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(e precision of traditional deformation resistance model is limited, which leads to the inaccuracy of the existing rolling force
model. In this paper, the back propagation (BP) neural network model was established according to the industrial big data to
accurately predict the deformation resistance. (en, a new rolling force model was established by using the BP neural network
model. During the establishment of the neural network model, the data set of deformation resistance was established, which was
calculated back from the actual rolling force data. Based on the data set after normalization, the BP neural network model of
deformation resistance was established through the optimization of algorithm and network structure. It is shown that both the
prediction accuracy of the neural network model on the training set and the test set are high, indicating that the generalization
ability of the model is strong. (e neural network model of the deformation resistance is compared with the theoretical one, and
the maximum error is only 3.96%. Furthermore, by comparison with the traditional rolling force model, it is found that the
prediction accuracy of the rolling force model imbedding with the present neural network model is improved obviously. (e
maximum error of the present rolling force model is just 3.86%. (e research in this paper provides a new way to improve the
prediction accuracy of rolling force model.

1. Introduction

Rolling force is an important parameter that is used to
control the rolling process. Accurate prediction of rolling
force is of great significance to optimize the processing
parameter and improve the product quality and dimensional
accuracy of a thick plate. (erefore, how to improve the
prediction accuracy of rolling force has always been an
urgent problem in this field.

For a long time, the theoretical modeling method has
been considered as an ideal method to study the hot rolling
process.(is method can be traced back to 1925. Karman [1]
established the differential equilibrium equation of force in
the rolling deformation zone, which has laid a foundation
for the establishment of a rolling force model. In order to
obtain a more reasonable rolling model, Orowan [2] in-
vestigated the variation of yield stress and friction coefficient
during rolling.(en, an analytical model of rolling force was
derived by Sims [3] based on the deformation conditions

proposed by Orowan and the equilibrium equation pro-
posed by Karman. His model can reflect the functional
constraint relation between rolling force and process pa-
rameters and has been widely used in practical production.
In order to improve the accuracy of rolling force model,
Chen et al. [4] and Li et al. [5] analyzed the friction law
between the plate and roller and established a new rolling
force model. Kwak et al. [6, 7] studied the influence of arm
factor on rolling force and deduced a new rolling force
model. Muller et al. [8] systematically considered the friction
coefficients and different material parameters in the rolling
process and then established a more accurate rolling force
model.

Although the prediction accuracy of the above models
has been continuously improved, there are still big errors
since they are based on the engineering method. In order to
improve the prediction accuracy of rolling force, Alexander
[9] used slip-line method to analyze the hot rolling process
and obtained the numerical solution of rolling force.
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Compared with the engineering method, the slip-line
method can more accurately reflect the rolling deformation
process, so as to realize the accurate prediction of rolling
force. Collins and Dewhurst [10] presented a slip-line field
covering various geometric shapes of asymmetric hot-rolled
strips, which effectively increases the application range of the
slip-line method. Although the slip-line method can get a
more accurate solution, it is difficult to derive an analytical
model of rolling force because of the difficulty in solving the
nonlinear algebraic equations.

To obtain a more accurate analytical model of rolling
force, some scholars have tried to analyze rolling process
from the perspective of energy conservation. Zhao et al. [11]
simplified the dual-stream function velocity field and
established an analytical solution of the rolling force under
the condition of plane deformation. On this basis, Zhang
et al. [12] established a new weighted velocity field that can
consider the width spread during rolling process and sim-
plified the calculation by replacing the Mises yield criterion
with the linear MY yield criterion. Finally, an analytical
solution of rolling force was acquired. Considering the error
between the MY yield criterion and the Mises yield criterion,
some scholars have derived some other linear yield criteria,
such as the equal-area yield criterion [13], angular partition
yield criterion [14], and median integral yield criterion [15],
to approximate the Mises yield criterion. In addition, many
scholars have established different rolling velocity fields,
such as the cosine velocity field [16], parabolic velocity field
[17], and hyperbolic sine velocity field [18], to improve the
accuracy of rolling force model. Although the above theo-
retical models have realized good approximation of practical
rolling force, the accuracy of the existing theoretical models
is still insufficient due to many inevitable assumptions.

