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To solve the problems of difficult fault signal recognition and poor diagnosis effect of different damage in the same position in
rolling mill bearing at low speed, a fault diagnosis method of rolling mill bearing based on integration of EEMD and DBN was
proposed. -e vibration signals in horizontal, axial, and vertical directions were decomposed and reconstructed by EEMD, and
frequency domain analysis was carried out by using refined spectrum. -en, the signal’s time-frequency domain index, rolling
force, and torque component feature vector were input into genetic algorithm (GA) to optimize DBN model classification. In
order to verify the effectiveness of the method, the experimental study was carried out on the two-high experimental rolling mill.
-e results show that EEMD combined with thinning spectrum can solve the problem of fault feature extraction well. Compared
with time-frequency domain characteristic input, the prediction accuracy of DBNmodel is obviously improved. And the accuracy
of GA-DBN model is higher, and the accuracy is 98.3%, and the time taken to diagnose is significantly reduced. Finally, the fault
classification of different parts of bearings and the fault diagnosis of different damage in the same part are realized, which provides
a good theoretical basis for the fault diagnosis of low-speed bearings and has important engineering significance.

1. Introduction

Rolling bearings are widely used and easily damaged parts in
rotary machinery, and their running state directly affects the
working performance of the system [1]. -e working en-
vironment of strip mill is bad. 70% faults of transmission
system are related to bearing, and the working state of
bearing directly affects the quality of strip products [2]. -e
development trend of strip rolling mills is high-speed
production. Take the 2250 rolling mill of a company as an
example; the maximum linear speed of production is
1200m/min, but the diameter of its work roll is 700mm, and
the maximum rotation speed of the bearing is only 9 r/s. And
the speed of finishing mill F1∼F4 is only 4.3 r/s, and the
speed of bearing in roughing rolling stage is even lower, and
its rotation frequency is only 1–3Hz. -erefore, strip rolling

mill bearings are mostly in low-frequency working condi-
tions. In frequency domain analysis, low-frequency features
are concentrated on the left end of the spectrum, which is
more difficult to identify than high-frequency features, so
the frequency analysis of low-frequency bearings is usually
more difficult than that of high-frequency bearings. If the
low-frequency bearing fault diagnosis can be well realized, it
could be applied to high-frequency bearing to achieve better
results. In the rolling process, the bearing is subjected to
rolling force, so the bearing is in a heavy load state, and the
working condition is complex.-erefore, it is urgent to solve
the problem of fault feature extraction under low-frequency
and heavy load condition of rolling bearing of strip mill and
low accuracy of damage diagnosis of different positions.

Extraction of bearing fault feature information from
nonlinear and nonstationary vibration signals is the key to
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fault diagnosis. In [3], Hu et al. used short-time Fourier
transform (STFT) for bearing fault diagnosis, broke through
the limitation of traditional time-domain index analysis, and
successfully demodulated the periodic component of the
modulated signal. In [4], Gao et al. used STFT to process
bearing vibration signals and combined with unsupervised
nonnegative matrix decomposition to extract fault charac-
teristic frequencies, which proved that the effect of time-
frequency domain analysis was significantly better than that
of conventional time-domain index analysis. In [5], Wang
et al. used the STFT for fault diagnosis of gearboxes and
proved that its diagnosis speed is faster than traditional
Fourier transform. In [6], Li et al. proposed the interpolation
fast Fourier transform of Hamming window. After the signal
was processed by Fourier transform, Hamming window was
used to carry out the weighted processing, which could
realize the accurate identification of bearing fault frequency
with fewer analysis points. In [7], Fu et al. used
wavelet algorithm to realize rolling bearing fault feature
extraction and realize feature extraction of bearing fault
impact transient response, which reflected the detection
ability of wavelet analysis in processing abrupt signals. In [8],
Ai et al. used the peak factor of envelope spectrum to op-
timize the frequency band of Morlet complex wavelet and
applied it to the fault diagnosis of intershaft bearings to
realize resonance demodulation processing of vibration
signals and extract fault information from vibration signals.
In [9], Yang et al. proposed the optimal wavelet scale cyclic
spectrum, which well overcame the problem that the results
of STFT were greatly affected by the window function, and
diagnosed the early weak faults of bearings. In [10], Cheng
et al. extracted rolling bearing fault features by chirplet path
tracing and realized bearing fault diagnosis under bad
working conditions of variable bearing speed and gear noise
interference by calculating instantaneous fault feature co-
efficient, which reflected the excellent noise reduction ability
of wavelet analysis.

