
Research Article
Probability Analysis to Improve the Confidence in
Profiling Accuracy

Yingying Wen ,1 Guanjie Cheng ,1 Bo Lin ,2 and Jianwei Yin 1

1Computer Science and Technology, Zhejiang University, Hangzhou, China
2Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou, China

Correspondence should be addressed to Yingying Wen; wingwingtwo@hotmail.com

Received 22 July 2021; Accepted 17 November 2021; Published 30 November 2021

Academic Editor: Yung-Chung Wang

Copyright © 2021 YingyingWen et al.'is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Performance profiling for the system is necessary and has already been widely supported by hardware performance counters
(HPC). HPC is based on the registers to count the number of events in a time interval and uses system interruption to read the
number from registers to a recording file. 'e profiled result approximates the actual running states and is not accurate since the
profiling technique uses sampling to capture the states. We do not know the actual running states before, which makes the
validation on profiling results complex. Jianwei YinSome experiments-based analysis compared the running results of
benchmarks running on different systems to improve the confidence of the profiling technique. But they have not explained why
the sampling technique can represent the actual running states. We use the probability theory to prove that the expectation value
of events profiled is an unbiased estimation of the actual states, and its variance is small enough. For knowing the actual running
states, we design a simulation to generate the running states and get the profiled results. We refer to the applications running on
production data centers to choose the parameters for our simulation settings. Comparing the actual running states and the
profiled results shows they are similar, which proves our probability analysis is correct and improves our confidence in
profiling accuracy.

1. Introduction

In data centers, performance is critical to improve the
quality of service [1] and save costs [2]. Multiple tasks
controlled by the operating system share computation re-
sources at the same time to improve user experience and
resource utilization. 'e whole system’s performance rep-
resenting the combination of multiple tasks is not enough
for analysis of each task’s performance. Many applications
need to know the running states of specific tasks. 'ese
applications include anomaly detection on data centers
[3, 4], compiler optimization using method stacks [5, 6], and
hot spots detections [7, 8].

Modern processors have hardware support to monitor
system performance. Hardware Performance Counters
(HPC) [9] are register-based counters to count the number
of events in a time interval. With the help of interruption,
HPC can output the counted number to a recording file. For

profiling each task’s performance, only one extra informa-
tion is in need—the instruction address. 'e instruction
address indicates which task the processor is working for at
the moment of interruption. 'e profiling technique then
treats the counted events in the last time interval as all caused
by this task indicated by the instruction address. It is not
accurate to use the instant instruction address to represent
the running states of a long sustaining time interval. But it
has already been used to profile the performance of tasks.

Many widely used profiling tools have already adopted
this approximationmethod, like PAPI [10, 11], perf [12], and
VTune [13]. Profiling accuracy attracts research attentions.
'e experiment-based evaluation compares the profiling
results across multiple system architectures to improve the
confidence of the profiling technique [14, 15]. And CPU
simulator gives detailed information, which makes the
comparison more direct [16]. But these researches utilized
simple benchmarks to check the accuracy. 'is kind of

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 2341973, 11 pages
https://doi.org/10.1155/2021/2341973

mailto:wingwingtwo@hotmail.com
https://orcid.org/0000-0001-7469-4066
https://orcid.org/0000-0003-2080-3903
https://orcid.org/0000-0001-5682-2140
https://orcid.org/0000-0003-4703-7348
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/2341973


validations cannot deduce other workloads’ conditions since
the mechanism lacks proof and analysis—they have not
explained why the sampling technique can represent the
actual running states.

In this paper, we show the mechanism of the profiling
technique with the help of probability theory. We model the
profiling process with two main elements: the running
granularity of a task and the sampling interval. We classify
all possible conditions into three classes according to the rate
between running granularity and sampling interval. For a
constant rate, the sampling process is a kind of Bernoulli
experiment [17]. We prove no matter what the rate value is,
the expectation value is unbiased to the actual value, in-
cluding the condition with a mixture of rate values that
would still keep the unbiased property. And the variance is
related to the number of samples, which is small enough and
usually smaller than 0.25.

We further use the simulation experiments to validate
our proof. 'e implementation of simulation includes the
generation of actual running states and the sampling pro-
cess. 'e settings of the simulation follow the characteristics
of the workloads running on live production data centers.
We simulate single tasks and mixed tasks running with
multiple running granularities and under multiple resource
utilization levels. All of these experiments show that the
expectation value is an unbiased estimation. 'e variance is
also included into consideration, whose effect does not
influence the unbiased property.

We organize our paper as follows. Section 2 introduces
the background of the profiling technique. We propose our
analysis model in Section 3. Section 4 designs the simulation
model. Section 5 shows the simulation results including the
simulation’s prerequisite. Section 6 reviews the related work.
And we conclude in Section 7.

2. Profiling Technique

In this section, we introduce the profiling technique used for
recording the running states of clusters. For example,
Figure 1 is a profiled result of the Windows operating
system. 'e green part at the bottom shows the value
changes of CPU utilization in this 60-second observing
window. 'e blue line shows the rate of current operating
frequency to the highest frequency. 'ese lines link the
samples of every second. And each sample represents the
averaged CPU utilization of the last 1-second time interval.

2.1. HPC Profiles. Hardware performance counters consist
of two components—event detectors and event counters
[18]. Users can configure performance event detectors to
detect performance events as cache misses, cycles consumed,
or branch mispredictions. Often, event detectors have an
event mask filed that allows further qualifications of the
event. According to the processors’ privilege mode, for
example, HPC can collect the kernel occurred events with
the administrator mode.

'e event counter would increase itself by one if this
event happened once until a system interruption happened.