In the process of establishing a theoretical model of
rolling force, the material deformation resistance is an
important parameter. Its accuracy plays an important role in
improving the accuracy of the theoretical model. Johnson
and Cook [19] and Khan and Huang [20], as well as Jonas
et al. [21] studied the influence of external factors on de-
formation resistance and presented their deformation re-
sistance model. However, just the influence of temperature,
deformation degree, and deformation rate on deformation
resistance are taken into account, so there is a big error.
Guan et al. [22] considered the softening phenomenon in the
case of great deformation degree and expressed the influence
of deformation degree by a nonlinear function. (en, they
derived a new deformation resistance model. Based on the
deformation resistance structure proposed by Guan, Sun
et al. [23], Yu et al. [24], and Liang et al. [25] have regressed
many deformation resistance models for different steel
grades.

In order to further improve the prediction accuracy of
the deformation resistance model, Siciliano and Poliak [26]
introduced the material composition as a variable into the
deformation resistance model. Durrenberger et al. [27] and
Molinari and Ravichandran [28] considered the effect of
grain size on deformation resistance. In addition, Gao and
Zhang [29], Lindgren et al. [30], and Rodriguez-Martinez
et al. [31] continuously improved the accuracy of the

deformation resistance model from the perspectives of
dislocation, solute concentration, and vacancy. Although the
introduction of these internal factors has improved the
prediction accuracy of the deformation resistance model, it
is difficult to measure and control the related variables in the
actual production, which has limited the application of their
models.

With the deepening of the research, Byon et al. [32] have
also found that the deformation resistance has an important
influence on the prediction accuracy of rolling force. Feng
et al. [33] established a new rolling force model by com-
bining the deformation resistance model with the Karman
equation. Wang et al. [34] improved the prediction accuracy
of rolling force effectively by revising the deformation re-
sistance model with experimental data. It has been proved by
the above researches that the improvement of the prediction
accuracy of deformation resistance is beneficial to the im-
provement of the prediction accuracy of rolling force.

Based on the above research, this paper intends to use the
actual production data to establish a neural network model
of deformation resistance. (en, this model is used to es-
tablish a new rolling force model in order to acquire a good
accuracy.

2. Data Set and Its Preprocessing

(e purpose of the present paper is to obtain the defor-
mation resistance data of Q345 steel from industrial big data.
Because the actual production data measured by the factory
is the rolling force, the deformation resistance needs to be
calculated back before use. (e rolling force model used in
the actual hot rolling production is the Sims model, so the
formula used to calculate the deformation resistance can be
written as

σ �
F

b · l′ · QF

, (1)

where σ is the deformation resistance of the rolled plate, F is
the actual rolling force, b is the width of the rolled plate, l′ is
the length of the deformation zone, and QF is the influence
coefficient of the stress state. (e expression of QF can be
written as [35]
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where hr is the thickness of rolled plate at the neutral plane, c
is the neutral angle of rolled plate, and h is the thickness of
the plate at the exit.

Due to the complexity of (2), it is not convenient to be
used online in practice, so many scholars have simplified it.
In this paper, themodel modified by Sun [35] can be adopted
as
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QF � 0.8049 − 0.3393ε + 0.2488 + 0.0393ε + 0.0732ε2􏼐 􏼑
l′

h
,

(4)

where ε is the reduction rate and h is the average thickness.
According to equations (1) and (4), the formulas for

calculating the actual deformation resistance according to
the actual production data can be obtained through

σ �
F
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where Rr
′ is the flattening radius of the roller, Rr is the initial

radius of the roller, Δh is the reduction, h is the average
thickness, H is the thickness at the inlet of the rolled plate,
and h is the thickness at the outlet of the rolled plate.

According to 1142 actual production data, the above
formulas are used to calculate the actual deformation re-
sistance of rolling plate.(e data set is constructed for neural
network training and verification.

In order to eliminate the influence of magnitude order
difference among different parameters on the weights of
neural network, the parameters in the data set are converted
into dimensionless data. (e transformation formula is

Y �
X − Xmin

Xmax − Xmin
, (6)

where Y is the normalized data, X is the input parameter,
Xmax is themaximum value of the input parameter, andXmin
is the minimum value.

3. Neural Network Model of Deformation
Resistance Based on Big Data

(e training process of neural network includes the forward
propagation of the signal and the back propagation of the
error. Sigmoid function is used as the activation function for
the forward propagation of the neural network, expressed as

f(x) �
1

1 + e
− x. (7)

(e mean square error (MSE) is selected as the per-
formance evaluation function, that is as the criterion to stop
the training process. Its expression is

E �
1
m

􏽘

m

t�1
􏽢yi − yt( 􏼁

2
, i � 1, 2, . . . , m, (8)

where 􏽢yi is the training output result, yi is the actual output
result, and m is the sample number.