Although the effect of wavelet analysis has been greatly
improved in STFTalgorithm, both of them lack adaptability.
-erefore, Hung Norden proposed Empirical Mode De-
composition (EMD) [11]. EMD breaks out of the traditional
frequency concept and decomposes the signal into multiple
modal functions, which has a good adaptive ability. AndWu
and Huang proposed the Ensemble Empirical Mode De-
composition (EEMD) algorithm to overcome the short-
comings of EMD by adding uniform white noise [12]. In
[13], Cheng et al. used EEMD to extract the feature of rolling
bearing vibration signal containing noise, and the frequency
domain features were clearer than STFT. In [14], Tian et al.
combined EEMD with spatial correlation denoising, the
denoising effect of bearing fault signals was better than that
of wavelet analysis, and the fault features were more
prominent. -e above research shows that EEMD algorithm
can achieve better results in bearing fault diagnosis com-
pared with STFT, wavelet analysis, and EMD.

Shallow machine learning algorithms have low accu-
racy when diagnosing complex problems [15]. In order to
improve the accuracy of fault diagnosis, scholars combine
the fault feature extraction method with deep intelligent

algorithm, which greatly improved the accuracy and effi-
ciency of bearing fault diagnosis. In [16], Li et al. combined
STFT with convolutional neural network and achieved a
high accuracy rate under noise interference. In [17], Liu
et al. combined STFTand sparse autoencoder to the bearing
fault diagnosis and achieved better results. In [18], Zhao
et al. combined wavelet packet with deep belief network
(DBN), and the accuracy of fault diagnosis is more than
97%.

Although deep intelligence algorithm can improve the
diagnostic accuracy, it needs a large number of samples to
train the network, and the training time is long. In [19],
Wang et al. directly input EEMD-Hilbert envelope spectrum
signals into the DBN and the accuracy of the model is over
95%, but the training time of the model is as long as 6114
seconds, so the identification time problem needs to be
solved. In [20, 21], Pan et al. and Yan et al. optimized the
structural parameters of neural network by genetic algo-
rithm (GA) and optimized the input of neural network,
which greatly improved the speed and accuracy of fault
diagnosis. -erefore, this paper uses genetic algorithm to
optimize the weight threshold of BP network at the last layer
of DBN structure, thus improving the performance and
speed of the algorithm. Initial conditions in iterative algo-
rithms can have a large impact on the convergence and
stability of the model, so we need to set the initial conditions
of the network reasonably to reduce tracking errors in it-
erative control learning [22, 23]. -erefore, we need to
perform feature extraction and noise reduction on the
various signals to obtain a better initial input data.

While the above research has only been carried out in the
laboratory for the diagnosis of bearing faults, in this paper,
we apply the existing mathematical models and algorithms
in a real way to the production of real rolling mills. -e
above studies have done a lot of work on rolling bearing fault
diagnosis from the aspects of signal processing and intel-
ligent algorithm, but the particularity of rolling mill
structure and working environment has not been consid-
ered. -e lack of fault data in the actual production process
of the factory, the insufficient training of the initial model of
the fault diagnosis system, and the fact that diagnosis still
depends on frequency domain analysis have not been taken
into account. And fault diagnosis of low-speed and heavy-
duty bearings has not been carried out. In this paper, rolling
mill bearing vibration signals are processed by EEMD to
solve the problems of large vibration signal interference and
noise, long fault impulse response period, and low fault
characteristic frequency, which are difficult to extract. -en,
analyze the signal by zoom spectrum and extract the fault
features. Aiming at the problem that it is difficult to accu-
rately identify the fault position and damage degree of
rolling mill bearing due to the changes of metal size and
rolling force during rolling process, BP network optimiza-
tion was optimized by genetic algorithm as the last layer of
DBN to realize fault diagnosis and identification. Finally, the
method of rolling mill bearing fault diagnosis based on
EEMD and DBN is formed, and the fault diagnosis of
different damage in the same part of rolling mill bearing is
realized.
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2. Mathematical Model

