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In order to effectively detect dim-small targets in complex scenes, background suppression is applied to highlight the targets. .is
paper presents a statistical clustering partitioning low-rank background modeling algorithm (SCPLBMA), which clusters the
image into several patches based on image statistics. .e image matrix of each patch is decomposed into low-rank matrix and
sparse matrix in the SCPLBMA..e background of the original video frames is reconstructed from the low-rankmatrices, and the
targets can be obtained by subtracting the background. Experiments on different scenes show that the SCPLBMA can effectively
suppress the background and textures and equalize the residual noise with gray levels significantly lower than that of the targets.
.us, the difference images obtain good stationary characteristics, and the contrast between the targets and the residual
backgrounds is significantly improved. Compared with six other algorithms, the SCPLBMA significantly improved the target
detection rates of single-frame threshold segmentation.

1. Introduction

Usually in a remote detection system, the image of the target
is relatively weak and occupies a small scale; i.e., it is a dim-
small target. Here, the terms “dim” and “small” are defined
in terms of the signal strength and scale of the target..ere is
no uniform standard for the definition of the dim-small
target, and there are some differences of the definition in
different historical periods and application backgrounds.
.e International Society of Optical Engineering defines the
dim-small target as follows: in terms of signal energy, the
local signal-to-noise ratio of the target is no greater than
5 dB; in the scale, the target occupies no more than 9 × 9
pixels, or no more than 0.12% of a 256 × 256 pixel image.
Whether the dim-small target can be detected and tracked
effectively is the key performance index of the remote im-
aging detection system. .erefore, detecting dim-small
target stably and effectively to realize tracking and early

warning is a challenging research topic in the field of remote
target detection. Classical infrared dim-small target detec-
tion algorithms can be classified into two categories: detect-
before-track (DBT) [1, 2] and track-before-detect (TBD)
[3, 4]. DBT is composed of single-frame target detection and
multiframe trajectory correlation. Firstly, the candidate
targets are detected through the single frame. .en, the
multiframe trajectory correlation is carried out according to
the feature of the continuity and consistency of the target
motion, so as to eliminate the false target and confirm the
real target. For TBD, it first searches the possible motion
trajectories of the dim-small target. .en, it accumulates the
signal energy of each trajectory, so as to calculate the
probability of each trajectory to confirm the real target
trajectory to detect the real target.

.e influence of clouds, atmosphere, climate, trees, light,
and other natural environments makes the background
complex, and the target is almost submerged by background
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clutter, which directly impairs the system’s stable and ef-
fective detection of the target in postprocessing. .erefore,
image preprocessing, namely, backgroundmodeling, is often
needed before target detection. Background modeling
methods, such as top-hat algorithm [5], two-dimensional
least mean square error algorithm (TDLMS) [6], bilateral
filtering algorithm [7], anisotropy algorithm [8], Gaussian
Mixed Model (GMM) [9], ViBE [10, 11], and Pixel-Based
Adaptive Segmenter (PBAS) [12], obtain their background
model by using the neighborhood information of the central
pixel, which is an approximate estimation method. .ere-
fore, the generality of these methods is poor, and each al-
gorithm can only achieve good results for specific
background. In recent years, neural network algorithms
have attracted much attention, and some algorithms have
been proposed, for example, the convolutional neural net-
work (CNN) algorithms [13, 14] and the deep convolutional
neural network (DCNN) algorithms [15]. However, they
need a large number of datasets for training and are usually
time consuming. In recent years, the principal component
analysis (PCA) method has been paid more attention again.
Some new algorithms, such as robust PCA (RPCA) [16, 17],
robust subspace learning (RSL) [18], and robust subspace
tracking (RST) [19], have been proposed. .e common
feature of these algorithms is that the columns of the data
matrix are composed of the whole image data, which makes
good use of the structural information of the whole image,
instead of only considering the local information. .erefore,
the generality of these algorithms is better than the tradi-
tional methods being mentioned above. However, with the
increase of image size and data matrix size, the amount of
memory and iterative computation increase sharply [20].

In order to make good use of the structural information
of the image and reduce the size of data matrix, a statistical
clustering partitioning low-rank background modeling al-
gorithm (SCPLBMA) is proposed in this paper. SCPLBMA
only processes single-frame image and uses statistical
clustering region to form data matrix, so the size of the data
matrix is reduced and the structure information of the image
can still be utilized. Compared with DCNN algorithms,
SCPLBMA is a kind of algorithm that does not need su-
pervised training, and is of low computational complexity
and good real-time performance. SCPLBMA can effectively
suppress the background and enhance the contrast between
the targets and the residual background.

.e remainder of the paper is arranged as follows.
Section 2 mainly discusses the traditional typical back-
groundmodeling algorithms and themethods based on PCA
theory. Section 3 gives the basis and the model of the
SCPLBMA. Experiments of the SCPLBMA are made with
three typical scenes to test and evaluate its performance in
Section 4. Finally, the conclusion is presented in Section 5.

2. Related Works

Background clutter is the main factor interfering with the
dim-small target detection. To detect the dim-small target
effectively, background suppression is needed before target

detection. Many scholars have done a lot of works on how to
reduce the background clutter interference.

From the perspective of the image structure, the dim-
small target image can be assumed to be composed of three
components: background, target, and noise; i.e., it can be
described as

f(x, y) � fb(x, y) + ft(x, y) + fn(x, y), (1)