3.1. Selection of Training Algorithm. An excellent training
algorithm can effectively improve the prediction accuracy
and prevent the overfitting phenomenon. In addition to the
traditional gradient descent method, many scholars have
developed a variety of fast and effective training algorithms
such as the Levenberg–Marquardt (LM) method, quasi-
Newton method, and Bayesian method. (is paper com-
pares the above three training algorithms and selects the best
training algorithm. In the process of training algorithm
comparison, the training parameters of the neural network
are set as follows: learning rate is set to 0.01; validation
number is set to 20; 70% data are selected as the training set,
15% data are as the validation set, and 15% data are as the
test set.

As shown in Figure 1, with the increase of the number of
hidden layer nodes, the accuracy of LM method and
Bayesian method gradually improves and the accuracy of
quasi-Newton method which is the lowest [36, 37]. It can be
seen from Figure 1 that, as the hidden layer node increases,
LM method has a large fluctuation in training, which will
lead to overfitting. (e Bayesian regularization method can
effectively prevent the occurrence of overfitting phenome-
non. (erefore, the Bayesian method can be selected as the
training method of this network structure.

3.2.Determination ofNetwork Structure. (e structure of BP
neural network includes input layer, hidden layer, and
output layer. (e nodes in the input layer and the output
layer can be determined according to the actual situation.

It is known that temperature T, strain ε, and strain rate _ε
are the main factors that affect the material deformation
resistance. Among them, strain ε and strain rate _ε are
strongly related terms, which will cause the decrease of
precision of neural network when they are taken as input
variables [38]. As given, the temperature T, the thickness at
the inlet of the rolled plate H, the thickness at the outlet of
the rolled plate h, and rolling speed v are selected as input
variables of the neural network. So, there are four nodes in
the input layer. (e objective of this neural network training
is to provide the deformation resistance, so there is only one
network node in the output layer.

It is very important to determine the number of hidden
layers and nodes of the neural network. Choosing the ap-
propriate hidden layer structure is beneficial to obtain
smaller error and better generalization ability in fewer it-
erations. In the selection of hidden layer structure, less layers
should be selected first. So, this paper uses one hidden layer
to predict the deformation resistance of materials.

In order to prevent the training results from falling into
local minimum and appearing the phenomenon of over-
fitting, the termination error was set as 0.01. In Figure 1,
when there are 10 nodes in the hidden layer, the effect of the
neural network reaches a certain accuracy. (erefore, 10
nodes are selected as the initial value, and additional nodes
are successively added for training until the accuracy of the
neural network reaches the target requirements.

(e accuracy of neural network model can be deter-
mined by network performance function and correlation
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coefficient R. (e calculation formula of network perfor-
mance function is shown above, while the calculation for-
mula of correlation coefficient is

R
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For the neural network model, the smaller the perfor-
mance function is and the closer the correlation coefficient is
to 1, the closer the result is good.

As shown in Figure 2, when the number of nodes in-
creases to 13, the performance test of the neural network
meets the requirement of MSE, but at this time, the re-
gression coefficient R value of the neural network is lower
than that with the other nodes. When the number of hidden
layer nodes increases to 15, the neural network not only
meets the performance test requirements but also has the
best regression for training data. Table 1 shows the MSE of
BP neural network with different number of nodes. (e
results show that when the number of hidden nodes is 15, the
calculation accuracy is the highest.

In summary, the structure of the neural network is finally
determined to be 4-15-1. (e BP neural network structure
model is shown in Figure 3.

3.3. Performance Evaluation. (e final results of mean
square error, error distribution, and correlation coefficient R
are shown in Figure 4 – 6.

Figure 4 illustrates the variation of mean square error
with epoch. At the beginning of the training, the model error
drops rapidly and then fluctuates in the later period. It can be
seen from Figure 4 that the neural network model is ter-
minated when the network iteration is 673 times. Its MSE is
0.0008564.

Figure 5 illustrates the error distribution on different
data sets. In Figure 5, 80% of the sample errors of the neural
network model obtained in this study are within 5%, and
94% of the sample errors are within 10%. (e error dis-
tributions of training and test data concentrate near 0. (is
result shows that this network model has good prediction
accuracy.

