainties of the AUSs usually possess time-varying features
and accumulative effect, and as a result, the LSTM should be
introduced together with the BLS simultaneously.

.erefore, in this work, we propose a BLSTM-based
adaptive finite-time control structure for the AUSs under
output constraints. .e broad long short-term memory
network, which possesses both the time memory charac-
teristics and high learning speed, has been constructed. .e
fractional-order control law and the tracking error trans-
formation are utilized to guarantee the finite-time conver-
gence and output constraints. Compared with the existing
results, this work possesses the following features:

(i) It is the first BLSTM-based adaptive finite-time
control structure for the AUSs.

(ii) .e proposed broad long short-term memory
network can be applied to a plenty of practical
engineering systems to improve the approximation,
classification, or recognition performance.

(iii) By introducing the BLSTM into the adaptive finite-
time control law, the convergence time can be
ensured and the control accuracy can be improved.

2. Problem Formulation and Preliminaries

2.1. 1e System Model of Aerospace Unmanned System.
According to reference [63], the kinematic and dynamic
equations of the aerospace unmanned system can be
expressed by

_ϑ � ωy sin c + ωz cos c.

_ψ �
ωy cos c − ωz sin c􏼐 􏼑

cos ϑ
,

_c � ωx − tan ϑ ωy cos c − ωz sin c􏼐 􏼑,

_ω � J
− 1

[M − ω ×(J · ω)],

(1)

where ϑ, ψ, and c denote the pitch angle, yaw angle, and roll
angle, respectively; ω is the attitude angular velocity; I is the
inertia matrix of the AUS; and M is the total moment of force.

I �

Ixx 0 Ixz

0 Iyy 0

Izx 0 Izz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

M � qSL

Cz

Cy

Cx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Cz � Cz0 + C
δa1
z δa1 + C

δa2
x δa2 + C

δb1
z δb1 + C

δb2
z δb2 + C

α
zα,

Cy � C
δy

y δy + C
β
yβ,

Cx � C
δa1
x δa1 + C

δa2
x δa2 + C

δb1
x δb1 + C

δb2
x δb2 + C

β
xβ.

(2)

.e definitions of q, ρ, V, S, L, Cz, Cy, Cx, Cz0, δa1, δa2 ,
δb1, δb2, and δy can be found in [64]. α, β are the angle of
attack and sideslip angle, respectively, with the following
dynamic equations:

_α � ωz +
ρVSCzα

2m
α,

_β � −ωy +
ρVSCyβ

2m
β.

(3)

With the external disturbances, the attitude dynamics of
the AUS system can be modeled as

_θ(t) � Aθω(t) + dθ(t),

_ω(t) � Bωδ(t) + C(ω) + dω(t),
(4)

where θ(t) � ϑ,ψ, cT and ω(t) � [ωz,ωy,ωx]T;
δ(t)e � [δb1, δb2, δy, δa1, δa2]

T; yout is the output of the AUS
system; and dθ(t) and dω(t) ∈ R3×1 are the matched and
mismatched disturbances.

Aθ �

cos c sin c 0

−
sin c

cos ϑ
cos c

cos ϑ
0

tan ϑ sin c −tan ϑ cos c 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bω � qSLI
− 1

CM,

C(ω) � I
− 1

qSL

Cz0 + C
α
zα

C
β
yβ

C
β
xβ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

ωz

ωy

ωx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× I

ωz

ωy

ωx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

(5)

where

CM �

C
δb1
z C

δb2
z 0 C

δa1
z C

δa2
z

0 0 C
δy

y 0 0

C
δb1
x C

δb2
x 0 C

δa1
x C

δa2
x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

Considering these factors, there often exist structural
uncertainties and modeling errors, which can be rewritten as

_θ(t) � Aθ + ΔAθ􏼂 􏼃ω(t) + f(θ) + dθ(t),

_ω(t) � Bω + ΔBω􏼂 􏼃δ(t) + C(ω) + f(θ,ω) + dω(t),
(7)

where f(θ), f(θ,ω) represent the unknown lumped aero-
dynamic uncertainties. Let ΔAθ represent the structural
uncertainty of Aθ and let ΔBω represent the composite
uncertainties.

ΔBω � ζ · ΔCM + Δζ · CM, (8)

where Δζ is the uncertainty of ζ.
.erefore, the control objective of this paper is to force

the attitude angle θ to follow the desired signals in spite of
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the structural uncertainties and the aerodynamic
uncertainties.

2.2. Preliminaries

Assumption 1. It is supposed thatAθ and Bω are invertible or
generalized invertible.

Assumption 2. It is supposed that dθ(t), dω(t) are both
bounded, e.g., there exist unknown positive constants Dθ
and Dω such that ‖dθ(t)‖≤Dθ, ‖dω(t)‖≤Dω.