where fb(x, y) is the background; ft(x, y) refers to the
object; and fn(x, y) denotes the noise due to the imaging
system itself, the imaging environment, and other sources.
fn(x, y) can be considered to be additional interference
superimposed on the background, with the characteristics of
randomness, occupied few pixels, and isolation relative to
the background. A small target ft(x, y) is also an isolated
point relative to the background, but it is different from the
noise in two characteristics: the target usually contains more
pixels, and the target has a continuous trajectory in time
domain. Based on the model of (1), many background
modeling algorithms have been proposed [11, 20, 21], for
example, the median filtering algorithm, TDLMS, bilateral
filtering algorithm, anisotropy algorithm, top-hat filtering
algorithm, GMM, ViBE, PBAS, and DCNN. .e median
filtering algorithm and the top-hat filtering algorithm are
greatly influenced by the structure element that needs to be
set according to the characteristics of images. .e TDLMS
algorithm estimates the background according to the error
value between the predicted pixels and the real pixels.
.erefore, the prediction of the TDLMS algorithm is better
for the regions with high degree of correlation, but worse for
the regions with large fluctuation. .e bilateral filtering
algorithm estimates the background based on the spatial
distance and gray value of the pixel. It obtains good effect in
the background that has large area with good correlation, but
it is poor in the fluctuating edge area. .e anisotropic fil-
tering algorithm estimates the background based on the
difference of the local gradient of the background and the
target, so it is poor at the edge of the background and the
region with rich textures. .ese methods are mainly based
on the difference between background, noise, and target and
employ a filtering method to estimate the central pixel from
neighboring pixels so as to highlight the targets by sup-
pressing the background and noise. .erefore, it is essen-
tially a kind of spatial smoothing process, which may cause
damage to the target information or even smooth out the
target. At the same time, it leaves many residual points in the
difference images after subtracting the background, which
interferes with target detection in postprocessing..e GMM
algorithm uses several Gaussian distributions with different
parameters to fit the background points. As the number of
Gaussian distributions involved in fitting increases, more
parameters need to be updated. .is makes the computation
of parameter update increase sharply and the real-time
performance worsen. At the same time, the statistical dis-
tribution of background does not always strictly conform to
the Gaussian distribution, so the actual effect is imperfect.
ViBE and PBAS are background modeling algorithms based
on pixel level, and background model initialization can be
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carried out with single image. .erefore, these algorithms
are easy to implement and have good real-time performance.
However, due to the defects of background model updating
method, ViBE and PBAS algorithms have obvious disad-
vantages: One is ghostly phenomena. .e other is that
stationary or slowly moving targets may be absorbed or
incomplete. .e algorithms based on DCNN need a large
number of datasets for training. Since the infrared dim-small
targets have no obvious geometric features, gray value
features, and texture features and the targets are almost
immersed in the background clutter, it is difficult for GMM,
ViBE, PBAS, and DCNN algorithms to effectively separate
the background and dim-small targets.

From the perspective of matrices, an image matrix I can
be divided into two components: the low-rank matrix part
and the sparse matrix part [16, 18, 20, 22], just as Figure 1;
i.e.,

I � L + S, (2)

where L denotes the large continuous area in the background,
which is regarded as a low-rank matrix because of its high
correlation. S refers to the target and noise, regarded as a sparse
matrix. Usually, the target and noise are assumed to be inde-
pendent of the background and are superposed on the original
low-rank backgrounds. Background modeling based on low-
rank matrix reconstruction theory assumes the sparse com-
ponents S as disturbance or outliers superposed on the back-
ground..e low-rank part and the sparse part can be separated
from the original video image by a low-rank reconstruction
algorithm. In 1901, although Karl Pearson [16, 23] proposed
principal component analysis (PCA), it was rarely applied to
high-dimensional data due to its sensitivity to outliers, high
memory requirements, and time consumption for computation.
From 1980s on, some algorithms have been proposed to im-
prove the robustness of PCA. Representative works, such as
Campell [24], used a robust estimator instead of the standard
estimation of the covariancematrix, andCroux andRuiz-Gazen
[25] used projection pursuit techniques. With the development
of the PCA theory, in recent years, backgroundmodeling based
on low-rank matrix restoration theory has attracted increasing
attention. To improve the robustness of PCA against a grossly
corrupted observation matrix I, new algorithms have been
proposed, such as the works of De la Torre and Black [26] and
Qifa and Kanade [27]. However, none of these works gives a
polynomial-time algorithm with strong and robust perfor-
mance under a wide range of conditions. Inspired by appli-
cations in system identification and graphical models,
Chandrasekaran et al. [28] proposed a new algorithm based on
sparsity of matrix rank. However, this algorithm neglected the
missing entries in the observationmatrices. Since there has been
no precise mathematical definition of the term “outlier” for a
long time, the robust PCA problem was not clearly defined,
which affects the development of the robust PCA theory [18]. It
was not until 2010 thatWright andMa [29] put forward the idea
that an outlier was regarded as an additive sparse corruption.
Based on the definition of Wright and Ma, Candes et al. [17]
proposed robust PCA (RPCA), which is more robust than the
previous algorithms because it can recover a low-rank matrix L

evenwhen there are highly erroneous or somemissing entries in
the measurement matrices. Gao et al. [30] proposed a low-rank
matrix restoration method based on an infrared patch-image
model. In this method, a single-frame image was processed.
However, the method using a fixed regular shape sliding
window to get the infrared image patches cannot ensure that
each patch is statistically stationary for complex background;
i.e., in this way two absolutely different statistic regions may be
in one patch. Low-rank background reconstruction methods
can be classified into two kinds. In the first one, each frame of a
sequence of video images is written into a new matrix as a
column vector to form a data matrix, and then low-rank
background modeling and matrix decomposition are carried
out. .is method is widely used in facial recognition, video
surveillance, and so on..e advantage of this kind of algorithms
is that the whole image is directly taken as the data to be
processed, which preserves the data structure. However, the
amount of data is large, and therefore a large amount of
computation and memory resources is required. .e second
method processes single image which slides a fixed-scale
window to obtain different areas of an image, and then stacks
these different background areas into a new data matrix. .e
data matrix is then decomposed into a low-rank part and sparse
part. Finally, the background reconstruction is performed.
However, these methods regularly cut the image into many
strips of a predetermined size. .erefore, they may break the
natural structure of the image, and the reconstructed back-
ground may be locally nonstationary.

Actually, the core of the above two kinds of background
modeling methods based on low-rank matrix reconstruction
is to equalize the background with strips of different images
or strips of different areas of one image, so that the back-
ground is stationary and of low rank. Based on the insight of
these methods, in this study, instead of equalizing the
background area, this paper presents a new method, the
statistical clustering partitioning low-rank background
modeling algorithm (SCPLBMA), which separates the image
into several areas according to their statistics so that each
area is consistent statistical distribution. Evidently, different
from the first kind of methods, SCPLBMA only processes
one image. Not just as the second kind of methods that
arbitrarily cut an image into strips, SCPLBMA can well
preserve the natural structure of the image by taking into
account the statistics of each area.