It outputs its historical value and its value can be reset to zero
or not according to whether it is on accumulative counting
mode. 'e condition to cause this kind of system inter-
ruption can be separated into two types:

(i) Time-based sampling is implemented through
interrupting tasks’ execution at regular time intervals
and recording the program counters. 'is approach
is often used to show the relationships between
profiled events to time dimensions.

(ii) Event-based sampling is implemented through
interrupting after a specific number of performance
events—when the number of events that happened
reaches a threshold. Users can specify the threshold
events.

'e hardware performance counter method has distinct
advantages. First, it profiles the system from the hardware
level without any intrusion to applications, making appli-
cations and operating systems remain largely unmodified.
Second, every modern processor has the support of per-
formance counters. 'is method is a general solution. 'ird,
this method profiles system on the fly as the applications
executing to save the effort to reproduce the workloads, since
some executions are prohibitively complex to be simulated
or reproduced.

'ough hardware performance counters reveal lots of
information from the system view, this information mainly
exposes the system’s overall states, not a specific task’s
behaviours.

2.2. Task-Oriented Profiles. For profiling the running states
of tasks, only one extra information is in need to be added.
'e information is the instruction address coming from
context information [19, 20]. We would set periodic events
to trigger the sampling, like for every 100 cache misses. At
the sampling moment, the recorded sample contains the
content of performance counters and instruction address.
'en profiling technique uses this sample to represent the
running of the last sampling interval.

Figure 2 illustrates the profiling method. 'e upper
bar is the actual running state, and the lower bar is the
state captured by profiling. 'e profiled state is different
from the actual running state. 'e upper blue block shows
the actual running of task XX. 'e upper orange blocks
show the actual running condition of task YY. And the
vertical lines represent the sampling moments that are
triggered by the event threshold or time limit. 'e first
sample regarding the last sampling interval events was all
caused by task YY. 'e second sample would treat the last

CPU
utilization

Frequency
100%

0%60 s

Figure 1: A CPU utilization record sustaining for 60 seconds.

2 Mathematical Problems in Engineering



sampling interval events caused by task XX shown in the
lower bar, though YY was running in most of the second
sampling interval tasks. 'e profiling result shown in this
figure is that task XX and task YY both consumed 2 units
of the resource.

Our paper’s task is an abstract presentation that can
represent the threads, processes, programs, or applica-
tions according to the analysis granularity. If we intend to
profile the performance of an application, then the task
means the application. However, an application can be
divided into multiple threads. All these threads are
regarded as running for a single application—a single
task.

2.3. Challenges. Checking the profiling method’s accuracy
has many challenges from the complex environment and the
limitations of profiling techniques. In the following, we list
the changes from two aspects.

First, we do not have the standard answers to validate the
profiling results. In the data center, there are tens of
thousands of applications running on thousands of com-
puters [21]. 'ese applications include online services that
have high requirements on response time and off-line ser-
vices that require high throughput. Sometimes the clusters
can reach extremely high pressure, for example, the double
11 shopping festival. 'e complex environment makes every
next moment different from the last one. We do not know
the true proportions of the running applications or the true
load of queries from users. Many production scenes
appeared only once, which means these conditions could
hardly be repeated.

Second, the profiling technique would unavoidably
introduce overhead to the running system [22]. With the
increasing sampling frequency, the overhead would in-
crease, making it impossible to increase the sampling
density too much to get detailed enough running states.
And it is also impossible for current profiling techniques
to separate the profiling workload from the original
workload.

'e experiments on benchmarks only prove some
events’ correctness under certain workloads, and these
experiment-based researches have not covered all sce-
narios. An explanation of why profiling can be trusted
would improve our confidence when profiling the system
that has not been covered.

3. Analysis Model

3.1. Application Scenario. A representative scene using
task-oriented profiling is the hot spot detection. Taking the
hot methods detection as an example, it targets finding out
the top hot methods that consumed the most resources (like
CPU cycles) for further performance optimizations. Not
every method can catch enough attention to be optimized
further since there are too many methods running on a live
environment to be optimized one by one. 'us for profiling
howmany CPU cycles are consumed by amethod, we can set
a sampling-based method to profile the running of methods.

For example, we set a sample of 0.1 seconds, which
means every 0.1 seconds to interrupt the system running and
record the current instruction address. 'is instruction
address indicates the running method, for example, is
“Sort(),” and the number of cycles consumed is 200 million
in this sampling interval. 'en we count that the “Sort()”
method consumed 200 million cycles. 'is interruption on
the system is repeated to get an overview of the CPU cycle’s
consumptions of methods.

3.2. Model Components. We model the profiling process as
two major elements to help us do further analysis. 'e main
elements that need to be considered include the following.

(i) Running granularity: 'e averaged scheduling time
of a task running continually until being switched
out. Running granularity would be influenced by
many factors like the property of this task, our
observing level, system environment, etc. 'e length
of a color block shown in Figure 3 is called the
running granularity. 'e running granularity does
not need to be a constant value.

(ii) Sampling interval: 'e distance between the last
sampling to current sampling. Figure 3 shows an
example. If the interruption is event-based rather
than time-based, and the number of events is not
proportional to time, the sampling interval’s length
would look nonuniform from the time dimension.
But from the corresponding event dimension, it is
still of uniform intervals.

In the following analysis, the base event is to denote the
event dimension that causes the sampling interruption. For
example, if it is time-based sampling, then the base event is
time, and if it is CPU cycles based sampling (e.g., interrupt
system every 250 million cycles), then the base event is CPU
cycles. 'e number of base events that happened in a
sampling interval is a constant value without variance. We
call the constant number of events that happened in a
sampling interval a unit of events.