.e following lemmas are required.

Lemma 1 (see [65]). Given any a1, a2 and positive constants
z1, z2, z3, the following inequality can be satisfied:

a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
z1 a2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
z2 ≤

z1

z1 + z2
z3 a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
z1+z2 +

z2

z1 + z2
z

−z1/z2
3 a2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
z1+z2 .

(9)

Lemma 2 (see [66]). Given any constant ε> 0 and any
variable x ∈ R, the following inequality can be satisfied:

0<‖x‖ −
x

T
x

�������
x

T
x + ε

􏽰 < ε. (10)

Lemma 3 (see [42]). Consider system _X � f(X, U). Given
any two differential positive definite functions V(X) and
c> 0, 0< l< 1, ε> 0 such that

_V(X)≤ − cV
l
(X) + ε, t≥ 0, (11)

the nonlinear system _X � f(X, U) is semi-globally practical
finite-time stable (SGPFS).

2.3. Broad Long Short-Term Memory (BLSTM) Network.
.e structure of BLSTM network is presented in Figure 1.

Note that the broad learning thought has been intro-
duced to build the structure of BLSTM, and the concept of
“gate” is inherited. In BLSTM, the input data are [ht−1, xt],
and σ(W1fi[ht−1 + xt] + b1fi), i � 1, 2, . . . , n, is utilized to
generate the ith mapped features, Zti, where Wfi is the
random weights with the proper dimensions. Denote
Zi ≡ [Zt1, . . . , Zti], which is the concatenation of all the first
i groups of mapping features. Similarly, the jth group of
enhancement nodes, σ([Zt1Zt2, . . . , Ztn]W2fj + b2fj),
j � 1, 2, . . . , N, is denoted as Htj, and the concatenation of
all the first j groups of enhancement nodes is denoted as
Hj � [Ht1, . . . , Htj]. Hence, the broad model of forget gate
ft can be represented as the equation of the form

ft � Zt1, . . . , Ztn | σ Z
1
t W2f1 + b2f1􏼐 􏼑, . . . , σ Z

n
t W2fn + b2n􏼐 􏼑􏽨 􏽩W

1

� Zt1, . . . , Ztn | Ht1, . . . , Htm􏼂 􏼃W
1

� Ztn | Htm􏼂 􏼃W
1
,

(12)

where W1 � [Ztn | Htm]+ft represents the connecting
weights for the broad structure. Similarly, we can get the
broad model of memory state 􏽥ct as 􏽥ct � [Qtn | Rtm]W2, where
W1 � [Qtn | Rtm]+􏽥ct. .e mathematical expressions of input
gate, update gate, and output gate are

it � σ Wi ht−1, xt􏼂 􏼃 + bi( 􏼁,

ct � ft ∘ ct−1 + it ∘􏽥ct,

ot � σ Wo ht−1, xt􏼂 􏼃 + bo( 􏼁,

ht � ot ∘ tanh ct( 􏼁,

(13)

where Wf, Wi, Wc, Wo, bf, bi, bc, and bo are the weight
matrices and ∘ is the Hadamard product.

3. Main Results

In this section, the controller design will be divided into
inner loop and outer loop of AUS subject to finite-time
convergence, respectively. In the inner loop, several non-
linear functions are used to constrain the state error to
predefined boundness. In view of the external disturbances,
the BLSTM network is introduced to approximate the un-
known nonlinear functions. .e adaptive laws are designed
to compensate the structural uncertainties. Meanwhile, in
the outer loop, an innovative adaptive finite-time control law
is designed to deal with the input uncertainties. .e
structure of the proposed BLSTM-based intelligent adaptive
control method is depicted in Figure 2.

3.1. BLSTM-Based Inner Loop Finite Control Law. Define
e1,ϑ � ϑ − ϑd, e1,ψ � ψ − ψd, e1,c � c − cd. .erefore, the in-
ner loop error dynamic equation can be given by

_e1 � AθΩθω + f(θ) + dθ(t) − _θd, (14)

where Ωθ � (Aθ + ΔAθ)/Aθ.
.e following nonlinear functions are utilized to guar-

antee the output constraints:

sϑ � log
ℓa,1 + e1,ϑ

ℓa,2 + e1,ϑ
,

sψ � log
ℓb,1 + e1,ψ

ℓb,2 + e1,ψ
,

sc � log
ℓc,1 + e1,c

ℓc,2 + e1,c

.

(15)

Define sθ � [sϑ, sψ, sc]T. Accordingly, we can get that

_sθ � T(θ) AθΩθω + f(θ) + dθ(t) − _θd􏼐 􏼑, (16)

where

T(θ) � Diag
e

sϑ + e
− sϑ + 2

ℓa,1 + ℓa,2

e
sψ + e

− sψ + 2
ℓb,1 + ℓb,2

e
sc + e

− sc + 2
ℓc,1 + ℓc,2

􏼢 􏼣.

