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&e present study delivers the mathematical model and theoretical analysis of a three-dimensional flow in a free convection for an
electrically conducting incompressible second-grade fluid through a very high porous medium circumscribed by an infinite
vertical porous plate subject to a constant suction. A uniform magnetic field along the normal to the surface of plate is applied.
Periodic permeability for the medium is assumed, while velocity of free stream is taken to be uniform. Analytic expressions are
presented for velocity and temperature fields, pressure, and skin friction components by perturbation technique. &e impacts on
these physical quantities by the physical parameters existing in the model are discussed and envisioned graphically. It is interesting
to note that elastic and permeability parameters are able to control the skin friction along themain flow direction, magnetic field to
reduce the pressure, and Reynolds number to control the thermal boundary layer thickness. It is also noted that temperature
distribution does not depend upon permeability parameter.

1. Introduction

&e study of porous medium in context of free convective
flow frequently has fascinated the researches over the last
decades. &is area has appealing quality due to its wide
spread applications in the field of science, technology, and
engineering. For example, the processes of purification and
filtration in the arena of chemical engineering, the study of
seeping water in the river basin, underground water re-
sources in agriculture engineering, and evaporative cooling
air conditioners in context of technology are few practical
models of porosity in daily routine. Raptis [1] elaborated a
free convective time free Newtonian fluid flow past porous
medium, and Raptis and Perdikis [2] investigated oscillatory
free convective flow of a Newtonian fluid past porous
medium.

In the above cited work, both permeability and suction of
the porous medium have been supposed to be constant or
transient. Since a porous medium, in general, is not a ho-
mogeneous channel, there can exist several inhomogeneities

in such mediums. &us, it may not be necessary to consider
the permeability or suction of the porous medium as con-
stant. Several efforts [3–6] by Singh et al. have been done in
this regard on the motion of Newtonian fluids in three
dimensions with periodic variation of permeability or
suction velocity passing through an extremely high porous
medium. Further, Vafai and Hadim [7] took an overview of
the studies of heat transfer in porous beds with natural
convection and mixed convection applications. Jain et al. [8]
delivered the impact of free convective temperature and
sinusoidal permeability of 3-dimensional Newtonian fluid
flow past a porous medium with the existence of slip on flow
parameters.

Moreover, in the above studies the fluid flows were
supposed electrically nonconducting. However, magnetic
fields influence many natural and man-made flows. &ey are
routinely used in industries to heat, pump, stir, and levitate
liquid metals. &ere is the terrestrial magnetic field which is
maintained by fluid motion in the earth’s core, the solar
magnetic field which generates sunspots and solar flares, and
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the galactic field which influences the formation of stars.&e
flow problems of an electrically conducting fluid under the
influence of magnetic field have attracted the interest of
many authors in view of their applications to geophysics,
astrophysics, and engineering, and to the boundary layer
control in the field of aerodynamics. Ahmed [9] put forward
getting the effects of electrically conducted fluid for mixed
convective flows with periodic suction velocity and magnetic
field through porous vertical plate. Reddy et al. [10] observed
that the velocity of 3-dimensional fluid past a porous me-
dium with sinusoidal permeability reduces due to magne-
tohydrodynamic flow, and the parameter of heat absorption
causes enhancing the heat transfer coefficient. Various
workers [11–14] analyzed viscoelastic fluids in various ge-
ometries under distinct physical states. Further, researchers
[15–17] investigated electrically conducting viscoelastic
fluids over a stretching sheet/in highly porous mediums with
the MHD effects and presented very interesting results.

In many practical applications, a situation may arise
when slip of particles at the boundary may occur. For ex-
ample, the surfaces of air-craft and rockets move at a very
high altitude, where particles adjacent to the surface possess
a finite tangential velocity which slips along the surface. Seth
et al. [18–20] studied various non-Newtonian models with
slip/hydromagnetic mechanism in free convective flow past
a nonlinear stretching surface/through a porous medium.
&e workers [21–27] reported important results for free
convective flows in three dimensions with periodic per-
meability of non-Newtonian fluids. Arpino with his co-
authors [28, 29] analyzed transient thermal natural con-
vection in porous and partially porous channels. Khanafer
and Vafai [30] recently investigated porous mediumwith the
applications of nanofluids.

In the present study, a second-grade free convective fluid
flow in three dimensions through a very highly porous
medium with periodic permeability in the presence of
magnetic field is explored. To the author’s knowledge, such a
study for the second-grade fluid model has not been
addressed. &is constitutes the novelty of the present
analysis. &e nondimensional highly nonlinear partial dif-
ferential equations subject to appropriate boundary condi-
tions are solved analytically using regular perturbation
technique. A detailed parametric study of the Hartmann
number, permeability parameter, Grashof number, Prandtl
number, Reynolds number, and non-Newtonian parameter
on velocity components, skin friction components, and the
coefficient of heat transfer is visualized graphically. Elabo-
rate interpretation of the physics of the flow is also con-
ducted. In view of the above considerations, the setup of the
article is as given below.