Figure 6 shows the prediction results upon different data
sets. (e R value of each part is about 0.99. It means that the
data obtained by the neural network has a high approxi-
mation to the actual data.

4. Comparison and Verification

4.1. Comparison of Deformation Resistance. (e traditional
regression model of deformation resistance for Q345 can be
written as [15]

σs � 3583.15e
− 2.233×10−3T

· ε0.42437
· _ε− 0.3486×10−3T+0.46339

,

(10)

where ε is the equivalent strain; _ε is the equivalent strain rate;
and T is the Kelvin temperature.

Figure 7 shows the deformation resistance of each pass in
the rolling process. Table 2 shows the theoretical error and the
BP error of deformation resistance for each pass. It can be seen
from Table 2 that the deformation resistance error obtained by
the traditional regression model fluctuates greatly. (e errors
in the first 4 passes of the initial rolling and in the last 5 passes
of rolling are too big, exceeding the engineering allowable error
range of 15%. In the first 4 passes, the strain is less than 0.1. At
this situation, the deformation resistance increases rapidly with
the increase of strain.(at is to say, a small change of strain will
lead to a severe fluctuation of the deformation resistance, which
will lead to the inaccurate prediction of deformation resistance.
In the last 5 passes, the strain rates are greater than 10 s-1. For
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Figure 1: Training results: (a) MSE of different algorithms; (b) correlation coefficient R of different algorithms.
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this case, big errors will arise since the effect of work hardening
at a high strain rate has not been considered in the traditional
regressionmodel proposed by SAITO [39]. Compared with the
traditional regression model, the minimum error of defor-
mation resistance by the BP neural network is 0.26%, and the
maximum error is 3.96%.(e BP neural network can provide a
stable and high precision. (e primary reason for this good
result is that the BP neural network is built on the production
data which can reflect the real parameter relationship effec-
tively. Moreover, the BP neural network has a strong nonlinear
mapping ability of input parameters and output parameters.

4.2. Comparison of Rolling Force. (e present rolling force
can be obtained by replacing the traditional regression
model of deformation resistance by the present BP neural
network model. So, we can have

F � σBP · b · l′ · QF, (11)

where σBP is the deformation resistance model predicted by
BP neural network.

(e comparison result of the rolling force is shown in
Figure 8. (e rolling force calculated by traditional

Table 1: Comparison of training accuracy with different number of nodes.

(e number of hidden layer nodes Minimum accuracy (%) Average accuracy (%)
13 94.35 97.48
14 93.38 97.73
15 95.57 98.15
16 93.93 97.64
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Figure 2: Training results: (a) the MSE of BP network with different number of nodes; (b) correlation coefficient of BP network with
different number of nodes.
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regression model is greatly different from the actual data,
while the rolling force model with big data is consistent with
the actual data.(e prediction errors of rolling force for each
pass are shown in Table 3. (e results show that the min-
imum error of the traditional regression model is 3.48%,
while the minimum error of the rolling force model with big
data is 0.27% and the maximum error is 3.86%. (e rolling
force model in this paper is far better than the traditional
regression model.

It is known that the stress state coefficient and defor-
mation resistance are the two factors that affect the calcu-
lation accuracy of rolling force, of which the stress state
coefficient has been checked to be accurate [35, 40].
(erefore, the precision of the rolling force will depend on
the precision of deformation resistance. (is can explain the
reason why the prediction accuracy of rolling force increases
with the increase of the prediction accuracy of deformation
resistance.
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Table 2: (e theoretical error and the BP error of deformation resistance for each pass.

Rolling pass (eoretical error (%) BP error (%) Rolling pass (eoretical error (%) BP error (%)
1 −29.58% 3.96% 8 −3.56 1.22
2 −17.08% 2.05% 9 −16.60 3.03
3 −21.70% −1.83% 10 −18.75 3.49
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5. Conclusion

(1) According to the actual production data, the BP
neural network model is established for the defor-
mation resistance of a thick plate. (e network
structure is determined as 4-15-1. By comparing
different training algorithms, the Bayesian method
has been chosen since it occupies the advantages of
higher accuracy and less tendency of overfitting.

(2) According to the established BP neural network
model, this paper has realized the accurate and stable
prediction of deformation resistance in the rolling
process of thick plates. In the verified 13 passes, the
maximum error of the neural network prediction
results is 3.96%, which is far lower than the maxi-
mum error of the theoretical regression model. (e
neural network model is suitable for actual pro-
duction conditions and can provide better guidance
for actual production.

