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+e significance of partial slip on double diffusive convection on magneto-Carreau nanofluid through inclined peristaltic
asymmetric channel is examined in this paper. +e two-dimensional and directional flow of a magneto-Carreau nanofluid is
mathematically described in detail. Under the lubrication technique, the proposed model is simplified. +e solutions of extremely
nonlinear partial differential equations are calculated using a numerical technique. Graphical data are displayed using Math-
ematica software and Matlab to examine how temperature, pressure rise, concentration, pressure gradient, velocity profile,
nanoparticle volume fraction, and stream functions behave on emerging parameters. It is noticed that as the velocity slip
parameter is increased, the axial velocity at the channel’s center increases. Additionally, near the boundary, opposite behavior is
observed. +e temperature, concentration, and nanoparticle profile drops by increasing thermal slip, concentration slip, and
nanoparticle slip parameter.

1. Introduction

Greek word “peristaltikos” is the origin of the word “peri-
stalsis” that refers to being clasped and compressed. It is
further employed to refer to a progressive contracting wave
within a tube which may have a variable cross-sectional area.
It is utilized by the bodies in physiology, to push and blend
the guts inside a tube such as in uretra and other sorts of
glandular vessels. +e same principle is used by the roller
and finger pumping devices. +e theory of peristaltic
transport has been deployed by multiple industries on
different applications that may include sanitary ducts, blood
pumping devices in the lungs. Ever since the most initial
research on this topic by Latham [1], few other studies based
on numerical models and experiments have also been re-
ported under multiple conditions.

In the recent times, the researchers in the domain of
physiology have experienced a peristaltic kind of motion by
the intrauterine duct flows. +ese are caused by myometrial
contractions in both symmetric and asymmetric directions.
Pozrikidis [2] developed a technique that was based on
integral methods to further explore the peristaltic ducts in
channels for the Stokes flow conditions to comprehend the
process of fluid dynamics. He investigated the patterns and
mean flowing rates caused by the amplitude and phase once
the walls were deformed. More experiments were done by
Eytan et al. [3] to characterize contractions in women who
were not pregnant and found those complications as those
were of different amplitudes and with a wide range of fre-
quencies with variable wavelengths. +ere has been an
identification that uterine cavity’s cross section breadth
tends to increase to the fundus, and it does not occlude while
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contracting. Similarly, Eytan and Elad [4] managed to de-
velop a model in 2D channels where wave trains tend to
move with independence on the upper walls as well as the
lower ones. +e orientations have been deployed to further
perform evaluations in nonpregnant women’s uterus. Cal-
culations have been done to further calculate possible
particle movements to better comprehend the process an
embryo goes through. Mishra and Ramachandra Rao [5]
further investigated the peristaltic transport for Newtonian
fluids.

+e MHD flows in a channel holds much of importance
with linkage to specific concerns related to the mobility of
conductive fluids such as blood. +is brings a need for
research based on theory for the operational MHD com-
pressor. Stud et al. [6] investigated the effects of a changing
magnetic field on blood flowing channels. +ey managed to
identify the fact that suitable field can accelerate the speed of
the blood in the channel. Srivastava and Agarwal [7] studied
other aspects such as after considering blood as conducting
channel having a feature to suspend red blood cells in the
plasma. Further studies [8–12] have also investigated other
aspects related to MHD flows on peristalsis pumping.

+ese days, nanotechnology is revolutionizing industrial
era in the current century. For the same reason, many re-
searchers have directed their work on modeling of such
thermal conductivities and have investigated multiple
nanofluids having different viscosities. Such fluids have
suspended nanoparticles which are generally made of dif-
ferent metals, oxides, or carbon-based nanotubes. Most
common ones include water, oil, and toluene. Choi [13]
might have been the first researcher to coin the term
nanofluid, where he mentioned that heat transfer mecha-
nism is going to be most beneficial applications of the
nanofluids. Further in [14], he explained that after adding a
very meager number of nanoparticles to basic liquids,
thermal conduction can be increased approximately double.
Similarly, Masuda et al. [15], Lee et al. [16], Xuan and Li [17],
and Xuan and Roetzel [18] showed the same enhancements
by more than 20%. +erefore, for heat transfer mechanisms,
nanofluids can be taken up as an interesting replacement
[17]. In the recent times, studies have been done for
nanofluids with peristalsis as the importance of this domain
linked with biosciences and chemical and mechanical en-
gineering cannot be undermined. Such mentions are re-
ferred as [19–23].