Section 2 of the article narrates the description and
modeling of the problem, while Section 3 gives solutions of
the model in different dimensions for main flow, secondary
flow, and energy equation by the regular perturbation
technique, friction coefficients along z-direction and x-di-
rection, and the coefficient of heat transfer rate is also
demonstrated at the end of this section. Results and dis-
cussions are interpreted in Section 4 and conclusions are
described in Section 5.

2. Description and Modeling of Problem

&e present study is the investigation of a three-dimensional
second-grade fluid through an extremely high porous me-
dium circumscribed by an infinite vertical porous plate
placed on the xz-plane with x-axis pointing upward along
the plate and y-axis pointing along the normal to the plane
of the plate (Figure 1) and

K(z) �
K0

(1 + ε cos(πz/l))
, (1)

is the porous medium periodic permeability, where K0
presents the medium mean permeability, ε(≪ 1) is the
permeability variation’s amplitude, and l is the length of
wave for the permeability distribution. &e sinusoidal var-
iation in permeability (1) causes the flow to be 3-dimen-
sional. &e following assumptions are taken into account:

(i) &e fluid is incompressible and the fluid flow is
laminar

(ii) All fluid’s properties are considered to be constant;
however, fluid density variation effect with tem-
perature is contemplated in the term of body force

(iii) A uniform magnetic field B
→

0 is applied along the
y-axis

(iv) Magnetic Reynolds number is assumed to be very
small so that the induced magnetic field is negligible
[31, 32]

(v) &e electric field is assumed to be zero
(vi) Suction velocity U and free stream velocity V0 are

constant

&e form of velocity field here is taken:

V
→

� u(y, z)i + v(y, z)j + w(y, z)k, (2)

with velocity components u, v, w, respectively, in the x-,
y-, z-directions. &e physical quantities will not be x

dependent as the plate length is infinite in x-direction and
definitely the flow remains in 3 dimensions because of the
variation of sinusoidal permeability. Now, consider the
equations of motion [33, 34] governing the given fluid
flow.

∇ · V
→

� 0,

ρ
dV

→

dt
� ∇ · 􏽥τ + ρ b

→
+ J

→
× B

→
−
μV

→

K
,

ρ
dϱ
dt

� − ∇ · q
→

,

(3)

where 􏽥τ, a Cauchy stress tensor for the second-grade fluid
[35], is defined below in (4), V

→
is velocity field defined in (2),

∇ is the vector operator, fluid density is ρ, b
→

is the generated
body force per unit mass, B

→
is the total magnetic field, J

→
is

the electric current density, μ is the dynamic viscosity, ϱ �

cpT, q
→

� − kt∇T and T is the temperature, kt is thermal
conductivity, and cp is specific heat at constant pressure.

2 Mathematical Problems in Engineering



􏽥τ � − p􏽥I + μ􏽥A1 + α1 􏽥A2 + α2 􏽥A
2
1, (4)

where 􏽥A1 and 􏽥A2 are Rivlin–Ericksen tensors, defined in
equation (5), p is pressure, 􏽥I is the identity tensor, and α1
and α2 are material constants.

􏽥A1 � (gradV
→

)
T

+ gradV
→

,

􏽥A2 �
d􏽥A1

dt
+(gradV

→
)
T

A
→

1 + A
→

1(gradV
→

).

(5)

Now, for model (4) to be compatible with the ther-
modynamics in the sense that all motions meet the
Clausius–Duhem inequality and with the supposition
that the specific Helmholtz free energy is a minimum in
equilibrium [35], then the following conditions must
satisfy the material parameters:

α1 + α2 � 0,

α1 ≥ 0,

μ≥ 0.

(6)

In the absence of displacement currents, Maxwell’s
equations modified Ohm’s law [31, 32] can be written as

∇ · B
→

� 0,

∇ × B
→

� μm J
→

,

∇ × E
→

� −
z B
→

zt
,

J
→

� σ􏼔 E
→

+ V
→

× B
→

􏼕,

(7)

where μm is the magnetic permeability, σ is the electrical
conductivity of the fluid, and E

→
is the electric field. Using the

usual Boussinesq assumption for the body force [33], we
have

ρ b
→

� − ρ0 1 − β0 T − T∞( 􏼁􏼂 􏼃g, (8)

where g denotes the gravity, β0 the coefficient of thermal
expansion, T∞ reference temperature, and ρ0 a constant
density which is going to symbolize as ρ throughout the
article for convenience. &e problem defined in equation (3)
can be restraint in the following mathematical model with
the support of equations (1)–(8).
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Figure 1: Physical model of the problem.
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−
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(12)

ρ v
zT

zy
+ w

zT

zz
􏼠 􏼡 �

kt

cp

z
2
T

zy
2 +

z
2
T

zz
2􏼢 􏼣, (13)

with the boundary conditions [6].