3. Statistical Region Low-Rank
Background Modeling

.is section introduces the SCPLBMA. First, the stationary
characteristics of the image are discussed, and a conclusion
is drawn that the statistical clustering region is stationary.
Second, low-rank background modeling is carried out for
statistical clustering region: after the statistical clustering, the
clustering region is extracted; then, the low-rank and sparse
characteristics of clustering regions are analyzed, and a low-
rank modeling model suitable for PCA method is given.
Finally, the detailed solution of background estimation is
given: according to PCA theory, the model is converted into
PCP equation; then the appropriate solving method of the
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model is discussed in detail; soft-threshold operator [31] and
singular-value-threshold operator [32] are determined to
seek the optimal solution.

3.1. Stationarity of the Image. Mathematically, a stochastic
process ξ(t) is stationary in the time domain if its arbitrary
finite-dimensional distribution function fn(·) is indepen-
dent of the time starting point (the subscript n denotes the
dimension); i.e., for any positive integer n and any real Δ, the
distribution function fn(·) must meet the following
equation:

fn x1, x2, . . . , xn; t1, t2, . . . , tn( 

� fn x1, x2, . . . , xn; t1 + Δ, t2 + Δ, . . . , tn + Δ( .
(3)

Strictly, for a second order stationary stochastic process,
its mathematical expectation is not related to time t and its
autocorrelation function is only related to time interval τ
[33, 34]. .ey would be

E[ξ(t) ] � 
∞

−∞
xf1(x, t)dx � a,

R t1, t2(  � E ξ t1( ξ t1 + τ(  

� 
∞

−∞

∞

−∞
x1x2f2 x1, x2; τ( dx1dx2 � R(τ),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

where E[ξ(·)] is the mathematical expectation function, a is
a constant, and R(·) is the autocorrelation function..rough
extending the definition to the image, by denoting the
random variable position of the pixel as s and the pixel value
as v, the image can be regarded as the spatial domain sto-
chastic process of position variable s. .en, its definition and
numerical characteristics are

fn v1, v2, . . . , v; s1, s2, . . . , sn( 

� fn v1, v2, . . . , vn; s1 + Δ, s2 + Δ, . . . , sn + Δ( ,
(5)

E[ξ(s)] � 
∞

0
vf1(v, s)dv � a,

R s1, s2(  � E ξ s1( ξ s1 + τ(  

� 
∞

0

∞

0
v1v2f2 v1, v2; τ( dv1dv2 � R(τ).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

It can be seen from (6) that the autocorrelation coeffi-
cient of the stationary image is only related to the inspection
interval τ; that is, the shorter the distance from the current
point is, the greater the impact on the current point is, and
vice versa. Reflected in the autocorrelation curve, it means
that the more stationary the image is, the smoother the

autocorrelation curve is and the faster it decays to zero, while
the more nonstationary the image is, the rougher the au-
tocorrelation curve is and the slower it decays [33–35].

To intuitively illustrate the statistical characteristics of an
image, several different areas were cropped for analysis from
the image in Figure 2(a), which is composed of three dif-
ferent regions: the dark sky regionA, the houses and trees on
the left constituting area region B, and the relatively large
house and its shadow on the right area region C. Eight local
blocks (a–h) were selected. Local blocks a and b belong to
regionA, c and d belong to region B, e and f belong to region
C, g is at the boundary between A and B, and h is at the
boundary between B and C. .eir expectations are shown in
Table 1.

It can be seen from Table 1 and Figure 2(b) that the
statistical characteristics of A, B, and C are different: First,
the mean values of two different local blocks in the same
region are roughly the same, such as blocks a and b in region
A, and c and d in regionB, while themean value of each local
block in two different regions is quite different. Second, the
autocorrelation function curves of local blocks in the three
different regions A, B, and C are evidently different. .e
autocorrelation function curves of different local blocks in
the same region are similar, and all of them decay quickly to
a near-zero value, e.g., the pairs a and b, c and d, e and f.
With the increase of the interval, their autocorrelations all
tend to be below 0.2 or decay to zero quickly. However, the
autocorrelation function curves of the local blocks at the
junction of two regions decay much more slowly, for ex-
ample, the blocks g and h. .is indicates that the stationarity
in the same region can be maintained, while the stationarity
at the boundary of different regions may be broken; i.e., the
area can be considered to be approximately stationary in the
same region, while it is not stationary at the junction area of
different regions.

According to the aforementioned analysis, it can be
found that the statistical characteristics of different regions
are different and those of the same region are similar and
stationary. .erefore, segmenting images into several clus-
ters according to statistical characteristics will effectively
reduce the nonstationarity of the background and recon-
struct a low-rank background.

3.2. Low-Rank Background Modeling Based on Statistical
Region. It can be seen from Table 1 and Figure 2 that the
mathematical expectation and autocorrelation of one sta-
tistical region satisfies (6), so the region is stationary.
.erefore, to make good use of the stationarity, effectively

= +

Figure 1: Example of low-rank matrix reconstruction.
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reduce nonstationarity, and obtain low-rank component,
this paper proposes a statistical region low-rank background
modeling method by clustering the image regions according
to their statistics. .is method does not use sliding windows

to capture image blocks and only processes single-frame
images. It not only effectively reduces nonstationarity, but
also effectively avoids the problem of aliasing caused by
image occlusion in front of and behind sliding windows in
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Figure 2: (a) Local blocks a to h; (b) autocorrelation function curves of local blocks a to h.

Table 1: Expectations of local blocks a to h.

a b c d e f g h
Mathematical expectation 3.55 3.75 94.71 91.76 68.55 65.51 70.62 68.26
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the second type of low-rank background modeling algo-
rithms mentioned above. In addition, it can be applied to
situations where the background structure is more complex.

3.2.1. Statistical Clustering. To cluster the image into several
regions so that each of them is statistically consistent, a k-
means statistical clustering algorithm based on the statistics
of an image region was adopted.