(17)
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Considering the uncertainties f(θ), a BLSTM network
Ot,θtanh(Ct,θ) is applied to the inner controller. Clearly,
f(θ) � Ot,θ ∘ tanh(Ct,θ) + εθ, where εθ is the bounded ap-
proximation error. Define the BLSTM node number in the
inner loop as N1. We can design the self-adjust strategy for
the nodes number as

N1 � N1 + n1 ad, 􏽚
t1

t1−1
sθ(τ)

����
����dτ > χ1up,

N1 � N1, χ1 low ≤ 􏽚
t1

t1−1
sθ(τ)

����
����dτ ≤ χ1up,

N1 � N1 − n1 ad, 􏽚
t1

t1−1
sθ(τ)

����
����dτ < χ1low,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where n1 ad represents the adjustment and it is a designed
positive integer; χ1 low, χ1 up are designed positive constants,
denoting the adjustment threshold; t1 represents the time

series to complete the judgment and adjustment; and 􏽢Ot,θ is
the estimated value of Ot,θ.

Define ξθ � supt≥0‖εθ + dθ(t)‖. Considering (16), the
indirect virtual control signal is designed as

ωvc � A
−1
θ −

k1sθ
2l− 1

T(θ)
− 􏽢Ot,θtanh Ct,θ􏼐 􏼑 − 􏽢ξθφ(θ) + _θd􏼠 􏼡,

φ(θ) �
ΛT

(θ)
��������������

Λ(θ)ΛT
(θ) + ε2ξ,Λ

􏽱 , ∀εξ,Λ > 0,

(19)

where ωvc is the virtual control signal of ω, k1 ∈ R3×3 is the
control gain, 􏽢ξθ is the estimated value of ξθ, and
Λ(θ) � (sT

θ sθ)s
T
θ T(θ).

Define 􏽢λA as the estimated value of λA. .erefore, we
design the inner control law as

Ct–1

ht–1

Zt1 Ht1 Ht2 HtN Ht1 Ht2 HtMZt1 Zt2 ZtM
Zt2 Ztn

xt

Wi

it ct
~ft

W1 W2

Ct

ht

Wo

ot

Update Gate

Forget Gate Input Gate Memory Gate

×

×
× · · ·

· · ·

· · · · · · · · ·

tanh

SigmoidSigmoid

Output Gate
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Figure 1: .e structure of BLSTM.
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Figure 2: .e structure of the proposed control scheme.
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ωv � −
􏽢λAωvc Υ(θ)􏽢λAωvc􏼐 􏼑
����������������

Υ(θ)􏽢λAωvc􏼐 􏼑
2

+ ε2A
􏽱 , ∀εA > 0, (20)

where Υ(θ) � Λ(θ), Aθ ∈ R1×3. Substituting (19) into (16)
generates

_sθ � −k1sθ
2l− 1

+ T(θ) AθΩθe2 + AθΩθωv − Aθωvc(

− 􏽥Ot,θtanh Ct,θ􏼐 􏼑 − 􏽢ξθφ(θ) + εθ + dθ(t)􏼑,
(21)

where e2 � ω − ωv.
.e following Lyapunov function is selected:

V1 �
1
2
s

T
θ sθ +

1
2ΓOt,θ

􏽥O
T

t,θ
􏽥Ot,θ +

1
2Γξθ

􏽥ξ
2
θ +

1
2ΓλA

λA

􏽥λ
2
A, (22)

where 􏽥Ot,θ � 􏽢Ot,θ − Ot,θ, 􏽥ξθ � 􏽢ξθ − ξθ, 􏽥λA � 􏽢λA − λA, and ΓOt,θ
,

Γξθ, ΓλA
> 0 is the adaptive gain. Take the differential of V1 as

follows:

_V1 � s
T
θ _sθ +

1
ΓOt,θ

􏽥O
T

t,θ
_􏽢Ot,θ +

1
Γξθ

􏽥ξθ
_􏽢ξθ +

1
ΓλA

λA

􏽥λA
_􏽢λA. (23)

Substituting (21) into (23) yields

_V1 � −k1s
T
θ sθ

2l− 1
+ Λ(θ)

AθΩθe2 + AθΩθωv − Aθωvc

− 􏽥Ot,θtanh Ct,θ􏼐 􏼑 − 􏽢ξθφ(θ) + εθ + dθ(t)

⎛⎜⎜⎝ ⎞⎟⎟⎠

+
1
ΓOt,θ

􏽥O
T

t,θ
_􏽢Ot,θ +

1
Γξθ

􏽥ξθ
_􏽢ξθ +

1
ΓλA

λA

􏽥λA
_􏽢λA.