About the nonbase events, the numbers of these events
collected by samples may not be as steady as the base event.
'e number of nonbase events in a sampling interval would
be different from the other sampling intervals. 'eir esti-
mation variance would be a little higher than base events.
We include the considerations on nonbase events by in-
troducing variance to the constant unit of events when doing

1st sample 2nd sample 3rd sample 4th sample

Actual
Running

Profiled
Running

task XX
task YY

Time

Figure 2: 'e illustration of sampling.

Mathematical Problems in Engineering 3



experiment. To avoid introducing extra variable consider-
ations into probability model, we first model our analysis
focusing on base event, which can be further extended into
nonbase events by adding extra considerations on the
variance of the unit of events.

3.3.+ree Classes of Conditions. 'e accuracy of estimations
on the base event would be mainly influenced by the tasks
switches reflected by the rate between running granularity
and sampling interval. When the sampling interval becomes
smaller, and the running granularity keeps the same, the
sampling’s accuracy would increase, and the error bound
would be smaller. Assuming an extreme condition that the
sampling interval equals every clock cycle, the profiled result
reflects the real running state accurately without any
approximation.

We utilize the rate between the running granularity and
sampling rate to define all possible conditions. We define a
variable R to denote the rate as

R �
RunningGranularity
Sampling Interval

. (1)

According to the value of R, there are three kinds of
conditions as shown in Figure 4. 'ey are (a) R � 1, (b)
R< 1, (c) R> 1.

(i) Figure 4(a) represents the R � 1 condition that the
sampling interval and the running granularity are
the same.

(ii) Figure 4(b) represents the R< 1 condition that the
running granularity is smaller than the sampling
interval, which means it is possible that the tasks
already have been switched more than once within
one sampling interval.

(iii) Figure 4(c) represents the R> 1 condition that the
running granularity is larger than sampling
interval.

We use these three kinds of conditions to help with our
further analysis.

With a specific constant R value, the sampling process is
a kind of Bernoulli experiment whose results would follow a
binomial distribution. 'e Bernoulli experiment means
running a task would be captured by a sample or would not
be repeated independently. We first use cases with repre-
sentative R values to illustrate the calculation of the profiling
distribution’s expectation value, conclude them with a

general representation method, and show its corresponding
variance calculation method.

(1) For the first condition that R � 1, the sampling in-
terval and the running granularity are of the same
length. No matter where the sampling starts, one of
two adjacent samples would capture this task and
regard it caused by one unit of base events—one unit
of base events means the constant number of base
events that happened in a sampling interval. 'is is
an accurate estimation without errors.
Additionally, when the R value is integer, like 2 or 3,
the sampling result would keep the same condition
as the R � 1 and give an accurate estimation.

(2) For the second condition that R< 1, we denote the
time that the sample is captured as

T(i) � t0 + i · Tp. (2)

'e i value means this is the ith sample, and the
profiling starts from t0 with a period of Tp. Every Tp

would occur an interruption to get the sample. 'ere
is an assumption on the t0. We regard the time
starting to profile (t0) as randomly chosen—t0 is
independent of Tp or other factors.
We assume r proportion (r< 1, e.g., 30%) of sampling
interval is working for a task. 'e probability of being
captured by a sampling point equals the running
proportion of this task as r(P(captured) � 30%) in
this sampling interval since the sampling point is
independent of running this task. And the probability
that this task is missed (not captured by the sampling
point) is 1 − r(P(missed) � 70%). 'is process is
repeated, and we get a bunch of profiled samples.
When we denote a unit of events as #(events), the
expectation value of events caused by this task in an
interval can be deduced as

E(events) � P(captured) · #(events) + P(missed)

· 0 � r · #(events).
(3)

We can find that the expectation value equals the real
running proportion.

(3) For the third condition that R> 1, we first analyze the
case when the task’s running granularity is less than 2
times of sampling interval and bigger than 1 time of
sampling interval denoted as r times of sampling
interval length. 'ere are two possible conditions.

Actual
Running

Running Granularity

Sampling Interval
Time

task XX
task YY

Figure 3: 'e main elements of the model.

sample sample sample sample sample
(a) R=1 (b) R<1 (c) R>1

Figure 4: 'ree classes of conditions. (a)R � 1. (b)R< 1. (c)R> 1.

4 Mathematical Problems in Engineering



One is shown in Figure 4(c) that this task appears in
three intervals and is captured by two samples.
Another one is shown in Figure 5 that this task
appears in two intervals and only is captured by one
sample. 'e probability of the first condition cap-
tured by two samples is P(two) � r − 1, and the
probability of the second condition captured by a
single sample is the left probability
P(one) � 1 − P(two) � 2 − r. 'e expectation value
of R> 1 can be combined from these two proba-
bilities as

E(events) � P(two) · 2 · #(events) + P(one)

· #(events)

� r · #(events),

(4)

where the #(events) represents a unit of events. 'is con-
dition would come to unbiased estimation too.

3.4. Piecewise Binomial Distribution. We conclude this de-
duction process to be a more general representation. 'e
running granularity is r times of sampling interval. All
possible sampling conditions are separated into two class-
es—when the running is captured by int(r) samples and
captured by int(r) + 1 samples. 'e probabilities of being
captured by int(r) + 1 samples and int(r) samples equal to
P(int(r) + 1) � MOD(r, 1) and P(int(r)) � 1− MOD(r, 1).
And the expectation is

E � P(int(r) + 1) · (int(r) + 1) · +P(int(r))

· int(r)

� MOD(r, 1) + int(r) � r,

(5)

where the int(·) is a function to get the integer part of this
element and the MOD(r, 1) is an operation to get the
fractional part. For example, int(3.14) equals 3 and
MOD(3.14, 1) equals 0.14. 'is expectation value shows
profiling method would get an unbiased expectation value
about the running proportion.