.e contours of different regions in the background
image are random, the gray levels of different regions are
different, and the gray levels within the same region are
continuously distributed. .erefore, compared with spatial
attributes, the gray level is more effective for describing the
statistical characteristics of background pixels. .us, in the
k-means clustering algorithm, the gray levels of all the pixels
in the image are taken as the dataset Q � q1 , q2, . . . , qn .
.ese gray levels are divided into k clustering subsets
S � S1, S2, . . . , Sk . k, n are positive integers, and k≤ n.
.en, the similarity of the gray levels is measured using the
gray level distance, as shown in (7)..e sum of squared error
is used as a criterion to evaluate the clustering performance;
that is, when (8) is satisfied, the optimal clustering result is
considered to be obtained:

d qi, qj  �

��������

qi − qj 
2



, (7)

argmin
S



k

i�1


qe∈Si

qe − μi

����
����
2
, (8)

μi �
1

Mi



Mi

e�1
qe, (9)

where d(qi, qj) is the gray level distance, qi, qj are any two
gray values ofQ. μi is the mean of the clustering subset Si. Mi

is the total number of gray-scale levels of Si, and qe ∈ Si.
When (8) is satisfied, the pixels with gray levels belonging to
Si in the image constitute the ith clustering region Ki,
1≤ i≤ k.

With image region clustering, the image matrices of the
statistical region can be built as in Figure 3. First, clusters in
an image are extracted and denoted as Ki, namely,
K1, K2, . . . , Kk, where i � 1, 2, ..., k. Second, cluster regions
are converted into column vectors separately as Ci, namely,
C1,C2, . . . ,Ck. .ird, each column vector is divided into m
equal segments as Cig, namely, Ci1,Ci2, . . . ,Cig, . . . ,Cim,
where g � 1, 2, ..., m − 1, m, and then each segment is
written into a column in a newmatrix. Note that, in this step,
the number m of each column vector Ci could be different
depending on the actual situation. .rough these steps, an
original video frame image can be converted into k statistical
region image matrices according to its statistical charac-
teristics, denoted by F, namely, F1, F2, . . . ,Fk.

Figure 4 shows the analysis of the logarithmic value of
singular-value gradient of the background matrices B of the
statistical region image matrices F. .e third row in Figure 4
shows the logarithmic value curves of singular-value

gradient of different B, which rapidly decrease, and the gap
between the second and the first gradient value is the most
significant. .is means that the second singular value and
those after it are much smaller than that of the first one.
.us, B can be considered to be a low-rank matrix, which
satisfies the following equation:

Rank(B)≤ r, (10)

where Rank(·) represents the rank of a matrix and r is a
positive integer.

As the scale of the small targets is within the range of
9× 9 pixels and the noise is distributed randomly and is of a
very small scale, the two together make up a very small
proportion of F. .erefore, the noise and the targets together
constitute the sparse matrices P, which satisfy the following
equation:

‖P‖0 ≤ z, (11)

where ‖P‖0 represents the l0 norm, which is the number of
nonzero elements. z is a positive integer.

.us, the statistical region image matrix can be
decomposed into the low-rank part and sparse part as

minimize
B,P

Rank(F)

subject to
F � B + P,

Rank(B)≤ r, ‖P‖0 ≤ z,

(12)

where F represents the statistical region image matrix
(SRIM), B is the low-rank matrix of SRIM, and P is the
sparse matrix of SRIM.

3.2.2. Background Estimation. According to the property
analysis in Section 2.2.1, (12), the statistical region image
matrix model is a typical PCA model, so the existing robust
PCA (RPCA) [16–18, 22, 28] can be used to obtain its
optimal solution.

According to [17] and [28], the low-rank and sparse
decomposition model of F can be transformed into the
principal component tracking algorithm (PCP) for the
optimal solution:

minimize ‖B‖∗ + λ‖P‖1

subject to F � B + P,
(13)

where 0< λ< 1 is a weighting parameter to balance the two
terms. When the sparsity of P increases, we will get more
suitable results with the increase of λ. Both mathematical
theoretical analysis and practical experiments show that
appropriate results can be obtained when λ � 1/

���������
max(o, q)


,

where o and q are the scales of the matrices F ∈ Ro×q [17].
‖ · ‖∗ denotes the kernel norm of the matrix, which is the
sum of singular values of the matrix; i.e., ‖M‖∗:� iσi(‖M‖).
‖ · ‖1 represents the l1 norm of a matrix; i.e., ‖M‖1 � ij|Mij|.

To solve the convex optimization problem of (13), the
augmented Lagrange multiplier (ALM) algorithm is applied
[31, 36], which needs fewer iterations to obtain better results
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than other algorithms. Using the ALM, (13) can be rewritten
as

l(B, P, Y) � ‖B‖∗ + λ‖P‖1 +〈Y, F − B − P〉 +
μ
2

‖F − B − P‖
2
F,

(14)

where μ> 0 is a penalty parameter to penalize the violation
of the linear constraint, and it also affects the convergence
rate of iterative operations. .eoretically, the larger the μ
is, the faster the algorithm converges. However, in
practice, this kind of situation should be avoided as ex-
tremely large μ leads to numerical difficulty empirically.
Both mathematical theoretical analysis and practical ex-
periments show that appropriate results can be obtained
when μ � o∗ q/4‖F‖1 [17, 36]. To solve (14), by iteratively
minimizing the ALM expression and updating the
Lagrange multiplier Y, the optimal solution can be
achieved as follows:

Bk, Pk(  � argmin
B,P

L B, P, Yk( ,

Yk+1 � Yk + μ F − Bk − Pk( .

(15)

To prevent repeatedly carrying out iterative convex
optimization operations, the soft-threshold operator Sη[x]

[31] and the singular-value-threshold operator Hη(X) [32]
are applied. .ey are defined as follows:

Sη[x] � sgn(x)max(|x| − η, 0),

Hη(X) � USη(Σ)V∗.
(16)

In (16), x ∈ R, η> 0, and X � UΣV∗ represents any
singular-value decomposition of the matrix X. For two
matrices of the same scale A � (aij) and B � (bij), SA[B] is
the new matrix W that is obtained by iterating throughout
the corresponding elements; that is,W � SA[B] � (Saij

[bij]).
.us, the optimal solutions for B and P are obtained con-
cisely and efficiently.

argmin
B

l(B,P,Y) � H1/μ F − P + μ− 1Y ,

argmin
P

l(B,P,Y) � Sλ/μ F − B + μ− 1Y .
(17)

In the actual solution process, a concise and efficient
alternative optimization operation technique [17] is adop-
ted, which first minimizes B in the case of fixed P, then
optimizes P in the case of fixed B, and then updates Y.