Wheny � 0, v � − V0, T � Tw, u � 0, w � 0,

Aty⟶∞, p � p∞, T � T∞, u � U, w � 0,

⎫⎬

⎭

(14)

where V0 is a positive constant suction velocity and -ve
sign arises because of the suction towards plate, and the
constant pressure in free stream is denoted as p∞ while
plate temperature and the fluid temperature (far away
from the plate) both are, respectively, Tw and T∞. Now,
the variables are assigned the following dimensionless
values:
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Uu
⊳

� u,
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⊳

� y,

lz
⊳

� z,

V0v
⊳

� v,

V0w
⊳

� w,

ρV
2
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⊳
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(15)

where the nondimensional variables are
u⊳, v⊳, w⊳, y⊳, z⊳, p⊳, and K⊳0 . &en, after the omission of
symbol “⊳”,equations (9)-(14) have the following form for
ease:
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and the associated boundary conditions are

Asy⟶∞: θ � 0, u � 1, w � 0, p � p∞,

Fory � 0: θ � 1, u � 0, w � 0, v � − 1,
􏼩 (21)

where Reynolds number, Grashof number, elastic parame-
ter, Prandtl number, magnetic parameter, and suction pa-
rameter, respectively, are given below:
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(22)

3. Analysis of the Mathematical Model

In this section, we discuss the solutions of equations
(16)–(20) in two and three dimensions so we assume the
following type of a solution in the neighbourhood of the
channel:

g � g0 + εg1 + ε2g2 + · · · , (23)

where g takes the position for all of θ, p, u, v, and w and ε is
a very small parameter.

3.1. Two-Dimensional Solution. For ε � 0, the problem be-
comes two-dimensional and consequently, we have
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subject to boundary conditions
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θ0 � 0, u0 � 1, w0 � 0, p0 � p∞ asy⟶∞.

⎫⎬

⎭
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Clearly, due to the presence of elasticity parameter in
equations (25)–(27), the order of these differential equations
has increased from 2 to 3. For unique solution of equations
(25)–(27), three boundary conditions are required here. To take
off this difficulty, consider the solution of the following type:

u00 + Lu01 + O L
2

􏼐 􏼑 � u0, (30)

taking the parameter L very small. Solving the equations (24)
and (26)–(28), we get the following solutions:

v0 � − 1,

w0 � 0,

p0 � p∞,

θ0 � e
− RePry

.

(31)

Solving equation (25) with the help of equation (30) and
comparing coefficients of order of L0 and L, we obtain the
following boundary value problems:

d2u00

dy
2 + Re

du00

dy
−

1
K0

+ MRe􏼠 􏼡u00 � −
1

K0
− GRe2e− RePry

,

u00(0) � 0,

u00(∞) � 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(32)

Re
d3u00

dy
3 −

d2u01

dy
2 − Re

du01

dy
+

1
K0

+ MRe􏼠 􏼡u01 � 0,

u01(0) � 0,

u01(∞) � 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(33)

Solving the boundary value problems (32) and (33), then
the zeroth-order solution yields
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u0(y) � Gλ0 −
1

1 + K0MRe
􏼠 􏼡e

− λy

+
1

1 + K0MRe
− Gλ0e

− RePry

+ LGλ20Re
2Pr3 e

− RePry
− e

− λy
􏼐 􏼑.

(34)

Results of [6, 21] are retrieved for M � 0 and for both
M � 0 � L, respectively.

3.2. 5ree-Dimensional Solution. For ε≠ 0, the flow turns
into three-dimensional and solution of the type described in
equation (23) can be taken as the assumed solution of the
obtaining expression. &en by comparing first-order terms
of ε, we acquired the following partial differential equations
from equations (16)–(20):

zv1

zy
+

zw1

zz
� 0, (35)

−
zu1

zy
+ v1

zu0

zy
� GReθ1 −

1
ReK0

+ M􏼠 􏼡u1 +
1
Re

z
2
u1

zy
2 +

z
2
u1

zz
2􏼠 􏼡 + L −

z
3
u1

zy
3 −

z
3
u1

zyzz
2 + v1

z
3
u0

zy
3􏼠 􏼡

−
1

ReK0
u0 − 1( 􏼁cos πz,

(36)

−
zv1
zy

� −
zp1

zy
+

1
Re

z
2
v1

zy
2 +

z
2
v1

zz
2􏼠 􏼡 − L

z
3
v1

zy
3 +

z
3
v1

zyzz
2􏼠 􏼡 −

1
ReK0

v1 − cos πz( 􏼁, (37)

−
zw1

zy
� −

zp1

zz
+

1
Re

z
2
w1

zy
2 +

z
2
w1

zz
2􏼠 􏼡 − L

z
3
w1

zy
3 +

z
3
w1

zyzz
2􏼠 􏼡 −

1
ReK0

+ M􏼠 􏼡w1, (38)

−
zθ1
zy

+ v1
zθ0
zy

�
1

RePr
z
2θ1

zy
2 +

z
2θ1

zz
2􏼠 􏼡. (39)

Similarly, the boundary conditions (21) yield

Aty � 0, u1 � 0 � v1 � w1 � θ1,

Asy⟶∞, u1 � 0 � w1 � θ1, p1 � 0.
􏼩 (40)

&e set of coupled PDEs (partial differential equations)
subject to the boundary conditions from (35)–(40) describes
the 3-dimensional free convective fluid flow.