We can find the sampling result distribution can be
regarded as a binomial distribution under a specific constant R
value. According to the binomial distribution, we get the
variance (V) of sampling distribution under a specific r value as

V � MOD(r, 1) · (1 − MOD(r, 1)). (6)

'is expectation value and variance value is about the
distribution where samples are drawn. It is an ideal model,
and enough number of samples can approach its distribution
according to Chebyshev’s theorem [23].

In actual running conditions, the running granularity
would change, which makes the R value vary. We can
regard the varying R value as the mixture of components
with different R values. But no matter what kind of mixture
proportion of these components, the expectations of
components are all equal to r value. 'en the combined
expectation is equal to r. 'is can be denoted as

Ecombined � 􏽘

C

i�1
Proi · Ei, (7)

where the Proi represents the proportion of ith component,
the Ei represents the expectation value of ith component.'e
property that the expectation value is unbiased still exists
when considering varying R values.

3.5. +e Number of Samples. 'e number of samples would
influence the approximation to the distribution. When the
number of samples is n, then themean value of these samples
would keep the same to expectation value, and the variance
of samples would be related with n:

ESamples � x, (8)

VSamples �
MOD(x, 1) · (1 − MOD(x, 1))

n
. (9)

'e maximum variance value appears as 0.25, when
MOD(x, 1) � 0.5 and n � 1.'e small variance can improve
our confidence in the current profiling method. Taking the
worst condition as an example, it still has good performance.
'e probability of misestimating the mean value by one
more unit event is less than 0.022 8.

4. Simulation Model Design

We introduce how to implement our simulation process.
Two parts need to be modelled: the actual running states and
the profiling process.

It is a reflection of the condition that multiple tasks share
the computing resources about the running state generation.
For simplifying the resources, we will not detail computing
resource into more specific types. We treat the resource such
that it can only be occupied by one task at one moment,
which is a simplified model to the true system. But model
duplications to consider multiple types of resources are
similar to the true system. For example, the multiprocessor
CPU would run multiple processes simultaneously. At one
moment, the CPU resource of the system can be shared by
different tasks. But this true condition can be simulated by
repeating this simplified model. A running model represents
one processor resource that runs a single process at one
moment. 'is simplification keeps the basic property of the
system. If necessary, this model can be rebuilt into a complex
system. For simulating the running states, we regard the

sample sample sample

Figure 5: Another condition for possible sampling points.

Mathematical Problems in Engineering 5



smallest resource amount allocated to run tasks as a resource
unit (e.g., a CPU cycle). Several parameters need to be
specified, including the work amount of tasks (the number of
resource units needed), their corresponding running
granularity, and their scheduling and sharing behaviour.

Regarding the sampling method, the sampling interval is
the key setting. By changing the sampling interval and
running granularity, we simulate different R value condi-
tions. 'e sampling interval would keep stable roughly with
little variance. We add random noise into the sampling
interval to approach the real profiling scene.'e start time of
the sampling t0 can be generated randomly. We get the
profiled samples based on the same true running condition,
repeating the sampling with different randomly generated
start time and different noise introduced. 'e statistics of
profiled samples about the proportion of tasks are supposed
to approach real task running proportion values.

5. Experimental Evaluation

'is section shows the simulation results on various kinds of
single task and mixed tasks, including the variance intro-
duced to simulate nonbase events. We first introduce the
simulation components and the experimental results are
followed to prove the effectiveness of our model.

5.1. Simulation Components. Our experiments are con-
ducted on real running environments and the analysis data is
collected by the system profiling tool. We call it a simulation
experiment since the workload that is running on the system
is simulated without actual functions and is under control.
'ere are three components that need to be clarified, in-
cluding data collection method, the control of workloads’
running granularity, and the method to introduce the
nonbase event variance.

5.1.1. Data Collection Method. We use the “perf” to profile
the system—the Linux kernel already contains this profiling
tool. An application or a program serving for user requests
consists of multiple methods, and these methods belong to
their corresponding modules. 'e “perf” script would offer
an automatic parsing function to map Instruction Pointer
(IP) value to the corresponding method and module, record
the hardware events, and index each sample with the
sampling timestamp, CPU number, and event name. 'e
dimensions collected by the “perf record” script related to
our model and their meanings are shown in Table 1. We
profiled the running states of these physical machines from
CPU view—each recorded sample represents the state of a
CPU in a sampling interval.

5.1.2. Running Granularity Scale. We regard the continuing
samples with the same module name as the condition that
this module has not been switched out—its running gran-
ularity value is calculated as the sum of the continuing
sampling interval.'e distribution of sampling interval from
the time dimension is shown in Figure 6. 'e distribution of

running granularity deduced from the sampling results is
shown in Figure 7. When the running granularity is smaller
than the sampling interval, we treat it equal to the sampling
interval, making running granularity here a little larger than
its actual value. 'e running granularity is not always
smaller than the sampling interval. It is about several times
of sampling interval. 'us the R value scale that we ex-
periment with, like 1 to 10, is good enough to cover the
conditions rather than a thousand or million scale.

5.1.3. Nonbase Event Variance. For showing the variance of
nonbase event is small when profiling and our model about
the variance of nonbase event is reasonable, we analyze the
variance of “cycle” event when the base event is “time.” 'e
sampling intervals in the collected data are not the same;
thus, we scale the cycle event value by dividing the number of
cycles by the sampling interval’s length. For example, the
distribution of profiled cycle event in one physical machine
that ran for 231 modules in 5 seconds is shown in Figure 8.
'e cycles consumed in a sampling interval tend to be fully
utilized or in idle state, but this characteristic does not make
the variance large for each module. For each module, we
filter out its corresponding cycle event samples and calculate
its variance. For these 213 modules that appeared in our 5-
second observing window, not every module has a large
number of samples. 'us we filter out 111 modules whose
number of samples is larger than 10. We get the variances of
these 111 modules shown in Figure 9. 'e mean value of the
variances is 0.3171. 'e variance we introduce to simulate
nonbase events between 0 to 2 is in a reasonable range.