In many industrial applications and engineering pro-
cesses such as central receivers run on solar energy for
creating potential through wind, cooling processes of
electrical apparatus have collective forced and free con-
vection in them. Transfer mechanism of heat and masses has
effects on each other which also can yield cross-diffusion
influences. +e delta between the temperatures can generate
mass transferring mechanism termed as Soret effect. On the
contrary, when there is a heat transfer, and the difference
causes an effect on the concentration gradient which is called
the Dufour effect. Akram et al. [24] performed analysis in the
existence of a tilted magnetic field as there are plenty of
applications which are linked with peristaltic flows with
double diffusion. Exact results can be acquired for a

relatively new domain of nanoparticles, field of temperature,
the concentration field, pressure rise, and the pressure
gradient while considering the extent restrictions of long-
wave and a reduced Reynolds number. Authors in [25] have
investigated the peristaltic flows that are induced by double
diffusive convection naturally.+is was to acquire analysis in
an asymmetric porous channel. Current available literature
studies on peristaltic flows with double diffused convection
are available in references [26–29].

+e no-slip conditions are used in all of the above-
mentioned references. In some cases, there is surely a chance
that a partial slip may happen between the fluids and the
surface in motion. +ere are recorded instances when the
fluids are particulate like there is emulsion or suspension
[30]. In all these instances, boundary conditions are well
explained by Navier condition [31], in which the pro-
portionality is held between the relative slip and the local
stress. Research on the effects on such slips on the peristaltic
mobility has been stated in the literature [32–36].

Considering the significance of the available and dis-
cussed literature and the applications linked with mixed
convection in these peristaltic ducts, researchers have
transformed their approaches and attention towards the
theory related to double diffusion that have Carreau fluids as
a fundamental fluid having slip boundaries. +ere is a strong
chance that this investigation will head in the best manner
for using the acquired data most efficiently. All the equations
related to momentum, energies, and the concentration were
required to be modelled with the suited physical settings
such as lower wavenumbers and the Reynolds number.
Equations have been solved numerically. All the results are
depicted using graphs and further discussed.

2. Mathematical Formulation

We are in the process of investigating the incompressible
trapping peristaltic flow of Carreau nanofluids in the 2D
channel having 􏽥d1 + 􏽥d2 width. +e coordinates are selected
in such a way that the channel’s center is placed along the
horizontal axis while vertical axis keeps the cross-sectional
area. On the wall end, the speed of sinusoidal wave train
stays persistent and does not change over time. Temperature,
concentration of the solvents, and the nanoparticles of lower
and the upper walls have also been considered as (T1, T0),
(C1, C0), and (Θ1,Θ0) respectively. +e channel is inclined
at an angle ζ. A persistent magnetic field is tested with angle
β. In all this, the electrical field is taken as minimal as nil
while Reynolds number is chosen as a low value that results
in minimized or almost negligible induced magnetic field
while comparing with the applied one. +e mathematical
expression for the surface of a wall is as follows [5]:

Y � H1 � 􏽥d1 + 􏽥a1 cos
2π
λ

(X − ct)􏼔 􏼕,

Y � H2 � −􏽥d2 − 􏽥b1 cos
2π
λ

(X − ct) + φ􏼔 􏼕,

(1)

where λ, t, c, (􏽥a1,
􏽥b1), and (􏽥d1,

􏽥d2) are wavelength, time,
speed of wave, wave amplitudes, and channel thickness,
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respectively.+e range of phase difference φ is 0≤φ≤ π, with
φ � 0 representing a symmetric channel without a phase
wave and φ � π representing a channel with a phase wave.
Furthermore, 􏽥a1, 􏽥d1, 􏽥b1, 􏽥d2, and φ meet the following
condition: 􏽥a2