3.3. Solution of Cross Flow. To get the solutions of PDEs
(35)–(39), we explore the equations (35), (37), and (38)
firstly as these three equations are independent of tem-
perature field and main flow.

Let us suppose the solutions for p1, v1, and w1 as

p1(y, z) � p11(y)cos πz,

v1(y, z) � − v11(y)cos πz,

w1(y, z) �
1
π

v11′ (y)sin πz,

(41)

where v11′(y) is the derivative. All the equations in (41)
satisfy the continuity equation (35). Putting values from
equations (41) into equations (37) and (38), we have
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LRev″′11 − v11″ − Lπ2 + 1􏼐 􏼑Rev11′ + π2
+

1
K0

􏼠 􏼡v11 � Rep11′ −
1

K0
,

(42)

LReviv
11 − v
″′
11 − Lπ2

+ 1􏼐 􏼑Rev11″ + π2 +
1

K0
+ MRe􏼠 􏼡v11′

� π2Rep11,

(43)

with the boundary conditions

v11′ (∞) � 0,

v11(0) � 0,

v11′ (0) � 0.

(44)

Simultaneously solving both equations (42) and (43) and
eliminating p11, the pressure term, we obtain the following
differential equation:

LRevv
11 − v

iv
11 − 2Lπ2 + 1􏼐 􏼑Rev″′11 + 2π2 +

1
K0

+ MRe􏼠 􏼡v11″

+ π2
Lπ2

+ 1􏼐 􏼑Rev11′ − π2 π2
+

1
K0

􏼠 􏼡v11 �
π2

K0
,

(45)

and equation (45) can be solved by the perturbation tech-
nique, assuming the following solution for equation (45)
with a very small parameter L:

v11 � v00 + Lv01 + O L
2

􏼐 􏼑. (46)

Putting equations (46) in equations (45) and (44),
comparing like powers of L, and then solving the resulting
boundary value problems, we obtain

v11 �
− d2e

d1y
+ d1e

d2y
− d1 + d2

d1 − d2( 􏼁 π2
K0 + 1􏼐 􏼑

(1 + L), (47)

where d1 and d2 are the real roots of equation (45) having
long expressions that are not shown here for the
sake of brevity. In view of (23), (31), and (41), finally we
get

v(y, z) � − 1 + ε
− d2e

d1y
+ d1e

d2y
− d1 + d2

d1 − d2( 􏼁 π2K0 + 1􏼐 􏼑
(1 + L)cos πz,

(48)

w(y, z) �
ε(1 + L)d1d2

π d1 − d2( 􏼁 π2
K0 + 1􏼐 􏼑

e
d2y

− e
d1y

􏼐 􏼑sin πz. (49)

3.4. Temperature Field and Pressure. &e value of pressure
can be obtained by using equations (23), (31), (41), (43), and
(48), which is given by

p(y, z) � p∞ +
ε(1 + L)d1d2cos πz

π2Re d1 − d2( 􏼁 π2K0 + 1􏼐 􏼑
×

− LRed3
1 + d

2
1 + Lπ2

+ 1􏼐 􏼑Red1 − π2 −
1

K0
− MRe􏼠 􏼡e

d1y

+ LRed3
2 − d

2
2 − Lπ2

+ 1􏼐 􏼑Red2 + π2
+

1
K0

+ MRe􏼠 􏼡e
d2y

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (50)

Now, assume the following solution for getting the result
of temperature distribution:

θ1(y, z) � θ11(y)cos πz. (51)

&en, PDE (39) with the boundary conditions

θ11(∞) � 0,

θ11(0) � 0,
(52)

yields

θ(y, z) � e
− RePry

+
εRe2Pr2(1 + L)cos πz

d1 − d2( 􏼁 π2
K0 + 1􏼐 􏼑

· A − B +
d1 − d2

π2􏼠 􏼡e
− βy

+ Ae
d1− RePr( )y

􏼠

+ Be
d2− RePr( )y

+
d1 − d2

π2 e
− RePry

􏼡,

(53)
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where A � (− d2/d2
1 − d1RePr − π2), B � (d1/d2

2 − d2
RePr − π2), λ0 � (Re2/Re2Pr(Pr − 1) − ((1/K0) + MRe)),

λ � (Re/2) +

��������������������

(Re/2)2 + (1/K0) + MRe
􏽱

, λ1 � (Re/2)+
������������������������

(Re/2)2 + π2 + (1/K0) + MRe
􏽱

, β � (RePr/2)+
������������

(RePr/2)2 + π2
􏽱

.