Table 1: 'e dimensions of collected data.

Metrics Meaning
Timestamp 'e time to record the value of hardware counter
CPU CPU number where the sample is collected
IP Instruction pointer value at the sampling time
Method 'e method name
Module 'e module name
Event Hardware event name, for example, cycles consumed

Value 'e value of the corresponding hardware event
counter

0

50

100

150

200

250

nu
m

be
r

0.005 0.010 0.015 0.020 0.025 0.0300.000
time (second)

Figure 6: 'e distribution of sampling intervals when profiling the
data center. 'is is a histogram whose x-axis represents the time
length of sampling interval and y-axis represents the number of
samples belonging to a specific value range.

6 Mathematical Problems in Engineering



5.2. Unbiased Estimation. In this section, we show that,
under any R condition, the expected value of profiled
samples is unbiased, and their variance is small. We first use
multiple types of tasks respectively with different utilization
levels and keep the sampling interval the same—which
means different R values. And we also show the estimation of

mixed tasks with different running granularity also has good
performance.

5.2.1. Single Task. We set 1 million units to simulate running
states, and each unit can work for a task or in idle. We set the
utilization of units as 80%, 50%, and 30% to combine with
the running granularity as 30, 50, 100, 150, 200, and 280
separately to cover a total of 18 types of running states. 'en
we profile these 18 types of running states by setting every
100 units to trigger interruption to get a sample—the
sampling interval is 100, and repeat profiling on each
running state 1000 times and get 1000 profiling results of
each running state.

We do not introduce any extra variance first and ran-
domly generate the running states for each unit according to
the set running granularity. Taking the 80% utilization load
level as an example as shown in Table 2, the mean value of
utilization for these 1 million units approach to the set
utilization value. But within each sampling interval, this
task’s utilization is not always 80%, as shown in
Figure 10—we take 30 running granularity as an example to
plot out the actual running states for each sampling interval.

'e profiling process is conducted on these 18 types of
running states. We find profiling results have little variance
and are unbiased to the expectation value—the detailed
result of 80% is shown in Table 2. 'e mean value distri-
bution of 1000 times profiling result on 30 running gran-
ularity and 80% utilization condition is shown in Figure 11
whose minimum value is 0.786 9 and maximum value is
0.809 2. 'e profiling results of the other conditions with
50% and 30% utilizations are shown in Table 3 whose ex-
pectation values approach the actual utilization value and
variance values are small too.

But we may doubt the low variance of these 1000
profiling results caused by the large number of samples
collected by each profiling process—reaching 10 thousand
samples. Of course, a large number of samples would
guarantee a low variance. 'e fact is that the variance is
still small enough even when the number of samples is
only 1. We reduce the number of samples to 1. For ex-
ample, the variance of 80% utilization when running
granularity is 30 equals 0.004. 'us we can believe that,
without extra variance introduced, the estimation is un-
biased, and its variance is small.

5.2.2. Mixed Tasks. Except for a single task running on a
system, it is more usual that multiple types of tasks (with
different running granularity) share a system simulta-
neously. We simulate this condition by mixing tasks with a
specific proportion. We show the result to make the system
with 80% utilization composed by 30% task 1 with 30
running granularity, 20% task 2 with 50 running granularity,
20% task 3 with 150 running granularity, and 10% task 4
with 280 running granularity. We observe on 1 million units,
and the sampling granularity is still 100. 'e generated
running states show that each task’s mean value is unbiased,
as shown in Table 4 with small variance. We can find the
mixed running still keeps the unbiased property.

0.5 1.0 1.5 2.0 2.5 3.00.0
scaled cycles

0
25
50
75

100
125
150
175
200

nu
m

be
r

Figure 8: 'e distribution of cycles consumed event. 'e x-axis
represents the proportion of consumed cycles to the total available
cycles in a sampling interval.

0

1

2

3

4

5

6

7

nu
m

be
r

0.2 0.3 0.4 0.5 0.60.1
variance

Figure 9: 'e distribution of variance values of 208 modules
running on a physical machine. In this histogram, each sample
means a variance value of a module, whose x-axis represents the
variance value and y-axis represents the number of modules in a
specific value range. 'e variance of module is calculated by its
corresponding profiled samples.

0

10

20

30

40

50

60

70
nu

m
be

r

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.080.00
time (second)

Figure 7: 'e distribution of running granularity deduced from
sampling results. 'is is a histogram whose x-axis represents the
time length of running granularity and y-axis represents the
number of samples belonging to a specific value range.

Mathematical Problems in Engineering 7



5.3. Variance Introduced to Simulate Nonbase Events. 'e
sampling interval and unit of events are constant values in
the former experiments—having no variance. But the real
condition would always have some variations. 'us we

explore the impact of the variance of sampling interval
and unit of events in this section. Some nonbase events
would not be as accurate as base events. 'us we introduce
variance to sampling interval or unit of events to simulate
the performance of nonbase events. 'e inaccuracy of the
sampling interval would influence the specific number of
the units of events. 'us the variance introduced to
sampling interval or unit of events has the same effect to
simulate.

We introduce the noise to a unit of events—the
number of events counted by a sample varies by a noise
value generated randomly from a normal distribution.
We denote the normal distribution by
N(mean, standard deviation) function. We profile the
same running states of mixed tasks as the former section
and introduce noise to a unit of events whose value is
regarded as 100 before—since the sampling interval is set
to 100. 'e noise for each sample is drawn from the
normal distributions N(0,0.5), N(0,1), and N(0,2), re-
spectively, and the unit of events profiled for each sample
is calculated by

Unoise � U · (1 + noise). (10)

'e mean and standard deviation (SD) value of 1000
times profiling—each profiling gets about 10 thousand
samples—with noise introduced following three normal
distributions, respectively, are shown in Table 5.