(24)

By using Lemma 1, it can be checked that

Λ(θ) εθ + dθ(t)􏼂 􏼃≤ ‖Λ(θ)‖ξθ ≤
ξθΛ(θ)ΛT

(θ)
��������������

Λ(θ)ΛT
(θ) + ε2ξ,Λ

􏽱 + ξθεξ,Λ,

(25)

where εξ,Σ > 0. Substituting (25) into (24), we can obtain
that

_V1 ≤ −k1s
T
θ sθ

2l− 1
+ Λ(θ)

AθΩθe2 + AθΩθωv − Aθωvc

−􏽥Ot,θtanh Ct,θ􏼐 􏼑

⎛⎜⎝ ⎞⎟⎠

−
􏽥ξθΛ(θ)ΛT

(θ)
��������������

Λ(θ)ΛT
(θ) + ε2ξ,Λ

􏽱 + ξθεξ,Λ

+
1
ΓOt,θ

􏽥O
T

t,θ
_􏽢Ot,θ +

1
Γξθ

􏽥ξθ
_􏽢ξθ +

1
ΓλA

λA

􏽥λA
_􏽢λA.

(26)

.en, from (20) and Lemma 1, we know that

Λ(θ)AθΩθωv � Υ(θ)Ωθωv � −Ωθ
Υ(θ)􏽢λAωvc􏼐 􏼑

2

����������������

Υ(θ)􏽢λAωvc􏼐 􏼑
2

+ ε2A
􏽱

≤ −
Υ(θ)􏽢λAωvc􏼐 􏼑

2

λA

����������������

Υ(θ)􏽢λAωvc􏼐 􏼑
2

+ ε2A

􏽲

≤
1
λA

Υ(θ)􏽢λAωvc + εA􏼐 􏼑.

(27)

.erefore,

Λ(θ)AθΩθωv − Λ(θ)Aθωvc ≤
􏽥λA

λA

Υ(θ)ωvc +
εA

λA

. (28)

Obviously,

Λ(θ)AΩθe2 � Υ(θ)Ωθe2 ≤ λmax2 Ωθ( 􏼁 +
1
2
Υ(θ)ΥT

(θ)e
T
2 e2.

(29)

Combining (26), (28), and (29), it can be proven that

_V1 ≤ − k1s
T
θ s

2l−1
θ − Λ(θ) 􏽥Ot,θtanh Ct,θ􏼐 􏼑 − 􏽥ξθΛ(θ)φ(θ)

+ λmax2 Ωθ( 􏼁 +
1
2
Υ(θ)ΥT

(θ)e
T
2 e2 +

􏽥λA

λA

Υ(θ)ωvc

+
1
ΓOt,θ

􏽥O
T

t,θ
_􏽢Ot,θ +

1
Γξθ

􏽥ξθ
_􏽢ξθ +

1
ΓλA

λA

􏽥λA
_􏽢λA +

εA

λA

+ ξθεξ,Λ.

(30)

Considering (30), we design the adaptive laws for 􏽢Ot,θ, 􏽢ξθ,
􏽢λA as

_􏽢Ot,θ � ΓOt,θ
ΛT

(θ) ∘ tanh Ct,θ􏼐 􏼑 − σOt,θ
􏽢Ot,θ􏼐 􏼑,

_􏽢ξθ � Γξθ Λ(θ)φ(θ) − σξθ
􏽢ξθ􏼐 􏼑,

_􏽢λA � ΓλA
−Υ(θ)ωvc − σλA

􏽢λA􏼐 􏼑,

(31)

where σOt,θ
, σξθ, σλA

> 0. .erefore, by using the update law
(31), we know that

_V1 ≤ − k1s
T
θ s

2l−1
θ + λmax2 Ωθ( 􏼁 +

1
2
Υ(θ)ΥT

(θ)e
T
2 e2

− σOt,θ
􏽥O

T

t,θ
􏽢Ot,θ − σξθ

􏽥ξθ􏽢ξθ −
σλA

􏽥λA
􏽢λA

λA

+
εA

λA

+ ξθεξ,Λ.