2.1. EEMD Algorithm. EEMD is an improvement of EMD.
After the signal is decomposed by EEMD, the last com-
ponent is removed, and the signal is reconstructed, which
can improve the signal-to-noise ratio of the signal. Literature
14 shows that the frequency domain characteristics of rolling
bearing signals processed by EEMD are more obvious. In
[24], Kong et al. successfully separated double bearing
impact features by using EEMD to process the signal.
-erefore, EEMD can effectively solve the problems of bad
working environment of rolling mill and large signal noise
interference, and a better effect can be achieved in noise
reduction processing of vibration signals.

EMD is an adaptive analysis method, which breaks away
from the definition of frequency in Fourier transform and
introduces the concept of instantaneous frequency. And
EMD can achieve good results in nonstationary and non-
linear signal processing. -e algorithm decomposes the
signal into multiple IMF components, and each IMF
component contains local characteristic signals at different
time scales. -e specific steps are as follows:

(1) -e original signal x(t) is subtracted from the mean
envelopem(t) to obtain the signal h(t), denoted as IMF1.

h(t) � x(t) − m(t). (1)

(2) -e first IMF component is removed from the
original signal x(t), and the residual r(t) can be
obtained:

r(t) � x(t) − IMF1. (2)

(3) -e residual r(t) is brought back to the first step to
obtain IMF2 and IMF3, and the last residual r(t) is
EMD residual component and satisfies the following
relation:

x(t) � 􏽘 IMF + r(t). (3)

EEMD needs to add white noise wi(t) with total mean
zero to the original signal, and the original signal x(t) be-
comes yi(t) � x(t) + wi(t). -e new signal is decomposed
by EMD, and J IMF components and residual components
are obtained as follows:

yi(t) � 􏽘

J

j�1
cij + ri. (4)

Repeat the above steps and get an average of IMFdj for
the components as follows:

dj �
1
I

􏽘

I

i�1
cij. (5)

2.2. ZOOMFFT Refine Spectrum. In order to preliminary
realize the fault diagnosis, the signal needs to be analyzed in
the frequency domain. Compared with cepstrum and

energy spectrum, envelope spectrum can achieve better
results in the processing of early fault signals. However, the
characteristic frequencies of low-frequency and heavy-load
bearing fault signals are concentrated at the left end of the
spectrum, and the frequency is less than 10Hz. -e am-
plification of envelope spectrum will cause the spectrum
resolution to decrease, and the processing effect will be
worse. Zoom spectrum can improve the resolution of the
spectrum, realize the amplification of the frequency region,
and get more accurate spectrum amplitude, phase, and
frequency. In [25, 26], Xia et al. successfully solved the
problem that the low resolution of Teager energy operator
and Hilbert transform could not demodulate low-fre-
quency modulation signal by using zoom spectrum.
-erefore, zoom spectrum is better than envelope spectrum
in the frequency domain analysis of low-frequency fault
vibration signals.

-erefore, the spectrum of rolling mill bearing needs to
be refined by zoom spectrum. In this paper, we use
ZoomFFT to refine the spectrum of rolling mill bearing
signals. FFT can only analyze the signal from the zero fre-
quency, but ZoomFFT can greatly refine the spectrum,
ZoomFFT can move the narrowband spectrum to near the
zero frequency, and then the signal is processed by FFT.