We also reduce the number of samples collected
by each profiling process. When the number of samples is
reduced to 1 thousand, it is shown in Table 6. 'e
estimation is still unbiased, and the variance is influenced
by injected noise but not too much to influence the
mean value. 'e different actual running states cause the
differences between task 1 and task 4 when n � 500
and noise following N(0,1) distribution—the real pro-
portions of task 1 and task 4 are 0.343 2 and 0.556 0. 'is
means they are still unbiased estimations on the real
proportions.

Table 2: Different running granularity under 80% utilization.

Running granularity R Mean of running states Mean of profiling Standard deviation of profiling
30 0.3 0.798 4 0.798 3 3.34e-05
50 0.5 0.797 9 0.797 8 2.77e-05
100 1.0 0.803 2 0.8031 5.75e-07
150 1.5 0.8001 0.8001 3.73e-05
200 2.0 0.798 2 0.798 2 4.19e-07
280 2.8 0.800 8 0.800 7 2.60e-05

0

100

200

300

400

500

N
um

be
r o

f I
nt

er
va

ls

40 50 60 70 80 90 10030
Utilization %

Figure 10:'e actual running state in each sampling interval is not
always equal to 80% utilization.

0

10

20

30

40

50

60

N
um

be
r o

f R
es

ul
ts

0.795 0.800 0.805 0.8100.790
Profiled Value

Figure 11: 'e distribution of profiled results. 'e x-axis is the
profiled proportion of this task. 'ere are 1000 samples. One
profiling on system means one sample here. Any profiled result is
around the correct answer with good performance.

Table 3: 'e profiling results of conditions with 50% and 30%
utilization.

Running granularity
Utilization� 50% Utilization� 30%
Mean SD Mean SD

30 0.500 8 4.69e− 03 0.294 5 3.27e− 03
50 0.500 3 4.79e− 03 0.297 8 3.84e− 03
100 0.494 9 0.04e− 03 0.299 9 0.03e− 03
150 0.497 4 1.38e− 03 0.295 3 2.89e− 03
200 0.504 5 0.07e− 03 0.295 7 0.13e− 03
280 0.490 9 2.43e− 03 0.298 0 1.33e− 03

Table 4: 'e simulation results of mixed tasks.

Task Running
granularity

Proportion
(%)

Mean of
running
states

Mean of
profiling

SD of
profiling

Idle 1 20 0.198 3 0.1981 3.27e− 03
1 30 30 0.302 5 0.302 6 4.24e− 03
2 50 20 0.203 9 0.203 8 3.15e− 03
3 150 20 0.195 3 0.195 4 1.20e− 03
4 280 10 0.099 9 0.100 0 0.41e− 03

8 Mathematical Problems in Engineering



6. Related Work

Except for the hardware-based performance profiling, there
are another two representative methods. One is an intrusive
method [19, 24, 25] that needs to modify the application
source code to add instrumentation code for collecting data.
'is method requires the authority to access the source code,
rebuild the application source code, and redeploy this
version into the system. 'ese requirements are impractical.
Moreover, these intrusive methods can disturb the appli-
cation’s behaviour, bringing other questions about the
collected data’s validity.

Another one is the simulator-based method [26, 27]
using the processor simulator that models the real proces-
sor’s architecture. It collects processor performance data by
using the simulator to execute the application. 'is method
can yield detailed data on a processor like the pipeline stalls
and cache line behaviours. However, not every processor
would have its corresponding simulator that is provided by
its manufacturers. 'e simulator would also be tens of times
slower than running on real processors, making perfor-
mance profiling costly.

'e task granularity profiling is useful in code profiling
and hot execution path detection [28]. Identifying program
hot spots can support runtime optimization [29, 30]. 'e
application anomaly [4] or stragglers detection [31, 32] also
needs the information from the task-level.

For more accuracy to count the events into specific tasks,
there are instruction-oriented profiling techniques [33]. 'e
profiling interruption is triggered by an instruction related
dimension. A detailed record of interesting events and
pipeline stage latencies in the out-of-order processor is
collected. Trace-based profiling [34, 35] has a similar design
to follow a running pipeline to record the running states. But
they are not useful in improving the confidence in the
hardware counter accuracy.

Many pieces of literature analyze accuracy from the
probability theory. Chen [36] proposed the ProbPP method
for analyzing the probabilities on the execution paths of the

multithreaded programs. Yan and Ling [37] used the
probability model on the memory level parallel analysis to
estimate the maximum number of cache misses. But they did
not use the probability model to prove the accuracy of
hardware-based profiling technique.

7. Conclusion

In this paper, we analyze the hardware-based profiling
technique’s mechanism using the probability theory and
design an analysis model to simulate the profiling process.
'e setting of the simulatedmodel follows the characteristics
of workloads running in a live environment. 'e simulation
results validate our probability deduction result and show
that the expectation value has nonbiased property, and the
variance is small. It is expected that this work can improve
confidence in the profiling accuracy and broaden the rele-
vant research directions.

Data Availability

'e simulated running state data used to support the
findings of this study are available from the corresponding
author upon request.

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

References

[1] J. Leverich and C. Kozyrakis, “Reconciling high server utili-
zation and sub-millisecond quality-of-service,” in Proceedings
of the Ninth European Conference on Computer Systems, ser.
EuroSys ’14, April 2014.