(32)

Since
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−σOt,θ
􏽥O

T

t,θ
􏽢Ot,θ ≤ −

1
2
σOt,θ

􏽥Ot,θ
����

����
2
F

+
1
2
σOt,θ

Ot,θ
����

����
2
F

−σξθ
􏽥ξθ􏽢ξθ ≤ −

1
2
σξθ

􏽥ξ
2
θ +

1
2
σξθξ

2
θ

−
1
λA

σλA

􏽥λA
􏽢λA ≤ −

1
2λA

σλA

􏽥λ
2
A +

1
2λA

σλA
λ2A,

(33)

substituting (33) into (32), we can rewrite (32) as

_V1 ≤ − k1 sθ
����

����
2l

+
1
2
Υ(θ)ΥT

(θ)e
T
2 e2

−
1
2
σOt,θ

􏽥Ot,θ
����

����
2
F

−
1
2
σξθ

􏽥ξ
2
θ −

1
2λA

σλA

􏽥λ
2
A

+ λmax2 Ωθ( 􏼁 +
1
2
σOt,θ

Ot,θ
����

����
2
F

+
1
2
σξθξ

2
θ +

1
2λA

σλA
λ2A +

εA

λA

+ ξθεξ,Λ.

(34)

According to Lemma 3, the following inequality holds:

1
2
σOt,θ

􏽥Ot,θ
����

����
2
F

􏼒 􏼓
l

≤ ι(1 − l) +
1
2
σOt,θ

􏽥Ot,θ
����

����
2
F
,

1
2
σξθ

􏽥ξ
2
θ􏼒 􏼓

l

≤ ι(1 − l) +
1
2
σξθ

􏽥ξ
2
θ,

1
2λA

σλA

􏽥λ
2
A􏼠 􏼡

l

≤ ι(1 − l) +
1

2λA

σλA

􏽥λ
2
A.

(35)

.erefore, we can get that

_V1 ≤ − λmin k1( 􏼁 sθ
����

����
2l

+
1
2
Υ(θ)ΥT

(θ)e
T
2 e2

−
1
2
σOt,θ

􏽥Ot,θ
����

����
2
F

􏼒 􏼓
l

−
1
2
σξθ

􏽥ξ
2
θ􏼒 􏼓

l

−
1

2λA

σλA

􏽥λ
2
A􏼠 􏼡

l

+ εΥ,1,

(36)

where

εΥ,1 �
1
2
σOt,θ

Ot,θ
����

����
2
F

+
1
2
σξθξ

2
θ +

1
2λA

σλA
λ2A + λmax2 Ωθ( 􏼁

+ 3ι(1 − l) +
εA

λA

+ ξθεξ,Λ.

(37)

3.2. BLSTM-Based Input Uncertainty Suppressed Outer Loop
Finite-Time Controller Design. According to (7), we can get
that

_e2 � Bω + ΔBω􏼂 􏼃δ + C(ω) + f(θ,ω) + dω(t) − _ωv. (38)

A BLSTM network Ot,ωtanh(Ct,ω) is utilized to handle
f(θ,ω). Define the BLSTM node number in the outer loop
as N2. We can also design the self-adjust strategy for the
nodes number as

N2 � N2 + n2 ad, 􏽚
t2

t2−1
e2(τ)

����
����dτ > χ2up,

N2 � N2, χ2 low ≤ 􏽚
t2

t2−1
e2(τ)

����
����dτ ≤ χ2up,

N2 � N2 − n2 ad, 􏽚
t2

t2−1
e2(τ)

����
����dτ < χ2low,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

where εω represents the adjustment and it is a designed
positive integer; χ2 low, χ2 up are designed positive constants,
denoting the adjustment threshold; and t2 represents the
time series to complete the judgment and adjustment.

According to (38), we design

δvc � B
−1
ω −k2 e2

����
����
2l− 1

−
1
2
e2Υ(θ)ΥT

(θ)􏼒

−C(ω) − 􏽢Ot,ωtanh Ct,ω􏼐 􏼑 − 􏽢ξωφ e2( 􏼁 + _ωv􏼑,

φ e2( 􏼁 �
e2���������

e
T
2 e2 + ε2ξ,e2

􏽱 , ∀εξ,e2
> 0,

(40)

where δvc is the virtual control signal of δ, k2 is the control
gain, B−1

ω � BT
ω/BωBT

ω, and 􏽢ξω represents the estimations of ξω
(ξω � supt≥0‖εω + dω(t)‖).

To deal with the perturbations of Bω, we define
λB � 1/inf(λmin(Ωω)). Accordingly, we design

δv � −
􏽢λBδvc e

T
2 Bω

􏽢λBδvc􏼐 􏼑
���������������

e
T
2 Bω

􏽢λBδvc􏼐 􏼑
2

+ ε2B
􏽱 , ∀εB > 0, (41)

where 􏽢λB is the estimation of λB. Substituting (40) and (41)
into (38) yields

_e2 � −
1
2
e2Υ(θ)ΥT

(θ) − k2 e2
����

����
2l− 1

+ BωΩωδ − Bωδvc

− 􏽥Ot,ωtanh Ct,ω􏼐 􏼑 − 􏽢ξωφ e2( 􏼁 + dω(t) + εω.