In the SCPLBMA, the most critical step is obtaining the
optimal solution B. .erefore, as presented in Figure 5, first,
the original video frame images I are statistically clustered by
carrying out (7)–(9), and then each statistical cluster is
extracted to obtain the statistical region image matrix F.
Second, by solving (14) to obtain the optimal solution B,
B1, B2, . . . , Bk are obtained in this step. .irdly,

I

I′

K1

C1

K2

C2

Kk

Ck

F1 F2 Fk

…

…

…

C11C12…C1g…C1m C21C22…C2g…C2m Ck1Ck2…Ckg…Ckm

… … … … … …

Original image

Statistical clustering image

Statistical clustering 
region images

Statistical clustering 
region vectors

Statistical region 
image matrices

Figure 3: Schematic diagram of acquisition of statistical region image matrices.
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B1, B2, . . . , Bk are used to reconstruct the low-rank
background L of the original video image. Sparse image, that
is, difference images S, can be obtained by subtracting L
from I.

For scenes A, B, and C used in the next section, the
processing time of SCPLBMA and the other 6 algorithms is
shown in Table 2. .e experimental environment was the
same as that in the next section; that is, it was conducted with
OCTAVE on a computer running a 32 bit Windows 7
operating system, with a Core-i5 CPU and 3GB of RAM.
Here is a brief analysis of the computational complexity of
the SCPLBMA. From the aforementioned analysis of

Algorithm 1, it can be seen that the computation time is
mainly composed of k-means statistical clustering operation
in the first step, calculating the optimal solutions for B and P
in the second step, and background reconstruction in the
third step. .e computational complexity of k-means sta-
tistical clustering operation is mainly determined by the total
amount of sample data N, the clustering number k, and the
number of iterations i; therefore the computational com-
plexity is around O(Nki) [37] time. Since N≫ k, N≫ i, it is
approximately O(N). .e computational complexity of
calculating the optimal solutions for B and P is mainly
determined by SVD operation and soft-threshold operation.

(a)

(b)
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1
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0 50 100

X 1
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X 2

Y 1.656

5
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1
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0 50 100

X 1
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X 2

Y 2.327

3
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2
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1

0.5

0

–0.5

–1

–1.5
0 50

X 1
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X 2

Y 1.43

(c)

Figure 4: Logarithmic value of singular-value gradient of the background matrices B: (a) the statistical clustering region images; (b) the
background matrices of the corresponding statistical region image matrices F; (c) the logarithmic value curves of singular-value gradient of
the corresponding background matrices B.
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Table 2: .e time consumption of SCPLBMA and the other 6 typical algorithms for scenes A, B, and C (the time unit is second).

Scenes Total frames Image size Algorithms Total time Average time per frame

A 121 250 ∗ 180

SCPLBMA 51.8181 0.4282
RPCA 76.3954 0.6314

GRASTA 2.4909 0.0206
OSTD 7.7134 0.0637
THAT 3.1254 0.0258
Med_FA 2.3198 0.0192
SGA 2.7475 0.0227

B 361 250 ∗ 180

SCPLBMA 180.8536 0.5010
RPCA 196.6818 0.5448

GRASTA 4.7943 0.0133
OSTD 11.7128 0.0324
THAT 10.0063 0.0277
Med_FA 7.4285 0.0206
SGA 7.9015 0.0219

C 191 250 ∗ 180

SCPLBMA 55.5143 0.2907
RPCA 95.0086 0.4974

GRASTA 3.3085 0.0173
OSTD 6.9870 0.0366
THAT 7.2066 0.0377
Med_FA 3.5940 0.0188
SGA 4.2237 0.0221

Get the optimal solution
B1, B2, ..., Bk

Convert B1, B2, ..., Bk 
into the clustering background 

images B′1, B′2, ..., B′k 

Obtain the background image
L = B′1 + B′2 + ... + B′k

Output L, S

The last image

S = I – L

Get the current frame I

Input images

Obtain the clustering data matrices
F1, F2, ..., Fk

The end

No

Yes 

Figure 5: .e flow diagram of the SCPLBMA.
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Different SVD method has different computational com-
plexity. .e use of fast SVD technique can make the cal-
culation be implemented in O(rop) time [38, 39]. Here, r is
the number of nonzero singular values, and o, p are the size
of the matrix to be processed..e computational complexity
of soft-threshold operation is around O(op log(op)) [31].
.en, the computational complexity of calculating the op-
timal solutions for B and P is around O(i2rop log(op)),
where i2 is the iteration number. Image reconstruction can
be realized by directly writing the data into a matrix with the
same size as the original video frame image; thus, the
computational complexity is approximately O(mn). .ere-
fore, the entire computational complexity of SCPLBMA is
approximately O(N + i2rop log(op) + mn).

4. Experiments

In this section, three representative scenes of infrared small
target detection, i.e., ground scene A, deep space scene B,
and forest scene C, were used to verify the performance of
the SCPLBMA. First, the background reconstruction ex-
periment was carried out. Seven background modeling al-
gorithms, that is, the SCPLBMA, Principal Component
Pursuit (RPCA) [17], Grassmannian Robust Adaptive
Subspace Tracking Algorithm (GRASTA) [40], Online
Stochastic Tensor Decomposition (OSTD) [41], top-hat
transformation algorithm (THTA), median filtering algo-
rithm (Med_FA), and single Gaussian algorithm (SGA),
were compared and evaluated. .en, to further verify the
performance of the SCPLBMA, targets were extracted by
threshold segmentation method from the single difference
image, and then the detection performance of the seven
algorithms was given.

4.1. BackgroundReconstruction Experiment. .e experiment
was conducted with OCTAVE on a computer running a 32
bit Windows 7 operating system, with a Core-i5 CPU and
3GB of RAM. .e main parameters of GRASTA were the

estimated rank� 1, ADMM constant step� 1.8 [40, 42, 43].
For OSTD, the tradeoff parameters were λ1 � 1/������������������
max size(tensor data)


and λ2 � 10∗λ1 [41–43]. For THAT

and Med_FA, the structure element scales were
7 × 7 ∼ 9 × 9. .e variance value of SGA was determined by
the variance of background region; here, it was 7 × 7 ∼ 9 × 9.