[2] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis, “Heracles: improving resource efficiency at
scale,” in Proceedings of the 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA),
pp. 450–462, Portland, Oregon, June 2015.

Table 6: 'e profiling result of reducing the number of samples.

Task
N(0,2) N(0,1) N(0,1)
n� 1000 n� 1000 n� 500
Mean(SD) Mean(SD) Mean(SD)

Idle 0.193 0(29.89e− 03) 0.194 4(18.69e− 03) 0.207 8(26.29e− 03)
1 0.317 9(36.98e− 03) 0.316 5(20.39e− 03) 0.343 6(31.10e− 03)
2 0.192 4(30.17e− 03) 0.191 8(17.86e− 03) 0.199 0(23.96e− 03)
3 0.1971(29.02e− 03) 0.197 6(13.98e− 03) 0.193 9(21.03e− 03)
4 0.102 4(20.15e− 03) 0.101 0(9.72e− 03) 0.056 4(10.93e− 03)

Table 5: Introduce noise into the unit of events.

Task N(0,0.5) N(0,1) N(0,2)
Mean(SD) Mean(SD) Mean(SD)

Idle 0.198 4(4.04e− 03) 0.198 3(5.38e− 03) 0.198 4(9.74e− 03)
1 0.302 3(5.01e− 03) 0.302 3(7.02e− 03) 0.303 2(11.52e− 03)
2 0.203 8(3.83e− 3) 0.203 9(5.69e− 03) 0.203 5(9.73e− 03)
3 0.195 5(2.56e− 03) 0.195 5(4.56e− 03) 0.195 0(9.14e− 03)
4 0.099 9(1.67e− 03) 0.099 9(3.24e− 03) 0.100 4(5.97e− 03)

Mathematical Problems in Engineering 9



[3] A. Li, L. Gu, and K. Xu, “Fast anomaly detection for large data
centers,” in Proceedings of the 2010 IEEE Global Telecom-
munications Conference GLOBECOM 2010, pp. 1–6, Miami,
FL, USA, December 2010.

[4] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni,
“Anomaly? application change? or workload change? towards
automated detection of application performance anomaly and
change,” in Proceedings of the 2008 IEEE International
Conference on Dependable Systems and Networks With FTCS
and DCC (DSN), pp. 452–461, Anchorage, AK, USA, June
2008.

[5] B. Gregg, “'e flame graph,” Communications of the ACM,
vol. 59, no. 6, pp. 48–57, 2016.

[6] K. Ishizaki, “Analyzing and optimizing java code generation
for Apache spark query plan,” in Proceedings of the 2019
ACM/SPEC International Conference on Performance Engi-
neering, ser. ICPE ’19, pp. 91–102, Association for Computing
Machinery, Mumbai India, April 2019.

[7] M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllenhaal, and
W.-m. W. Hwu, “A hardware-driven profiling scheme for
identifying program hot spots to support runtime optimi-
zation,” in Proceedings of the 26th Annual International
Symposium on Computer Architecture, ser. ISCA ’99,
pp. 136–147, IEEE Computer Society, Atlanta Georgia USA,
May 1999.

[8] P. Gralka, C. Schulz, G. Reina, D. Weiskopf, and T. Ertl,
“Visual exploration of memory traces and call stacks,” in
Proceedings of the 2017 IEEE Working Conference on Software
Visualization (VISSOFT), pp. 54–63, Herrsching am
Ammersee, Germany, September 2017.

[9] P. Krishnamurthy, R. Karri, and F. Khorrami, “Anomaly de-
tection in real-time multi-threaded processes using hardware
performance counters,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 666–680, 2020.

[10] V. M. Weaver, D. Terpstra, H. McCraw et al., “Papi 5:
measuring power, energy, and the cloud,” in Proceedings of the
2013 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pp. 124-125, Austin, TX,
USA, April 2013.

[11] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: a portable
interface to hardware performance counters,” in Proceedings
of the Department of Defense HPCMPUsers Group Conference,
pp. 7–10, 1999.

[12] B. Gregg, “Perf examples,” 2020, http://www.brendangregg.
com/perf.html.

[13] A. Pandey, D. Tesfay, and E. Jarso, “Performance analysis of
intel ivy bridge and intel broadwell microarchitectures using
intel vtune amplifier software,” in Proceedings of the 2018 2nd
International Conference on Inventive Systems and Control
(ICISC), pp. 423–426, Coimbatore, India, Jan 2018.

[14] D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of
performance counter measurements,” in Proceedings of the
2009 IEEE International Symposium on Performance Analysis
of Systems and Software, pp. 23–32, Boston, MA, USA, April
2009.

[15] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney,
“Producing wrong data without doing anything obviously
wrong,” in Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and Op-
erating Systems, ser. ASPLOS XIV, pp. 265–276, Association
for Computing Machinery, Washington DC USA, March
2009.

[16] W. Korn, P. J. Teller, and G. Castillo, “Just how accurate are
performance counters?” in Proceedings of the Conference 2001

IEEE International Performance, Computing, and Commu-
nications Conference (Cat. No.01CH37210), pp. 303–310,
Phoenix, AZ, USA, April 2001.

[17] Wikipedia, “Bernoulli trial,” 2020, https://en.wikipedia.org/
wiki/Bernoulli_trial.

[18] P.-H. Chen, C.-T. King, Y.-Y. Chang, and S.-T. Tseng,
“Multiprocessor system-on-chip profiling architecture: design
and implementation,” in Proceedings of the 2009 15th Inter-
national Conference on Parallel and Distributed Systems,
pp. 519–526, Shenzhen, China, 2009.

[19] K. Shankar and R. Lysecky, “Non-intrusive dynamic appli-
cation profiling for multitasked applications,” in Proceedings
of the 2009 46th ACM/IEEE Design Automation Conference,
pp. 130–135, San Francisco California, July 2009.