(42)

Select the following Lyapunov function:

V2 �
1
2
e

T
2 e2 +

1
2ΓOt,ω

􏽥O
T

t,ω
􏽥Ot,ω +

1
2Γξω

􏽥ξ
2
ω +

1
2ΓλB

λB

􏽥λ
2
B, (43)

where 􏽥Ot,ω � 􏽢Ot,ω − Ot,ω, 􏽥ξω � 􏽢ξω − ξω, 􏽥λB � 􏽢λB − λB, ΓOt,ω
,

Γξω, ΓλB
> 0. We can take the differential of V2 as

_V2 � e
T
2 _e2 +

1
ΓOt,ω

􏽥O
T

t,ω
_􏽢Ot,ω +

1
Γξω

􏽥ξω
_􏽢ξω +

1
ΓλB

λB

􏽥λB
_􏽢λB

� e
T
2

BωΩωδ − Bωδvc −
1
2
e2Υ(θ)ΥT

(θ) − k2e2
2l− 1

− 􏽥Ot,ωtanh Ct,ω􏼐 􏼑 − 􏽢ξωφ e2( 􏼁 + εω + dω(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
1
ΓOt,ω

􏽥O
T

t,ω
_􏽢Ot,ω +

1
Γξω

􏽥ξω
_􏽢ξω +

1
ΓλB

λB

􏽥λB
_􏽢λB.

(44)
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By using Lemma 1, we know that

e
T
2 εω + dω(t)􏼂 􏼃≤ ξω e2

����
����≤ ξωe

T
2φ e2( 􏼁 + ξωεξ,e2

. (45)

.en, from (41) and Lemma 1, we can obtain that

e
T
2 BωΩωδv � −Ωω

e
T
2 Bω

􏽢λBδvc e
T
2 Bω

􏽢λBδvc􏼐 􏼑
���������������

e
T
2 Bω

􏽢λBδvc􏼐 􏼑
2

+ ε2B
􏽱

≤ −
1
λB

e
T
2 Bω

􏽢λBδvc

����
���� − εB􏼐 􏼑

≤
􏽢λB

λB

e
T
2 Bωδvc +

εB

λB

.

(46)

.erefore,

e
T
2 BωΩωδ − e

T
2 Bωδvc ≤

􏽥λB

λB

e
T
2 Bωδvc +

εB

λB

. (47)

By substituting (45) and (47) into (44), it can be obtained
that

_V2 ≤ − k2 e2
����

����
2l

−
1
2
e

T
2 e2Υ(θ)ΥT

(θ) +
􏽥λB

λB

e
T
2 Bωδvc

+
εB

λB

− e
T
2

􏽥Ot,ωtanh Ct,ω􏼐 􏼑

− 􏽥ξωe
T
2φ e2( 􏼁 + ξωεξ,e2

+
1
ΓOt,ω

􏽥O
T

t,ω
_􏽢Ot,ω

+
1
Γξω

􏽥ξω
_􏽢ξω +

1
ΓλB

λB

􏽥λB
_􏽢λB.

(48)

In view of (41), the adaptive laws for 􏽢Ot,ω, 􏽢ξω, 􏽢λB are
designed as

_􏽢Ot,ω � ΓOt,ω
e2 ∘ tanh Ct,ω􏼐 􏼑 − σOt,ω

􏽢Ot,ω􏼐 􏼑,

_􏽢ξω � Γξω e
T
2φ e2( 􏼁 − σξω

􏽢ξω􏼐 􏼑,

_􏽢λB � −ΓλB
e

T
2 Bωδvc − σλB

􏽢λB􏼐 􏼑,

(49)

where σOt,ω
, σξω, σλB

> 0. Combining (48) with (49) generates

_V2 ≤ −k2 e2
����

����
2l

−
1
2
e

T
2 e2Υ(θ)ΥT

(θ) − σOt,ω
􏽥O

T

t,ω
􏽢Ot,ω

− σξω
􏽥ξω􏽢ξω −

σλB

􏽥λB
􏽢λB

λB

+ ξωεξ,e2
+
εB

λB

.

(50)

.erefore,

_V2 ≤ −
1
2
e

T
2 e2Υ(θ)ΥT

(θ) − λmin k2( 􏼁 e2
����

����
2l

−
1
2
σOt,ω

􏽥Ot,ω
����

����
2
F

+
1
2
σOt,ω

Ot,ω
����

����
2
F

−
1
2
σξω

􏽥ξ
2
ω +

1
2
σξωξ

2
ω −

1
2λB

σλB

􏽥λ
2
B +

1
2λB

σλB
λ2B + ξωεξ,e2

+
εB

λB

.