(3) In the 13 passes, the maximum prediction error of
the model in this paper is 3.86%, which has realized
the stable and accurate output of rolling force.
Moreover, it is found that the prediction accuracy of
rolling force increases with the increase of defor-
mation resistance accuracy.
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[1] T. v. Kármán, “8. Beitrag zur (eorie des Walzvorganges,”
ZAMM - Journal of Applied Mathematics and Mechanics/
Zeitschrift für Angewandte Mathematik und Mechanik, vol. 5,
no. 2, pp. 139–141, 1925.

[2] E. Orowan, “(e calculation of roll pressure in hot and cold
flat rolling,” Proceedings - Institution of Mechanical Engineers,
vol. 150, no. 1, pp. 140–167, 1943.

[3] R. B. Sims, “(e calculation of roll force and torque in hot
rolling mills,” Proceedings - Institution of Mechanical Engi-
neers, vol. 168, no. 1, pp. 191–200, 1954.

[4] S. Chen, W. Li, and X. Liu, “Calculation of rolling pressure
distribution and force based on improved Karman equation
for hot strip mill,” International Journal of Mechanical Sci-
ences, vol. 89, pp. 256–263, 2014.

[5] W.-G. Li, C. Liu, B. Liu, B.-k. Yan, and X.-H. Liu, “Modeling
friction coefficient for roll force calculation during hot strip
rolling,” International Journal of Advanced Manufacturing
Technology, vol. 92, no. 1-4, pp. 597–604, 2017.

[6] W. J. Kwak, Y. H. Kim, H. D. Park, J. H. Lee, and S. M. Hwang,
“FE-based on-line model for the prediction of roll force and
roll power in hot strip rolling,” ISIJ International, vol. 40,
no. 10, pp. 1013–1018, 2000.

[7] W. J. Kwak, J. H. Lee, S. M. Hwang, and Y. H. Kim, “A
precision on-line model for the prediction of roll force and
roll power in hot-strip rolling,” Metallurgical and Materials
Transactions A, vol. 33, no. 10, pp. 3255–3272, 2002.

[8] M. Müller, A. Steinboeck, K. Prinz, and A. Kugi, “Optimal
parameter identification for a hydrodynamic roll gap model in
hot strip rolling,” IFAC-PapersOnLine, vol. 51, no. 21,
pp. 195–200, 2018.

[9] J. M. Alexander, “A slip line field for the hot rolling process,”
Proceedings - Institution of Mechanical Engineers, vol. 169,
no. 1, pp. 1021–1030, 1955.

[10] I. F. Collins and P. Dewhurst, “A slipline field analysis of
asymmetrical hot rolling,” International Journal of Mechan-
ical Sciences, vol. 17, no. 10, pp. 643–651, 1975.

[11] D.-w. Zhao, S.-h. Zhang, C.-m. Li, H.-y. Song, and
G.-d. Wang, “Rolling with simplified stream function velocity
and strain rate vector inner product,” Journal of Iron and Steel
Research International, vol. 19, no. 3, pp. 20–24, 2012.

[12] S. H. Zhang, X. D. Chen, J. X. Hou, and D.W. Zhao, “Analysis
of broadside rolling for heavy plate by weighted velocity field
and mean yield criterion,” Meccanica, vol. 51, no. 5,
pp. 1189–1199, 2016.

[13] J.-z. Cao, D.-w. Zhao, S.-h. Zhang, W. Peng, S.-z. Chen, and
D.-h. Zhang, “Analysis of hot tandem rolling force with
logarithmic velocity field and EA yield criterion,” Journal of
Iron and Steel Research International, vol. 21, no. 3,
pp. 295–299, 2014.

[14] S. H. Zhang, X. N. Wang, D. W. Zhao et al., “Analysis of
broadside rolling force for hot heavy plate using angle bisector
yield criterion,” Journal of University of Science and Tech-
nology Liaoning, vol. 39, no. 06, pp. 418–423, 2016.

[15] X. R. Jiang, S. H. Zhang, and C. J. Wang, “Analysis of elliptical
velocity field in heavy plate rolling by integral mean value
yield criterion,” Journal of Harbin Institute of Technology,
vol. 52, no. 05, pp. 41–48, 2020.

Table 3: (e theoretical error and the model error of deformation resistance for each pass.