[20] M. Maxwell, S. Moore, and P. Teller, “Efficiency and accuracy
issues for sampling vs. counting modes of performance
monitoring hardware,” in Proceedings of the DoD High Per-
formance Computing Modernization Program’s User Group
Conference, 2002.

[21] J. Guo, Z. Chang, S. Wang et al., “Who limits the resource
efficiency of my datacenter: an analysis of alibaba datacenter
traces,” in Proceedings of the 2019 IEEE/ACM 27th Interna-
tional Symposium on Quality of Service (IWQoS), pp. 1–10,
Phoenix, Arizona, USA, June 2019.

[22] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt,
“Google-wide profiling: a continuous profiling infrastructure
for data centers,” IEEE Micro, vol. 30, no. 4, pp. 65–79, 2010.

[23] B. G. Amidan, T. A. Ferryman, and S. K. Cooley, “Data outlier
detection using the Chebyshev theorem,” in Proceedings of the
2005 IEEE Aerospace Conference, pp. 3814–3819, IEEE, Big
Sky, MT, USA, March 2005.

[24] H. K. Cho, T. Moseley, R. Hank, D. Bruening, and S. Mahlke,
“Instant profiling: instrumentation sampling for profiling
datacenter applications,” in Proceedings of the 2013 IEEE/
ACM International Symposium on Code Generation and
Optimization (CGO), pp. 1–10, Shenzhen, China, February
2013.

[25] S. Horovitz, Y. Arian, M. Vaisbrot, and N. Peretz, “Non-
intrusive cloud application transaction pattern discovery,” in
Proceedings of the 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD), pp. 311–320, Milan, Italy, July
2019.

[26] Z. Du, B. Xia, F. Qiao, and H. Yang, “System-level evaluation
of video processing system using simplescalar-based multi-
core processor simulator,” in Proceedings of the 2011 Tenth
International Symposium on Autonomous Decentralized Sys-
tems, pp. 256–259, Tokyo, Japan, March 2011.

[27] H. Ham, C. Park, J. Kim, J. Kim, and J. Cho, “Processor power
simulator for low power code generation using look up table,”
in Proceedings of the 2011 6th International Conference on
Computer Sciences and Convergence Information Technology
(ICCIT), pp. 550–553, Seogwipo, South Korea, November
2011.

[28] M. C. Merten, A. R. Trick, E. M. Nystrom, R. D. Barnes, and
W. W. Hwu, “A hardware mechanism for dynamic extraction
and relayout of program hot spots,” in Proceedings of the 27th
International Symposium on Computer Architecture (IEEE
Cat. No.RS00201), pp. 59–70, Vancouver, BC, Canada, June
2000.

[29] M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllenhaal, and
W. W. Hwu, “A hardware-driven profiling scheme for
identifying program hot spots to support runtime optimi-
zation,” in Proceedings of the 26th International Symposium on

10 Mathematical Problems in Engineering

http://www.brendangregg.com/perf.html
http://www.brendangregg.com/perf.html
https://en.wikipedia.org/wiki/Bernoulli_trial
https://en.wikipedia.org/wiki/Bernoulli_trial


Computer Architecture (Cat. No.99CB36367), pp. 136–148,
Atlanta, GA, USA, May 1999.

[30] N. P. K. Gorti and A. K. Somani, “Runtime optimization
utilizing program structure,” in Proceedings of the 2012 18th
International Conference on Advanced Computing and
Communications (ADCOM), pp. 46–53, Bangalore, India,
December 2012.

[31] M. Solaimani, M. Iftekhar, L. Khan, and B. 'uraisingham,
“Statistical technique for online anomaly detection using
spark over heterogeneous data from multi-source vmware
performance data,” in Proceedings of the 2014 IEEE Inter-
national Conference on Big Data (Big Data), pp. 1086–1094,
Washington, DC, USA, October 2014.

[32] C. Wang, K. Viswanathan, L. Choudur, V. Talwar,
W. Satterfield, and K. Schwan, “Statistical techniques for
online anomaly detection in data centers,” in Proceedings of
the 12th IFIP/IEEE International Symposium on Integrated
Network Management (IM 2011) and Workshops, pp. 385–
392, Dublin, Ireland, May 2011.

[33] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and
G. Chrysos, “Profileme: hardware support for instruction-
level profiling on out-of-order processors,” in Proceedings of
the 30th Annual International Symposium on Micro-
architecture, pp. 292–302, Research Triangle Park, North
Carolina, USA, December 1997.

[34] H. Pirzadeh, S. Shanian, A. Hamou-Lhadj, and A. Mehrabian,
“'e concept of stratified sampling of execution traces,” in
Proceedings of the 2011 IEEE 19th International Conference on
Program Comprehension, pp. 225-226, Kingston, ON, Canada,
June 2011.

[35] P. Crowley and J. . Baer, “On the use of trace sampling for
architectural studies of desktop applications,” in Proceedings
of the Workload Characterization: Methodology and Case
Studies. Based on the First Workshop on Workload Charac-
terization, pp. 15–24, Dallas, TX, USA, November 1998.

[36] Y. Chen, “Platform independent analysis of probabilities on
execution paths of multithreaded programs,” in Proceedings of
the 2013 IEEE/ACIS 12th International Conference on Com-
puter and Information Science (ICIS), pp. 397–404, IEEE,
Niigata, Japan, June 2013.

[37] Y. Yan and M. Ling, “Accelerating the analytical modeling of
memory level parallelism by the probability analysis,” in
Proceedings of the 2019 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing
(PACRIM), pp. 1–6, Victoria, B.C., Canada, August 2019.

Mathematical Problems in Engineering 11