3.5. Solution ofMain Flow. Now, finally the solution of main
flow can be acquired from the partial differential equation
(36). Similar to the previous solutions, we assume

u1(y, z) � u11(y)cos πz, (54)

as the solution for (36), and for perturbation on small pa-
rameter L, we take

u11 � u100 + Lu110 + O L
2

􏼐 􏼑. (55)

Subsequently computing, we have the result

u100(y) � A1 + A2 + A11( 􏼁e
− λ1y

− A1e
− λy

− A2e
− RePry

− A11

· −
Re

d1 − d2( 􏼁 π2K0 + 1􏼐 􏼑

A3e
− βy

+ A4e
d1− RePr( )y

+ A5e
d2− RePr( )y

+A6e
− RePry

+ A7e
d1− λ( )y

− A8e
d2− λ( )y

− A9e
− λy

− A10e
− λ1y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(56)

u110(y) � B3 − B2( 􏼁e
− λ1y

− B2e
− λy

+ B3e
− RePry

+
Re

d1 − d2( 􏼁 π2
K0 + 1􏼐 􏼑

B4e
− βy

+ B5e
d1− RePr( )y

+ B6e
d2− RePr( )y

+B7e
− RePry

+ B8e
d1− λ( )y

+ B9e
d2− λ( )y

− B10e
− λy

− B11e
− λ1y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(57)

and equations (56) and (57) in view of equations (55), (54),
and (23) attain the final solution for main flow velocity. It is
good to reveal that the results of both [6, 21] are successfully

retrieved for L � 0 � M and M � 0, respectively. &e con-
stants of integration that involved the solutions of (56) and
(57) are as follows:
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A1 �
Gλ0 − 1
K0π