.e SCPLBMAwas compared with the RPCA, GRASTA,
OSTD, THTA, Med_FA, and SGA. .e autocorrelation
coefficient, contrast, and contrast mean were used as eval-
uation indexes. .e definition for the autocorrelation co-
efficient is shown in (6) in Section 3.1. .e contrast and
contrast mean indexes are defined as the following
equations:

Cont �
Targetmean
Imagemean

, (18)

Cont M �


Tol
i�1Cont
Tol

. (19)

In (18), Cont is the contrast between the target and S
(difference image) of the ith frame, Targetmean is the gray-
scale mean of the target, and Imagemean is the gray-scale
mean of the difference image. In (19), Cont M is the
contrast mean for all frames of a scene, and Tol is the total
frames of a scene. .ere were 121, 361, and 191 frames in
scenes A, B, and C, respectively. Two frames of each scene
were randomly selected to illustrate the comparative anal-
ysis. Experimental data are shown in Tables 3–7 and
Figures 6–11. Tables 3–5 present the contrast values of the 2
randomly selected frames of each scene. Table 6 shows the
contrast mean data of each scene. Table 7 shows the gray-
scale mean of the difference image, i.e., the noise floor’s
means of scenes A, B, and C. In each figure of Figures 6–11,
the first row has only one image, which is the original video
frame image; the second to eighth rows correspond to the
SCPLBMA, RPCA, GRASTA, OSTD, THTA, Med_FA, and
SGA algorithms, respectively; in the second to eighth rows,
the first column contains the difference images, the second

(1) Input: Original video frame images I ∈ Rm×n. .e criterion of convergence was ‖F − B − P‖F ≤φ‖F‖F, where φ � 10−7 [17].
(2) //I are clustered and segmented to get the statistical region image matrices F.

while not converged do
compute d(qi , qj) �

���������
(qi − qj)

2


argminS 
k
i�1 

qe∈ Si

‖qe − μi‖
2

μi � (1/Mi) 
Mi

e�1 qe

end while
(3) //Minimize the Lagrange function in equation (14)

while not converged do
compute Bk+1 � H1/μ(F − Pk + μ− 1Yk);
compute Pk+1 � Sλ/μ(F − Bk+1 + μ− 1Yk);
compute Yk+1 � Yk + μ(F − Bk+1 − Pk+1);

end while
(4) B1, B2, . . . , Bk are superimposed to reconstruct L.
(5) Let S � I − L, the sparse images S are obtained.
(6) Output S, L

ALGORITHM 1: Statistical clustering partitioning low-rank background modeling algorithm.
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column contains the autocorrelation curves of the difference
images, and the third column contains the three-dimen-
sional energy distribution of the difference images.

Experimental results show that these seven algorithms
could effectively suppress the background, but the effect of
each algorithm is different. In the following, four aspects will

be discussed: residual texture, residual noise, integrity of
target signal, and contrast between target and residual
background. For scenes A, B, and C, except for SCPLBMA,
RPCA, GRASTA, and OSTD algorithms, the difference
images that were obtained from the THTA, Med_FA, and
SGA algorithms all leave a large number of textures and fixed

Table 3: Contrasts between targets and residual backgrounds in frames 30 and 93 of scene A.

Algorithms Cont for frame 30 Cont for frame 93
SCPLBMA 7.7505 9.6276
RPCA 3.5215 2.0216
GRASTA — 1.0022
OSTD 0.9692 1.1965
THAT 3.4633 4.0770
Med_FA 3.7481 2.5104
SGA 3.1043 3.1712

Table 5: Contrasts between targets and residual backgrounds in frames 10 and 129 of scene C.

Algorithms Cont for frame 10 Cont for frame 129
SCPLBMA 7.6233 7.4859
RPCA 1.6091 1.6677
GRASTA — —
OSTD — 1.5018
THAT 0.8779 0.8439
Med_FA 0.8338 0.9146
SGA 0.7225 0.8041

Table 4: Contrasts between targets and residual backgrounds in frames 33 and 260 of scene B.

Algorithms Cont for frame 33 Cont for frame 260
SCPLBMA 6.9340 4.0207
RPCA 1.8826 1.5602
GRASTA — —
OSTD 1.4033 2.1592
THAT 3.1623 2.6149
Med_FA 4.3640 2.2522
SGA 4.4648 2.7689

Table 6: Contrast means between targets and residual backgrounds of scenes A, B, and C.

Algorithms Cont_M of scene A Cont_M of scene B Cont_M of scene C
SCPLBMA 10.4446 4.7972 6.4491
RPCA 2.9313 1.6472 1.5504
GRASTA 1.0231 1.1088 1.0286
OSTD 1.1071 2.6224 1.2581
THAT 4.0374 2.6125 0.8058
Med_FA 3.1405 2.9945 0.8140
SGA 3.5058 3.0653 0.7367

Table 7: .e gray-scale means of the difference images (Imagemean), i.e., the noise floor’s means of scenes A, B, and C.