(51)

Next, by applying Lemma 3, we can obtain

1
2
σOt,ω

􏽥Ot,ω
����

����
2
F

􏼒 􏼓
l

≤ (1 − l)ι +
1
2
σOt,ω

􏽥Ot,ω
����

����
2
F
,

1
2
σξω

􏽥ξ
2
ω􏼒 􏼓

l

≤ (1 − l)ι +
1
2
σξω

􏽥ξ
2
ω,

1
2λB

σλB

􏽥λ
2
B􏼠 􏼡

l

≤ (1 − l)ι +
1
2λB

σλB

􏽥λ
2
B.

(52)

Hence, we can get that

_V2 ≤ −
1
2
e

T
2 e2Υ(θ)ΥT

(θ) − λmin k2( 􏼁 e2
����

����
2l

−
1
2
σOt,ω

􏽥Ot,ω
����

����
2
F

􏼒 􏼓
l

−
1
2
σξω

􏽥ξ
2
ω􏼒 􏼓

l

−
1
2λB

σλB

􏽥λ
2
B􏼠 􏼡

l

+ εΥ,2,

(53)

where

εΥ,2 �
1
2
σOt,ω

Ot,ω
����

����
2
F

+
1
2
σξωξ

2
ω +

1
2λB

σλB
λ2B

+ ξωεξ,e2
+
εB

λB

+ 3(1 − l)ι.
(54)

3.3. Stability Analysis of the Proposed BLSTM-Based Finite-
Time Control Law. .e main result on global adaptive
tracking is stated in this section.

Theorem 1. Consider the closed-loop system consisting of the
AUS (7), the indirect virtual controllers (19) and (40), the final
virtual controllers (20) and (41), and the adaptive update laws
(31) and (49) and suppose that Assumptions 1 and 2 are
satisfied. Moreover, it is guaranteed that the nonlinear
mapping error sθ is bounded and can converge in finite time,
and thus the tracking error can converge to a small compact
set in finite time in the presence of the uncertainties and the
faulty elevator outputs.

Proof. According to (36) and (53), we define V � V1 + V2.
.us,

_V � _V1 + _V2

≤ − λmin k1( 􏼁 s
T
θ sθ􏼐 􏼑

2l
− λmin k2( 􏼁 e2

����
����
2l

−
1
2
σOt,θ

􏽥Ot,θ
����

����
2
F

􏼒 􏼓
l

−
1
2
σξθ

􏽥ξ
2
θ􏼒 􏼓

l

−
1

2λA

σλA

􏽥λ
2
A􏼠 􏼡

l

−
1
2
σOt,ω

􏽥Ot,ω
����

����
2
F

􏼒 􏼓
l

−
1
2
σξω

􏽥ξ
2
ω􏼒 􏼓

l

−
1
2λB

σλB

􏽥λ
2
B􏼠 􏼡

l

+ εΥ1 + εΥ2.

(55)

Define
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σ � min
4λmin k1( 􏼁, 2λmin k2( 􏼁, σOt,θ

ΓOt,θ
􏼐 􏼑

l
, σξθΓξθ􏼐 􏼑

l
,

σλA
ΓλA

􏼐 􏼑
l
, σOt,ω
ΓOt,ω

􏼐 􏼑
l
, σξωΓξω􏼐 􏼑

l
, σλB
ΓλB

􏼐 􏼑
l

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

εΥ � εΥ1 + εΥ2

�
1
2
σOt,θ

Ot,θ
����

����
2
F

+
1
2
σξθξ

2
θ +

1
2λA

σλA
λ2A + λmax2 Ωθ( 􏼁 +

εA

λA

+ ξθεξ,Λ

+
1
2
σOt,ω

Ot,ω
����

����
2
F

+
1
2
σξωξ

2
ω +

1
2λB

σλB
λ2B + ξωεξ,e2

+
εB

λB

+ 6(1 − l)ι.

(56)

We can define that

_V≤ − σV
l
+ εΥ. (57)

By solving (55), we can get that

V(t)≤ V
1− l

(0) − ασ(1 − l)t􏽨 􏽩
(1/(1− l))

, (58)

where 0< α< 1. Meanwhile, let

T �
1

ασ(1 − l)
V

1− l
(0) −

εΥ
(1 − α)σ

􏼢 􏼣

(1/(1− l))⎧⎨

⎩

⎫⎬

⎭, (59)

where V(0) represents the initial value of V(t). According
to Lemma 2, for t≥T, Vl ≤ εΥ/(1 − α) σ, that is, all the
signals of the closed-loop system are SGPFS.

Table 1: .e parameters of the AUS.