2 ,

A2 �
Gλ0

K0 Re2Pr(Pr − 1) − π2 + 1/K0( 􏼁 + MRe􏼐 􏼑􏽨 􏽩
,

A3 �
GRe3Pr2 A + B + d1 − d2/π

2
􏼐 􏼑􏼐 􏼑

β2 − Reβ − π2 + 1/K0( 􏼁 + MRe􏼐 􏼑
,

A4 �
GRePr R2ePrA − λ0d2􏼐 􏼑

d1 − RePr( 􏼁
2

+ Re d1 − RePr( 􏼁 − π2
+ 1/K0( 􏼁 + MRe􏼐 􏼑

,

A5 �
GRePr Re2PrB − λ0d1􏼐 􏼑

d2 − RePr( 􏼁
2

+ Re d2 − RePr( 􏼁 − π2
+ 1/K0( 􏼁 + MRe􏼐 􏼑

,

A6 �
GRePr d1 − d2( 􏼁 Re2Pr/π2􏼐 􏼑 − λ0􏼐 􏼑

Re2Pr(Pr − 1) − π2 + 1/K0( 􏼁 + MRe􏼐 􏼑
,

A7 �
λd2 Gλ0 − 1/ 1 + K0MRe( 􏼁( 􏼁( 􏼁

d1 − λ( 􏼁
2

+ Re d1 − λ( 􏼁 − π2
+ 1/K0( 􏼁 + MRe􏼐 􏼑

,

A8 �
λd1 Gλ0 − 1/ 1 + K0MRe( 􏼁( 􏼁( 􏼁

d2 − λ( 􏼁
2

+ Re d2 − λ( 􏼁 − π2
+ 1/K0( 􏼁 + MRe􏼐 􏼑

,

A9 �
λ d1 − d2( 􏼁 Gλ0 − 1/ 1 + K0MRe( 􏼁( 􏼁( 􏼁

π2
,

A10 � A7 + A6 + A5 + A4 + A3 − A8 − A9,

A11 �
− MRe

1 + MReK0( 􏼁 π2 + 1/K0( 􏼁 + MRe􏼐 􏼑
,

B2 �
A1Reλ λ2 − π2􏼐 􏼑 − Gλ20/K0􏼐 􏼑Re2Pr3

π2
,

B3 �
Re2 A2Pr Re2Pr2 − π2􏼐 􏼑 + Gλ20/K0􏼐 􏼑Pr3􏼐 􏼑

Re2Pr(Pr − 1) − π2
+ 1/K0( 􏼁 + MRe􏼐 􏼑

,

B4 �
ReA3β − β2 + π2􏼐 􏼑 + GRe3Pr2 A + B + d1 − d2( 􏼁/π2􏼐 􏼑􏼐 􏼑

β2 − Reβ − π2
+ 1/K0( 􏼁 + MRe􏼐 􏼑

,

B5 �
A4Re d1 − RePr( 􏼁 d1 − RePr( 􏼁

2
− π2􏽨 􏽩 + AGRe3Pr2 + Gλ0d2RePr − 1 + Re2Pr2 1 + λ0Pr( 􏼁􏼐 􏼑

d1 − RePr( 􏼁
2

+ Re d1 − RePr( 􏼁 − π2 + 1/K0( 􏼁 + MRe􏼐 􏼑
,

B6 �
A5Re d2 − RePr( 􏼁 d2 − RePr( 􏼁

2
− π2􏽨 􏽩 + BGRe3Pr2 + Gλ0d1RePr 1 − Re2Pr2 1 + λ0Pr( 􏼁􏼐 􏼑

d2 − RePr( 􏼁
2

+ Re d2 − RePr( 􏼁 − π2 + 1/K0( 􏼁 + MRe􏼐 􏼑
,

B7 �
A6Re

2Pr π2 − Re2Pr2􏼐 􏼑 + GRe3Pr2 d1 − d2( 􏼁/π2
􏼐 􏼑 + Gλ0 d1 − d2( 􏼁RePr − 1 + Re2Pr2 1 + λ0Pr( 􏼁􏼐 􏼑

Re2Pr(Pr − 1) − π2
+ 1/K0( 􏼁 + MRe􏼐 􏼑

,

B8 �
A7Re d1 − λ( 􏼁 d1 − λ( 􏼁

2
− π2􏼐 􏼑 + λd2 Gλ0 − 1/ 1 + K0MRe( 􏼁( 􏼁( 􏼁 1 − λ2􏼐 􏼑 − Gλ20R

2
ePr

3
􏽨 􏽩

d1 − λ( 􏼁
2

+ Re d1 − λ( 􏼁 − π2
+ 1/K0( 􏼁 + MRe􏼐 􏼑

,

B9 �
A8Re d2 − λ( 􏼁 − d2 − λ( 􏼁

2
+ π2􏼐 􏼑 + λd1 Gλ0 − 1/ 1 + K0MRe( 􏼁( 􏼁( 􏼁 λ2 − 1􏼐 􏼑 + Gλ20Re

2Pr3􏽨 􏽩

d2 − λ( 􏼁
2

+ Re d2 − λ( 􏼁 − π2
+ 1/K0( 􏼁 + MRe􏼐 􏼑

,

B10 �
A9Reλ λ2 − π2􏼐 􏼑 + λ d1 − d2( 􏼁 Gλ0 − 1/ 1 + K0MRe( 􏼁( 􏼁( 􏼁 − λ2 + 1􏼐 􏼑 − Gλ20Re

2Pr3􏽨 􏽩

π2
,

B11 � B9 + B8 + B7 + B6 + B5 + B4 − B10.

(58)
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3.6. Skin Friction Coefficients. &e important physical
quantity, skin friction components, can be achieved after
obtaining the velocity field. In x-direction, the nondimen-
sional skin friction component is given by

τ⊳x �
τyx

ρUV0
�

]
V0l

zu

zy
􏼠 􏼡

y�0
. (59)

We obtain the following result after omitting the symbol
of “⊳” to make it easy:

τx � S0 + εS1 Re,Pr, G, K0, L, M( 􏼁cos πz, (60)

where

S0 �
1
Re

du0

dy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
− L

d2u0

dy2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
,

S1 Re,Pr, G, K0, L, M( 􏼁 �
1
Re

du11

dy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
− L

d2u11

dy2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
.

(61)

Similarly, in the z-direction the nondimensional skin
friction component is

τz �
τyz

(μV/l)
�

zw

zy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
+ LRe v

z2w

zy2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0

� − εS2 Re, L, K0, M( 􏼁sin πz,

(62)

where

S2 Re, L, K0, M( 􏼁 �
(1 + L)d1d2

π π2
K0 + 1􏼐 􏼑

− 1 + LRe d1 + d2( 􏼁( 􏼁.

(63)

3.7. Heat Flux. After getting the temperature distribution,
we may get &e Nusselt number, Nu, from the temperature
field.

Nu �
− q

ρV0cp Tw − T∞( 􏼁
. (64)

Getting nondimensional form and after simplifying the
resulting equation, we have

Nu �
kt

ρV0cpl

zθ
zy

􏼠 􏼡
y�0

�
1

RePr
dθ0
dy

+ ε
zθ1
zy

􏼠 􏼡
y�0

� Nu0 + εf3 Re,Pr, K0, M( 􏼁cos πz,

(65)

where

Nu0 � − 1,

S3 Re, Pr, K0, M( 􏼁 �
Repr(1 + L)

d1 − d2( 􏼁 π2
K0 + 1􏼐 􏼑

− β A + B +
d1 − d2

π2
􏼠 􏼡 + A d1 − RePr( 􏼁 + B d2 − RePr( 􏼁 −

d1 − d2

π2􏼠 􏼡RePr􏼢 􏼣.