Algorithms Imagemean of scene A Imagemean of scene B Imagemean of scene C
SCPLBMA 8.9887 14.2220 11.8174
RPCA 46.7715 75.5719 84.6576
GRASTA 125.0220 118.4166 122.3634
OSTD 131.2614 38.4685 100.4039
THAT 9.1105 4.6739 28.7464
Med_FA 4.7316 3.0439 15.2762
SGA 6.9862 3.6145 21.6499
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Frame 30
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Figure 6: Background suppression evaluation for frame 30 of scene A.
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Frame 93
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Figure 7: Background suppression evaluation for frame 93 of scene A.
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Frame 33
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Figure 8: Background suppression evaluation for frame 33 of scene B.
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Frame 260
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Figure 9: Background suppression evaluation for frame 260 of scene B.
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Frame 10
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Figure 10: Background suppression evaluation for frame 10 of scene C.
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Frame 129
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Figure 11: Background suppression evaluation for frame 129 of scene C.
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noise. .erefore, the stationarity of the difference images
obtained by SCPLBMA, RPCA, GRASTA, and OSTD al-
gorithms is better than these obtained by other three al-
gorithms. .is can also be seen from the difference images
and autocorrelation coefficient curves in Figures 6–11. In
these figures, with the less residual textures and the more
even distribution of the noises, the corresponding auto-
correlation coefficient curves can quickly smooth down to
less than 0.2, indicating that the difference images are more
stationary..erefore, it can be seen that the difference image
obtained by OSTD algorithm has the best stationarity, those
of SCPLBMA and RPCA algorithms have similar statio-
narity, and those of the other four algorithms have relatively
poor stationarity. .e experiments show that the target
signal integrity of the SCPLBMA and RPCA algorithms’
difference images is better than that of the other five al-
gorithms, which can also be intuitively seen from the dif-
ference images in Figures 6–11. GRASTA’s difference images
have the most residual noise, andmost of the time the targets
are seriously interfered with by the noises or even are
submerged in the noises. .e OSTD algorithm’s difference
images have the least residual noises, but the instability in
early period leads to poor target signal integrity. For OSTD
algorithm, the target signal integrity gradually gets better at
the later stage. THTA, Med_FA, and SGA algorithms’ dif-
ference images have poor target signal integrity due to the
operation of a structure element on the background area.
Regarding the aspect of contrast, experimental data in
Tables 3–5 show that the SCPLBMA has the highest contrast
between the target and the background. .is is because the
gray-scale value of target is very high and noise floor is very
low. It can be seen from Table 7 and the three-dimensional
energy distribution diagrams of Figures 6–11 that the noise
floor of RPCA, GRASTA, and OSTD algorithms’ difference
images is much higher than that of SCPLBMA, THTA,
Med_FA, and SGA algorithms. .erefore, for scenes A, B,
and C, the contrast values that were obtained by RPCA,
GRASTA, and OSTD algorithms are significantly lower than
that of SCPLBMAs. From the above analysis, the residual
random noises in the difference images that were obtained
using the SCPLBMA are evenly distributed, their energy is
significantly lower than that of the targets, and there are no
residual background textures in the difference images. .is
gives the difference images of the SCPLBMA the following
characteristics: First, their stationarity is good. .e auto-
correlation attenuates smoothly and decreases quickly to less
than 0.2. Second, the targets energy is significantly higher
than that of the noises, which can be visually seen from the
difference images and their three-dimensional energy dia-
gram in Figures 6–11..ird, the contrast between the targets
and the residual backgrounds is high, and targets are sig-
nificantly enhanced, which can be seen in Tables 3-6. Fourth,
there is no evident loss of target information, which can be
visually seen in Figures 6–11.

4.2. Single-Frame @reshold Segmentation Experiment. To
further verify the performance of the SCPLBMA, the single-
frame threshold segmentation method was adopted for

scenes A, B, and C to extract targets from the difference
images that were obtained from the SCPLBMA, RPCA,
GRASTA, OSTD, THTA, Med_FA, and SGA, respectively.
Values of 0.3 times, 0.4 times, and 0.6 times the maximum
gray level of the difference images were used as the seg-
mentation thresholds. One frame of each scene was ran-
domly selected to illustrate the comparative analysis, as
shown in Figures 12–14. In each figure of Figures 12–14, the
first row only has one image, which is the original video
frame image; the second to eighth rows correspond to the
SCPLBMA, RPCA, GRASTA, OSTD, THTA, Med_FA, and
SGA algorithms, respectively; in the second to eighth rows,
the first column contains the difference images, and the
second to fourth columns correspond to the segmentation
images with segmentation thresholds of 0.3, 0.4, and 0.6
times the maximum gray level, respectively. Equations
(20)–(22) are the detection rate, error detection rate, and
miss detection rate of the target, respectively, which were
used as evaluation indexes..e experimental data are shown
in Figures 15–17:

Det_rate �
TP

Target_all
, (20)

Err_rate �
FP

Target_all
, (21)

Mis_rate �
FN

Target_all
, (22)

where Det_rate is the target detection rate; Err_rate is the
target detection error rate, that is, in cases where some
background or noise is detected as the target; andMis_rate is
the target miss detection rate, that is, in cases where, due to
strong clutter disturbance, the targets are declared as
background or noise. TP is the total number of frames in
which real targets could be declared as targets; FP is the total
number of frames in which the background or noise is
declared as targets; FN is the total number of frames in which
real targets are not clearly distinguished from noises; and
Target_all is the total number of original video frames with
real targets. In particular, there was a real target in each
original video frame of scenes A, B, and C.

As can be seen from Figures 12–17, for scenes A, B, and
C, SCPLBMA achieved good results with high detection rate
and low missed detection rate, because the gray levels of the
targets are significantly higher than that of the residual
backgrounds.

For scene A, the gray levels of the roofs in the middle of
the difference images that were obtained from THTA,
Med_FA, and SGA algorithms are significantly higher than
those of the targets. .en, for the three algorithms, only few
frames allowed the targets to be segmented out from the
difference images under the threshold of 0.3 times the
maximum gray level, as can be seen in Figures 12 and 15.
Compared with the above three algorithms, the difference
images of the four robust PCA algorithms SCPLBMA,
RPCA, GRASTA, and OSTD did not leave obvious house
and trunk textures. GRASTA’s difference images have the
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strongest random noise and the weakest target contrast.
During the whole process, the targets appear steadily only
after the 95th frame. .erefore, the segmentation operation
with threshold values of 0.3, 0.4, and 0.6 times of the
maximum gray value could not effectively segment out the

target. Although the OSTD algorithm’s difference images
have the least textures and noises, targets in the difference
images only gradually appear after the 41st frame and sta-
bilize only after the 87th frame. Furthermore, the noise floor
of difference images is very high, which can be seen from

Frame 90

SCPLBMA

RPCA

GRASTA

OSTD

THAT

Med_FA

SGA

Figure 12: .reshold segmentation for frame 90 of scene A.

Mathematical Problems in Engineering 19



Table 7 and the three-dimensional energy distribution di-
agrams of Figures 6 and 7. .erefore, the threshold seg-
mentation effect of OSTD was not good. Both SCPLBMA
and RPCA achieved good results, because the residual

random noises in the difference images are significantly
weaker than the targets. In Table 7, the noise floor of
SCPLBMA and RPCA algorithms’ difference images is,
respectively, 8.9887 and 46.7715, and Figures 6 and 7 show

Frame 193

SCPLBMA

SGA

Med_FA

THAT

OSTD

GRASTA

RPCA

Figure 13: .reshold segmentation for frame 193 of scene B.
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that the highest gray value of the targets is 255, which in-
dicates that the targets are obviously much stronger than the
noises. .erefore, these two algorithms had good segmen-
tation results under the three different thresholds. Of course,
it can be seen in Figure 12 that targets in difference images

are accompanied by a relatively large noise, so the seg-
mentation result of SCPLBMA is not as good as that of the
RPCA algorithm.