V � 10m/s m � 28 kg b � 3.1m
c � 0.58m S � 1.8m2 ρ � 1.29 kg/m3

Ixx � 2.56 kg · m2 Izx � 0.5 kg · m2 Izz � 11.3 kg · m2

Iyy � 10.9 kg · m2 Ixz � 0.5 kg · m2

Table 2: .e uncertainties of the four cases.

f(θ)

0.002 + 0.3 × sin(6.28t/10)

0.001 + 0.2 × sin(6.28t/10)

0.002 + 0.01 × sin(6.28t/10)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

f(θ,ω)

0.007 + 0.6 × sin(6.28t/10)

0.001 + 0.2 × sin(6.28t/10)

0.004 + 0.3 × sin(6.28t/10)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

Table 3: .e parameters of the system based on BLSTM networks.

.e parameters based on BLSTM networks in the inner loop Wii � 0.1, Woi � 1, bii � 2, boi � 2, Ninner(0) � 7

.e parameters based on BLSTM networks in the outer loop Wio � 0.1, Woo � 1, bio � 5, boo � 12, Nouter(0) � 10
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Figure 3: .e performance of ϑ under four cases.
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Furthermore, according to the definition of V, it can be
inferred that for ∀t≥T,

s
T
θ sθ ≤ 2

εΥ
(1 − α)σ

􏼠 􏼡

(1/2l)

(60)

holds. In other words, after the finite time T, sθ remains in a
small neighborhood of the origin. .us, the tracking errors
can converge to a desired compact set in a finite time and
never violate the predefined constraint. .e proof is
completed. □

4. Simulation Study

In this section, four cases of numerical examples, including
the proposed control method, one without BLSTM, one
without output constraint, and one without finite time, are
carried out in the simulation.

In the simulation, the AUS flight height is h � 1000m,
and the initial attitude angles and angular velocities are set as
zero. .e desired signals are selected as ϑd � 20°, ψd � 15°,
and cd � 4° , and the simulation time is T � 10 s. .e pa-
rameters of AUS are provided in Table 1.
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Figure 4: .e performance of ψ under four cases.
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Figure 5: .e performance of c under four cases.
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.e uncertainties are chosen as ξθ � [0.006,

0.002, 0.003]T and ξω � [0.007, 0.001, 0.004]T. Simulta-
neously, the uncertainties of the four cases considered in the
simulations are given in Table 2. In this paper, the pa-
rameters of BLSTM network are given in Table 3.

.e simulation results are given in Figures 3–11.
Meanwhile, the control performances under four cases are
shown in Figures 3–5, from which we can see that the at-
titude angles of the four methods are quiet different. In Case
4, we apply the proposed method according to the analysis in
Section 4, and it can track the desired signal closely in a finite
time. However, for comparison, in Case 1, it shows that the
proposed method can induce more overshoot without
output constraint. Moreover, in Case 2, we apply the

proposed control method with LSTM instead of BLSTM,
which may induce tracking errors. .at is to say, the BLSTM
network can guarantee more accurate tracking accuracy. In
Case 3, it is assumed that without finite time, the proposed
method will converge in a longer time. .erefore, we know
that the proposed BLSTM-based control law can achieve
satisfactory control performance. From Figures 6–8, It can
be seen that the proposed method with fault compensation
has more advantages in control effect than the method
without fault compensation and can effectively reduce the
oscillation and realize stable control. .e node number of
BLSTM network is shown in Figure 11. Also, it can be seen
that the nodes are variable with the tracking error, which will
converge to a fixed value when the tracking error is stable.
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Figure 6: Trajectory of system state ϑ in the case of fault-tolerant controller δv and controller δvc.
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∥Ô
t,θ
∥

0 2 4 6 8 10

Time (s)

0

1

2

ξ̂ θ

0 2 4 6 8 10

0 2 4 6 8 10
Time (s)

0.8

0.9

1

λ̂ A

Figure 9: .e trajectories of adaptive parameters in inner loop with the proposed method.

Time (s)

0

1

2

∥Ô
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.erefore, it can be concluded that the proposed BLSTM-
based adaptive control algorithm can achieve favorable
control results for the AUSs with multiple uncertainties.

5. Conclusions

In this paper, we propose a BLSTM-based adaptive finite-
time control structure for a class of AUSs. .e novel
BLSTM which possesses both the memory function and
rapid learning speed has been constructed. .e fractional-
order control law and the corresponding adaptive laws are
designed. Combining the BLSTM, the transformation of
the tracking errors, and the adaptive finite-time control
law, a novel BLSTM-based intelligent adaptive finite-time
control structure has been established for the AUSs under
output constraints. .e simulation results demonstrate
the effectiveness of the proposed BLSTM-based intelligent
adaptive finite-time control method and reveal that the
introduction of the BLSTM can improve the control
performance for the AUSs. In future work, the BLSTM-
based adaptive finite-time control method proposed in
this paper will be used to deal with the AUSs with sto-
chastic disturbances.
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