(66)

4. Results and Discussion

&is effort reveals the mathematical modeling and theoretical
analysis of a steady flow of second-grade fluid in three di-
mensions through a medium (porous) with periodic perme-
ability and heat transfer with the existence of magnetic field
applied normal to plate. With the help of regular perturbation
method, analytical solutions for velocity field, pressure, heat
flux, and skin friction are attained. &e consequences of
nondimensional parameters such as Prandtl number, elastic
parameter, Reynolds number, Grashof number, magnetic
parameter, and permeability parameter, Pr, L,Re, G, M, and
K0, respectively, on the obtained physical quantities are
envisioned graphically.

In this regard, Figure 2 depicts the result of permeability
parameter K0 on temperature distribution, velocity com-
ponents, and pressure when all other nondimensional
physical parameters are static (L � 0.01, Pr � 7,Re � 1, G �

1, M � 1, ε � 0.01, z � 0) except K0, the permeability pa-
rameter. Figure 2(a) illustrates the influence of K0 on the
temperature distribution. Here, we acquired that

temperature distribution weakly depends on permeability
parameter K0. On the other hand, Figure 2(b) depicts that,
near the plate, increase in permeability parameter K0 causes
increasing the pressure and at the free surface it reaches its
maximum value. It is viewed from Figure 2(c) that the
increase of permeability parameter K0 leads to decrease in
the main flow velocity component u. Minimum value of the
velocity component occurs at the lower boundary and the
maximum value of the velocity component occurs at upper
boundary. Approximately, the same consequences of per-
meability parameter K0 are observed in Figure 2(d) on the
secondary flow velocity component v. It is detected from
Figure 3(e) that velocity component w near the plate in-
creases exponentially for a fixed value of K0 and attains its
maximum height by obtaining parabolic profile here, then
decreases sharply, and alternately approaches to zero as
y⟶∞. It can also be observed easily thatw decreases with
the increase of permeability K0.

Next, Figure 3 depicts impact of Re on θ, temperature
distribution, pressure, and the components of velocity field. &e
impact of Re on the temperature distribution is demonstrated in

Mathematical Problems in Engineering 11



Figure 3(a). It is noted that as we increase Reynolds number Re,
the thermal boundary layer starts to decline. Figure 3(b) shows
that pressure increases near the plate due to the increment of Re.
Physically, it can be said that inertial forces are dominant near
the plate over viscous forces. At the free surface, pressure has its

maximum value. It is analyzed (Figure 3(c)) that the increment
in Re causes increasing u, the main flow velocity component,
and also for each value of Re the main flow velocity component
u reaches its maximum value at the boundary level. Moreover,
the thickness of boundary layer decreases as Reynolds number
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Figure 2: Impact of permeability parameter on temperature distribution, pressure, and velocity field. (a) Temperature field θ. (b) Pressure p.
(c) Velocity component u. (d) Velocity component v. (e) Velocity component w.
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increases, and the increase of Re also causes decreasing the
magnitude of velocity component v (Figure 3(d)) which is
naturally true with the existence of magnetic field B

→
0. It is

detected from Figure 3(e) that velocity component w near the
plate increases exponentially for a fixed value of Re and attains its
maximum height by making parabolic profile here and then

speedily decreases, and at last w⟶ 0 as y⟶∞. It is clearly
noted that w increases due to an increment of Re.

Figure 4 exhibits the impact of M on temperature
distribution, pressure, and velocity components when all
nondimensional parameters are fixed except magnetic
parameter. Figure 4(a) demonstrates the impact of M on
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Figure 3: Impact of Reynolds number on temperature distribution, pressure, and velocity field. (a) Temperature field θ. (b) Pressure p. (c)
Velocity component u. (d) Velocity component v. (e) Velocity component w.
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temperature distribution which illustrates that temper-
ature distribution weakly depends on magnetic param-
eter M. Figure 4(b) displays that pressure decreases with
an enhancement in M and reaches its maximum value at
the free surface. It is investigated further by Figure 4(c)
that main flow velocity component u decreases when

parameter M is enhanced. Minimum value of the velocity
component occurs at the lower boundary and the max-
imum value of the velocity component takes place at
upper boundary. &e same impact of magnetic parameter
M on v is observed from Figure 4(d). It is viewed from
Figure 4(e) that near the plate velocity component w
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Figure 4: Impact of magnetic parameter on temperature field, pressure, and velocity field. (a) Temperature field θ. (b) Pressure p. (c)
Velocity component u. (d) Velocity component v. (e) Velocity component w.
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increases exponentially for a fixed value of magnetic
parameter M and w approaches its maximum value by
making parabolic profile here; afterwards, it decreases
quickly and w⟶ 0 for y⟶∞. Clearly, it can be
checked that w starts to decrease by increasing the values
of M.