Rolling pass (eoretical error (%) Model error (%) Rolling pass (eoretical error (%) Model error (%)
1 −29.97 3.38% 8 −3.48% 1.26%
2 −17.17 2.15% 9 −17.37% 2.16%
3 −21.76 −1.79% 10 −19.43% 3.22%
4 −24.32 3.81% 11 −27.35% 1.44%
5 12.71 3.86% 12 −32.33% −0.49%
6 8.94 −0.27% 13 −37.87% −1.83%
7 7.41 3.57%

Mathematical Problems in Engineering 9



[16] D.-H. Zhang, Y.-M. Liu, J. Sun, and D.-W. Zhao, “A novel
analytical approach to predict rolling force in hot strip finish
rolling based on cosine velocity field and equal area criterion,”
International Journal of Advanced Manufacturing Technology,
vol. 84, no. 5-8, pp. 843–850, 2016.

[17] W. Peng, D. Zhang, and D. Zhao, “Application of parabolic
velocity field for the deformation analysis in hot tandem
rolling,” International Journal of Advanced Manufacturing
Technology, vol. 91, no. 5-8, pp. 2233–2243, 2017.

[18] J. Sun, Y.-M. Liu, Y.-K. Hu, Q.-L. Wang, D.-H. Zhang, and
D.-W. Zhao, “Application of hyperbolic sine velocity field for
the analysis of tandem cold rolling,” International Journal of
Mechanical Sciences, vol. 108-109, pp. 166–173, 2016.

[19] G. R. Johnson, W. H. Cook, R. Johnson et al., “A constitutive
model and data for materials subjected to large strains, high
strain rates, and high temperatures,” in Proceedings of the 7th
International Symposium of Ballistics, pp. 541–547, Hague,
(e Netherlands, April 1983.

[20] A. S. Khan and S. Huang, “Experimental and theoretical study
of mechanical behavior of 1100 aluminum in the strain rate
range 10−5−104s−1,” International Journal of Plasticity, vol. 8,
no. 4, pp. 397–424, 1992.

[21] J. J. Jonas, C. M. Sellars, and W. J. M. Tegart, “Strength and
structure under hot-working conditions,” Metallurgical Re-
views, vol. 14, no. 1, pp. 1–24, 1969.

[22] K. Z. Guan, J. H. Zhou, and Q. S. Zhu, “An experimental study
of the resistance to plastic deformation of hot rolling metals,”
Journal of Beijing University of Iron and Steel Technology,
vol. 01, pp. 123–139, 1983.

[23] J.-q. Sun, H. Dai, and Y.-c. Zhang, “Research on mathematical
model of thermal deformation resistance of X80 pipeline
steel,”Materials & Design, vol. 32, no. 3, pp. 1612–1616, 2011.

[24] C. S. Yu, Z. W. Zheng, M. L. Wang, and G. T. Zhang, “A
study on hot-rolling deformation resistance of A TRIP steel,”
Applied Mechanics and Materials, vol. 692, pp. 359–365,
2014.

[25] J. L. Liang, Y. L. Feng, J. Z. Yin, D. Q. Cang, and H. Li, “(e
mathematic model of deformation resistance of S50Cmedium
carbon steel in hot rolling process,” Advanced Materials
Research, vol. 652-654, pp. 652–2047, 2013.

[26] F. Siciliano and E. I. Poliak, “Modeling of the resistance to hot
deformation and the effects of microalloying in high-Al steels
under industrial conditions,” Materials Science Forum,
vol. 500-501, pp. 195–202, 2005.

[27] L. Durrenberger, A. Molinari, and A. Rusinek, “Internal
variable modeling of the high strain-rate behavior of metals
with applications to multiphase steels,” Materials Science and
Engineering A, vol. 478, no. 1-2, pp. 297–304, 2008.

[28] A. Molinari and G. Ravichandran, “Constitutive modeling of
high-strain-rate deformation in metals based on the evolution
of an effective microstructural length,” Mechanics of Mate-
rials, vol. 37, no. 7, pp. 737–752, 2005.

[29] C. Y. Gao and L. C. Zhang, “A constitutive model for dynamic
plasticity of FCC metals,” Materials Science and Engineering
A, vol. 527, no. 13-14, pp. 3138–3143, 2010.

[30] L.-E. Lindgren, K. Domkin, and S. Hansson, “Dislocations,
vacancies and solute diffusion in physical based plasticity
model for AISI 316L,” Mechanics of Materials, vol. 40, no. 11,
pp. 907–919, 2008.
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