1 + 􏽥b
2
1 + 2􏽥a1

􏽥b1 cos φ≤ (􏽥d1 + 􏽥d2)
2. +e field of

velocity for 2D channel flow is V � (U(X, Y, t),

V(X, Y, t), 0).
+e expression of the Carreau nanofluid stress tensor is

as follows [13]:

S � − μ∞ + μ0 − μ∞( 􏼁 1 +(Γ _ξ)
2

􏼐 􏼑􏽨 􏽩
(n− 1)/2

􏽥A, (2)

where Γ, μ∞, and μ0 denotes material constant, infinite
viscosity, and zero shear rate viscosity, respectively. Also in
the case where μ∞ � 0, the fundamental relation of S is

S � − μ0 1 +(Γ _ξ)
2

􏼐 􏼑􏽨 􏽩
(n− 1)/2

􏽥A, (3)

+e second invariant tensor _ξ and first Rivlin–Ericksen
tensor 􏽥A are defined as

􏽥A � (∇V) +(∇V)
∗
,

_ξ �

�����������
1
2

trac(􏽥A)
2

􏼐 􏼑

􏽲

.

(4)

For Γ � 0, the Carreau nanofluids are reduced to
Newtonian nanofluids.

In a fixed frame, the continuity, momentum, tempera-
ture, solute concentration, and nanoparticle fraction are
defined [33] as

zU

zX
+

zV

zY
� 0, (5)

ρ
z

zt
+ U
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+ V

z

zY
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(6)
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where the Carreau fluid stress tensor in component form is
written as

SXX � −2μ0 1 +
n − 1
2

(Γ _ξ)
2

􏼒 􏼓
zU

zX
,

SXY � −μ0 1 +
n − 1
2

(Γ _ξ)
2

􏼒 􏼓
zU

zY
+

zV

zX
􏼠 􏼡,

SYY � −2μ0 1 +
n − 1
2

(Γ _ξ)
2

􏼒 􏼓
zV

zY
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2
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2

.

(11)

In the laboratory frame (X, Y), the flow is unsteady,
although the motion is steady in the coordinate system
(x, y). +e transformation from one frame of reference to
the other is described by

u � U − c,

v � V,

x � X − ct,

y � Y,

p(x, y) � P(X, Y, t).

(12)

Define
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x �
x
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y �
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Using equations (12) and (13), the equations (5)–(11)
become

Re δ ψyψxy − ψxψyy􏼐 􏼑 � −
zp

zx
− δ

zSxx

zx
−

zSxy

zy
− M

2 cos β

· ψy + 1􏼐 􏼑cos β + ψxδ sin β􏼐 􏼑

+
Re
Fr

sin ζ + Grtθ + Grcc − GrFΩ,

(14)

Re δ3 ψxψxy − ψyψxx􏼐 􏼑 � −
zp

zy
− δ2

zSxy

zx
− δ

zSyy

zy
− δ

Re
Fr cos ζ

+ M
2δ sin

· β ψy + 1􏼐 􏼑cos β + ψxδ sin β􏼐 􏼑,

(15)

Re Pr δ ψyθx − ψxθy􏼐 􏼑 � θyy + δ2θxx􏼐 􏼑 + NTC δ2cxx + cyy􏼐 􏼑

+ Nb δ2θxΩx + θyΩy􏼐 􏼑

+ Nt δ2 θx( 􏼁
2

+ θy􏼐 􏼑
2

􏼒 􏼓,

(16)

Re δ Le ψycx − ψxcy􏼐 􏼑 � δ2cxx + cyy􏼐 􏼑 + NCT δ2θxx + θyy􏼐 􏼑,

(17)
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Re δ Ln ψyΩx − ψxΩy􏼐 􏼑 � δ2Ωxx +Ωyy􏼐 􏼑 +
Nt

Nb

δ2θxx + θyy􏼐 􏼑.