&e impact of Prandtl number on temperature field and
main flow velocity component u is elaborated in Figure 5. It
is obvious in Figure 5(a) that the fluid temperature reduces
by the enhancement of Pr, Prandtl number, and this be-
havior of Pr reduces the thickness of thermal boundary
layer. Actually, when we increase the Prandtl number, there
exists a low thermal conductivity in fluid which causes
reducing thermal layer thickness. &us, the graphical ob-
servation of problem from this figure absolutely agrees with
the physical principle that the increase of Pr causes decrease
in boundary layer thickness. Figure 5(b) shows that with an
increment of Prandtl number the velocity component u

starts to decrease.
Figure 6 reveals the impact of elastic parameter L on

temperature field, pressure, and velocity components
when all other nondimensional parameters are fixed ex-
cept elastic parameter. Here, it is viewed from Figure 6(a)
that the influence of L on the temperature distribution is
the same as K0. Here, again we acquired that temperature
distribution weakly depends on elastic parameter L. It is
also exhibited (Figure 6(b)) here clearly that the pressure
starts to increase by an increase in L, which is evident of
above theory, because of the fluid thickness. Figure 6(c)
shows that main flow velocity component u starts to
decrease with the increase of non-Newtonian parameter L

which is quite obvious physically as increase in non-
Newtonian parameter L causes greater thickening of fluid

that produces reduction in the velocity. &e impact of L

from Figure 6(d) on v is observed that minimum value of
the velocity component occurs at the lower boundary and
the maximum value of the velocity component takes place
at upper boundary. It is viewed from Figure 6(e) that near
the plate velocity component w increases exponentially for
a fixed value of L and it decreases quickly after making
parabolic profile; then w⟶ 0 for y⟶∞. It can be seen
that w starts to increase by increasing the values of L.

As for the Figure 7, it perceives the impact of Grashof
number that is free convective parameter on u. &is effect
shows the cooling of the plate that happens due to the greater
Grashof number. &e figure elaborates that the velocity
component of main flow u starts to increase with an increase
of Grashof number G which leads to the high cooling of the
medium.

Further, in Figure 8, the dimensionless skin friction
component along the x− axis is depicted for distinct values
of L, M K0, G, and Pr through the direction of main flow
and against Reynolds number. It is observed in all cases
(Figures 8(a), 8(c), 8(d), and 8(e)) that with an increase in
Reynolds number Re the skin friction is imposed by the
plate on the fluid, which increases with the increase of each
of these dimensionless parameters. It is worth mentioning
that the skin friction is zero for L � 0.1. However, per-
meability parameter K0 has an inverse effect shown in
Figure 8(b).

Figure 9 is framed for nondimensional component of
skin friction along the secondary flow direction for distinct
values of L, M, and K0 against Reynolds number. In both
cases (Figures 9(a) and 9(b)), it is perceived that the increase
in Re originates the increase in component of skin friction.
With the increase in either of the parameters L and M, the
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Figure 5: Impact of Prandtl number on temperature field and velocity component. (a) Temperature field. (b) Velocity component u.
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skin friction increases; however, permeability parameter K0
has an inverse effect (Figure 9(c)).

In Figure 10, variation of dimensionless coefficient of
heat transfer for the different values of L, Pr, M, and K0 is

demonstrated against Reynolds number. It is evident that
coefficient of heat transfer is enhanced with an increase in
either of the parameter L, Pr, and M. In contrast, the heat
transfer coefficient decreases by increasing K0.
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Figure 6: Impact of non-Newtonian parameter on temperature field, pressure, and velocity field. (a) Temperature field. (b) Pressure. (c)
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Figure 9: Impact of dimensionless parameters on skin friction component along z-axis. (a) Effect of elastic parameter. (b) Effect of magnetic
parameter. (c) Effect of magnetic parameter.
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5. Final Remarks

&e main outcomes observed in the article are described in
the following for the focus of reader:

(i) Magnetic field reduces the velocity field.

(ii) High cooling of the medium causes an increase in
main flow velocity component.

(iii) &e temperature distribution weakly depends
upon the Hartmann number.

(iv) &e fluid pressure rises due to increase in values of
non-Newtonian parameter.

(v) &e skin friction components increase as the elastic
parameter increases. It is also interesting to note
that the skin friction component along the main
flow direction reduces to zero for L � 0.1.

(vi) Reynolds number causes controlling boundary
layer thickness. It also provides a tool to control
thermal boundary layer.

(vii) Permeability plays a role of root to minimize the
components of skin friction.

(viii) &e plate friction decreases due to increase in
permeability parameter.

(ix) It is observed that permeability parameter weakly
depends on temperature field.

(x) It is a noteworthy evaluation that the solutions of
[21] are retrieved in the absence of M as well as
results of [6] recaptured while eliminating both M

and L.
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