For scene B, the gray levels of several vertical lines in the
difference images that were obtained from THTA, Med_FA,

Frame 42

SCPLBMA

RPCA

GRASTA

OSTD

THAT

Med_FA

SGA

Figure 14: .reshold segmentation for frame 42 of scene C.
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Figure 15: Continued.
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Figure 15: Detection rates, error detection rates, and miss detection rates of the targets for scene A.
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Figure 16: Continued.
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and SGA algorithms are all higher than that of the targets, so
when the segmentation thresholds were 0.4 and 0.6 times the
maximum gray level, the target detection rates decreased
rapidly, which can be visually seen from Figures 13 and 16.
In particular, the Med_FA algorithms could not segment out
targets from the difference images at all in these two cases.
Figures 13 and 16 show that SCPLBMA and OSTD algo-
rithms have the best threshold segmentation results because
their difference images have weak random noises and strong
targets. Table 7 shows that the noise floor means of their
difference images are only 14.2220 and 38.4685, respectively.
.e highest gray-scale value of their targets is 255, which can
be seen from the three-dimensional energy distribution of
Figures 8 and 9. .ere are many strong random noises

remaining in the difference images, and the mean of the
noise floor is 75.5719, so the threshold segmentation result of
RPCA is not good. .e residual noises of GRASTA’s dif-
ference images are the highest, and the noise floor is
118.4166. From beginning to end, the targets were severely
interfered with by the noises. .e targets are only faintly
displayed in frames 51 to 185, and in other periods the
targets are submerged in the noises. .erefore, the GRASTA
failed to effectively segment out the targets when the
threshold values were 0.3, 0.4, and 0.6 times the maximum
gray value.

For scene C, the gray levels of bright tree trunks in the
difference images that were obtained from THTA, Med_FA,
and SGA algorithms are significantly higher than that of the
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Figure 16: Detection rates, error detection rates, and miss detection rates of the targets for scene B.

24 Mathematical Problems in Engineering



THAT, Med_FA and SGA

SCPLBMA
RPCA
GRASTA
OSTD

THAT
Med_FA
SGA

0.4 0.60.3
Segmentation thresholds

0

20

40

60

80

100

D
et

_r
at

e o
f s

ce
ne

 C
 (%

)

(a)

THAT, Med_FA and SGA

SCPLBMA
RPCA
GRASTA
OSTD

THAT
Med_FA
SGA

0.4 0.60.3
Segmentation thresholds

0

10

20

30

40

50

60

70

80

90

Er
r_

ra
te

 o
f s

ce
ne

 C
 (%

)

(b)

Figure 17: Continued.

Mathematical Problems in Engineering 25



targets..en, they failed to segment out the targets when the
segmentation threshold was 0.3, 0.4, and 0.6 times the
maximum gray level, as can be visually seen from Figures 14
and 17. SCPLBMA, RPCA, GRASTA, and OSTD algorithms
did not leave a distinct trunk texture in their difference
images. .e noise floor of SCPLBMA is the lowest, as shown
in Table 7, being only 11.8174. .e targets in the difference
images are strong, so the threshold segmentation result is the
best. Although the targets in the RPCA algorithm’s differ-
ence images are strong, the residual noises are also very
strong, and noise floor mean value is 84.6576. .erefore,
only when the threshold value was 0.6 times the maximum
gray value could we get good segmentation result. From
beginning to end, the random noises in GRASTA’s differ-
ence images are very strong, and the noise floor mean value
is 122.3634. For GRASTA, except for frames 166–185, there
were faint targets, and in other periods the targets were
submerged by residual noises, so the threshold segmentation
operation had no effect. .e noise floor mean of OSTD
algorithm’s difference images is 100.4039, and the targets
fully appeared only after frame 96. In other periods, the
targets signal was weak and incomplete. .erefore, for
OSTD algorithm, threshold segmentation failed to achieve
good results.

.e experimental results of scenes A, B, and C show that,
compared with other algorithms, SCPLBMA stably achieves
good performance for all typical scenes. .is indicates that
the SCPLBMA has good stability and generality.

5. Conclusion

.e SCPLBMA for background modeling was proposed in
this paper. .e difference images that were obtained by the
SCPLBMA had no residual textures, and the residual ran-
dom noise was evenly distributed. .erefore, the difference

images had good stationarity. At the same time, the gray
levels of the targets were significantly higher than that of the
residual random noise, so the contrast values between the
targets and the residual backgrounds were high. Experi-
mental data showed that, for scenes A, B, and C, the
SCPLBMA achieves good background suppression: First, the
difference images had good stationarity. .e autocorrelation
coefficient quickly attenuated below 0.2, and the attenuation
trend was smooth. Second, the contrast between the targets
and the residual backgrounds was high. Experimental data
showed that, for scenes A, B, and C, the contrast mean values
for the SCPLBMA were 10.4446, 4.7972, and 6.4491, re-
spectively. .ird, the target information in the difference
images was preserved well. SCPLBMA did not cause a
significant loss of target information. Fourth, it was easy to
extract out targets using the threshold segmentation. Be-
cause the residual random noise was evenly distributed and
its gray levels were significantly lower than that of the
targets, it was very easy to extract the targets. For scenes A, B,
and C, when the segmentation thresholds were 0.3 times the
maximum gray level, the target detection rates of the
SCPLBMA were 69.42%, 77.29%, and 95.82%, respectively;
when the segmentation thresholds were 0.4 times the
maximum gray level, the target detection rates of the
SCPLBMA were 77.69%, 91.41%, and 97.39%, respectively;
when the segmentation thresholds were 0.6 times the
maximum gray level, the target detection rates of the
SCPLBMA were 97.52%, 99.72%, and 96.86%, respectively.
Fifth, SCPLBMA has good stability and universality. Good
background suppression effect was obtained for the 3 rep-
resentative scenes by using SCPLBMA.

.emain shortcomings of SCPLBMA are as follows:.e
method of using gray value distance as the clustering basis
cannot well accord with the statistical characteristics of
various image pixels. When the target’s size is smaller and
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Figure 17: Detection rates, error detection rates, and miss detection rates of the targets for scene C.
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the energy is weaker, the adaptability of the SCPLBMA will
decrease. .erefore, the next work can be carried out from
the perspective of improving the clustering method and
clustering characteristics, such as the adoption of mean shift
clustering, density-based clustering, GMM, and higher-or-
der cumulant. For smaller and weaker target scenes, the
modeling model based on pixel neighborhood would be
considered.
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