(18)

+e components of the stresses are represented in
nondimensional form as

Sxx � −2 1 +
n − 1
2

We2 _ξ
2

􏼒 􏼓
z
2ψ

zx zy
, (19)
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2
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2
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z
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2􏼠 􏼡, (20)
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n − 1
2
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2
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2

.

(22)

where ψ, Pr, Re, c, p, θ, δ, Ω, We, Le, Nb, M, Nt, GrF, Grt,
Grc, NCT, NTC, and Ln denotes stream function, Prandtl
number, Reynolds number, solutal (species) concentration
in dimensionless form, pressure, dimensionless tempera-
ture, wave number, nanoparticle fraction, Weissenberg
number, Lewis number, Brownian motion, Hartmann
number, thermophoresis parameter, Grashof number of
nanoparticle, thermal Grashof number, solutal Grashof
number, Soret parameter, Dufour parameter, and nanofluid
Lewis number, respectively.

Using estimations of long wavelength δ≪ 1 and low
Reynolds number, equations (14)–(22) are reduced to the
form as
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After removing pressure from equations (23) and (24),
the governing equation for stream function is

z
2

zy
2 1 +

n − 1
2

We2
z2ψ
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2
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(28)

+e mean flow Q is calculated in dimensionless form as
follows:

Q � 1 + F + d, (29)

where

F � 􏽚
h1(x)

h2(x)

zψ
zy

dy � ψ h1(x)( 􏼁 − ψ h2(x)( 􏼁( 􏼁, (30)

here

h1(x) � 1 + a cos 2 πx,

h2(x) � −d − b cos(2πx + φ).
(31)

+e foregoing system of PDE’s (25)–(28) will be solved
under the following nondimensional boundary conditions:
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2
,
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2
,
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(32)

+ere are no-slip conditions if η1, η2, η3, η4 � 0 in the
above conditions.
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3. Results and Discussion

+is section depicts the mathematical and realistic conse-
quences of the present topic under study. +e systems of
PDE’s (23), (25)–(27), and (28) are coupled and nonlinear in
nature. So, finding the exact solution to these equations is
extremely difficult. As a result, the built-in command
MATHEMATICA is used to calculate the numeric solution
(NDSolve). To check the accuracy of the proposed numerical
results and to compare our findings to the available liter-
ature, a slew of graphs was created.

3.1. Flow Characteristics. +e profile of velocity under the
stimulation of Hartmann number M, Brownian motion Nb,
Weissenberg number We, and velocity slip parameter η1 is
shown in Figures 1(a)–1(d). +e behaviour of velocity field
for increasing values of Hartmann number is plotted in
Figure 1(a). We can notice that increasing M tends to resist
the flow, resulting in a decrease in fluid velocity. +is occurs
because when a magnetic field is produced, a resistive force
(or “Lorentz force”) is created, which operates in the op-
posite direction of the flow, causing the velocity field to
decrease (see Figure 1(a)). It is noted in Figure 1(b)) that the
magnitude of velocity distribution decreases at the left side
of the channel, whereas it decreases at the right side of the
channel by raising the Brownian motion parameter Nb. It is
depicted in Figure 1(c) that when Weissenberg number
grows, velocity will increase. However, near the channel
walls behaviour is opposite. +is occurs because We has a
direct relationship with the time constant and an inverse
relationship with the channel width. +e axial velocity in-
creases near the channel’s center as the velocity slip pa-
rameter η1 is raised, as seen in Figure 1(d). Furthermore,
opposite behavior is found near the boundaries.

3.2. Pressure Rise and Pressure Gradient. Pumping is a
hallmark aspect of peristalsis. +e effects of several emergent
factors on pressure rise per wavelength and pressure gra-
dient are described in this section. Figures 2(a)–2(d) show
the change in pressure rise against flow rate Q for various
values of the parameters n (power law index), We (Weis-
senberg number), M (Hartmann number), and η1 (velocity
slip parameter). From these figures, it is noted that in ret-
rograde (Δp> 0, Q< 0), peristaltic (Δp> 0, Q> 0), and free
(Δp � 0) pumping regions, the pressure rise increases due to
the increasing values of n, We, M, and η1 and whereas in
copumping (Δp< 0, Q> 0) region pressure rise drops due to
the increasing values of n, We, M, and η1. +e fluctuation of
axial pressure gradient for different values of the η1 (velocity
slip parameter), Nt (thermophoresis parameter), ζ (incli-
nation angle), and We (Weissenberg number) is shown in
Figures 3(a)–3(d). We observe that the pressure gradient is
quite modest in the larger region of the channel at
x ∈ [0, 0.3] and x ∈ [0.5, 1.0], indicating that the flow can
readily pass without imposing a high-pressure gradient,
where a substantially bigger pressure gradient is necessary to
maintain the same flux in a small region of the channel at
x ∈ [0.3, 0.5], particularly for the widest region at x � 0.5.

+is is in line with the current physical situation. We also
notice that as the velocity slip parameter η1 is increased, the
axial pressure gradient falls (see Figure 3(a)). When Nt and ζ
is increased, the pressure gradient increases (see Figures 3(b)
and 3(c)). Furthermore, as seen in Figure 3(d), the mag-
nitude value of axial pressure gradient grows as the Weis-
senberg number (We) increases.

3.3. Temperature, Concentration, and Nanoparticle Volume
Fraction. +is section analyses the impact of many salient
parameters on temperature, concentration, and nanoparticle
volume fraction. Figures 4(a)–4(c) shows the temperature
profile for various values of thermal slip η2 parameter,
Brownian motion Nb parameter, and Soret parameter NCT.
It is noted in Figure 4(a) that when y ∈ [−0.1, 0.2], the
temperature profile drops by increasing thermal slip pa-
rameter η2 whereas when y ∈ [0.2, 1] the temperature profile
increases.+e temperature increases by increasing Brownian
motion parameter and Soret parameter (see Figures 4(b) and
4(c)). It is because Soret parameters have a direct rela-
tionship with temperature. Furthermore, nanoparticles
travel efficiently from the wall to the fluid via enhancing
Brownian motion. As a result of this impact, temperature
rises as Nb and NCT rise. +e concentration profile is shown
in Figures 5(a)–5(c) for various values of the concentration
slip parameter η3, Soret parameter NCT, and thermophoresis
parameter Nt. It is noted in Figures 5(a) that increasing
concentration slip parameter η3 lowers the concentration
profile in the region y ∈ [−0.1, 0.6], while raising it in the
region y ∈ [0.6, 1]. +e concentration decreases by in-
creasing Soret parameter NCT and thermophoresis pa-
rameter Nt (see Figures 5(b) and 5(c)). It is due to the
influence of random motion with micromixing and erratic
collision activity of solid nanoparticles, which disperses the
solid nanoparticles and so lowers the solute concentration.
Figures 6(a)–6(c) show the nanoparticle fraction for various
values of the nanoparticle slip parameter η4, Dufour pa-
rameter NTC, and Brownian motion parameter Nb. It is
noticed in Figure 6(a) that increasing nanoparticle slip
parameter η4 lowers the nanoparticle profile in the region
where y ∈ [−0.1, 0.6], while raising it in the region where
y ∈ [0.6, 1]. When the Dufour parameter NTC is increased,
the nanoparticle fraction falls (see Figure 6(b)). It is observed
in Figure 6(c) that the nanoparticle volume fraction profile
grows as Brownian motion parameter increases.

3.4. Trapping. Another remarkable characteristic of peri-
staltic movement is trapping. It is the phenomenon of closed
streamlines generating a bolus of fluid that circulates inside.
Streamlines grab the fluid mass bolus and drive it forward
with peristaltic waves at high flow rates and substantial
occlusions. In Figures 7–10, streamlines are plotted to show
the phenomenon of trapping. +e behaviour of streamlines
for various Weissenberg numbers is depicted in Figure 7. It
is observed from these streamlines that, by raising Weis-
senberg numbers, the number of trapped bolus grows in the
upper half of the channel while the size of trapped bolus
increases in the lower half. Figure 8 depicts the streamlines
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Figure 1: Impact of velocity on M, Nb, We, and η1.
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Figure 2: Continued.
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8 Mathematical Problems in Engineering



0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

θ

-0.2 0.2 0.4 0.6 0.80
y

η2 = 0.2
η2 = 0.5
η2 = 0.8

(a)

0

0.2

0.4

0.6

0.8

1

θ

Nb = 0.2
Nb = 0.6
Nb = 1.0

0 0.2 0.4 0.6 0.8-0.2
y

(b)

0

0.2

0.4

0.6

0.8

1

θ

0 0.2 0.4 0.6 0.8-0.2
y

NCT = 0.4
NCT = 0.8
NCT = 1.2

(c)

Figure 4: Impact of temperature on η2, Nb, andNCT.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

γ

0 0.2 0.4 0.6 0.8-0.2
y

η3 = 0.2
η3 = 0.4
η3 = 0.6

(a)

NCT = 0.8
NCT = 1.0
NCT = 1.2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

γ

0 0.2 0.4 0.6 0.8-0.2
y

(b)

Figure 5: Continued.

Mathematical Problems in Engineering 9



-0.2

0

0.2

0.4

0.6

0.8

1

1.2

γ
0 0.2 0.4 0.6 0.8-0.2

y

Nt = 0.2
Nt = 0.7
Nt = 1.2

(c)
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when the velocity slip parameter β1 is increased. As illus-
trated in Figure 8, the size of trapped bolus reduces in the
upper half of the channel, whereas the number and size of

trapped bolus decrease in the lower half by increasing β1
values. As the thermal Grashof number rises, the size of the
trapped bolus grows larger (see Figure 9), and as the
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Figure 7: Impact of streamlines on We. (a) We � 0.02 and (b) We � 0.04.
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Hartmann number rises, the size of the trapped bolus
shrinks (see Figure 10). +e current study’s findings are
compared to the existing literature in Table 1.

4. Conclusions

+e importance of partial slip on double diffusive convection
on magneto-Carreau nanofluid in inclined peristaltic
asymmetric channel is discussed. +e problem is numeri-
cally solved.+e following is a summary of the main findings
from the above analysis:

+e velocity drops as the Hartmann number rises,
whereas the velocity rises as the Weissenberg number
rises
As the velocity slip parameter η1 is increased, the axial
velocity at the center of channel increases
+e pressure gradient tends to grow as the thermo-
phoresis parameter, inclination angle, andWeissenberg
number increase
+e temperature rises as the Brownian motion pa-
rameter and the Soret parameter are increased
By increasing the Soret and thermophoresis parame-
ters, the concentration drops

+e nanoparticle fraction grows when the Brownian
motion parameter is raised, whereas the nanoparticle
fraction decreases as the Dufour parameter is increased
As the thermal Grashof number rises, the size of the
trapped bolus grows larger, and as the Hartmann
number rises, the size of the trapped bolus shrinks
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Table 1: +e comparison of velocity profile with existing literature.

y Present work Mishra and Rao [5]
0.919093 −1 −1
0.796856 −0.599634 0.530207
0.674618 −0.243748 −0.18806
0.55238 0.0493734 0.0434474
0.430142 0.261644 0.178543
0.307905 0.34998 0.225119
0.185667 0.265135 0.185251
0.063429 0.054073 0.0553249
−0.0588087 −0.239407 −0.174226
−0.181046 −0.596941 −0.519578
−0.303284 −1 −1
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