Signal x(t) is processed by A/D sampling, and a dis-
crete signal sequence x(n) is obtained. -e sampling
frequency is fs, the center frequencies of the refining
frequency band are f1 and f2, the center frequency is fe, the
number of points selected is N, and the specific process is
as follows:

(1) Discrete FFT of the processed signal is

X0(k) � 􏽘
N−1

n�0
x0(n)W

mk
N (k � 0, 1, . . . , N − 1), (6)

WN � e
− j2π/N

. (7)

-e processed signal is complexly modulated with
the frequency band center frequency fe � (f1 + f2)/2,
and the frequency shift signal is obtained as

x(n) � x0(n)e
− j2πnfe/Nfs , (8)

x(n) � x0(n)cos
2πnL0

N
− jx0(n)sin

2πnL0

N
, (9)

where the sampling frequency is fs �N× f, interval of
spectral line is Df, and the displacement of frequency
center is L0 � fe/f.
According to the frequency shift property of Fourier
transform, the relation between the discrete spec-
trum X(k) of the signal and the discrete spectrum
X0(k) of x0(n) is

X(k) � X0 k + L0( 􏼁. (10)

(2) Set the refining multiple D and the cut-off frequency
of the low-pass filter is fe � fs/2D, and the filter output
is
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y(n) �
1
N

􏽘

N−1

k�0
X(k)H(k)W

−nk
N , (11)

where the frequency response of the low-pass filter is
H(k).

(3) Resampling with frequency fs
′� fs/D is adopted to

obtain the time-domain signal g(m) � y(m), which
is obtained by equations (6)–(10):

g(m) �
1
N

􏽘

N/2−1

P�0
X0 p + L0( 􏼁W

− pm
+ 􏽘

N−1

p�N/2
p − N + L0( 􏼁W

− pm

����������

����������
.

(12)

(4) Finally, perform the FFT again and adjust the fre-
quency to complete the ZoomFFT. -e flow chart of
ZoomFFT is shown in Figure 1:

2.3. Genetic Algorithm Optimization of DBN. DBN is com-
posed of restricted Boltzmann machine (RBM) and a reverse
fine-tuning BP network. In order to solve the problem that
the last layer BP network of DBN is prone to fall into local
minimum value and run slowly during training, we adopt
genetic algorithm to optimize BP network. -e layer
structure parameters of the DBN in this paper are shown in
the following Table 1. -e network structure is shown in
Figure 2.

(1) Determine the topology structure of the neural
network, and determine the number of input layer R,
hidden layer S1 and output layer S2 and the code
length S. -e formula is shown as follows:

S � R × S1 + S1 × S2 + S2. (13)

(2) Establish the last layer of BP network, and use the
corresponding dimensional variable to represent the
number of network weight thresholds. -e gene
formula after coding is shown as follows:

X � ω11...ωnm, ]11 . . . ]pm, θ1 . . . θm, t1 . . . tp􏽨 􏽩, (14)

where vij is the threshold of the j-th neuron of the
input layer to the i-th neuron of the hidden layer, nij
is the threshold of the j-th neuron of the hidden layer
to the i-th neuron of the output layer, ui is the
threshold of the i-th neuron in the hidden layer, and
ti is the threshold of the i-th neuron in the output
layer.

(3) Use training and test samples to train and test the
network separately, calculate the sum of squared test
errors SE, and take the reciprocal of SE as the fitness
value of the genetic algorithm:

Val �
1
SE

. (15)

(4) -e excellent individuals are selected in the form of
roulette wheel, and the excellent individuals of the

previous generation are single-point crossed to en-
large a certain coding value of the individuals of the
population, so as to improve the random search
ability of the algorithm.

(5) -e optimization process of (3) and (4) is repeated
continuously until the termination conditions are
met and the optimal neural network weights and
thresholds are obtained.-e optimization of DBN by
genetic algorithm is completed.

-e optimized process is shown in Figure 3.

2.4. Rolling Mill Bearing Fault Diagnose Method Based on
EEMD and DBN. EEMD and zoom spectrum can effec-
tively solve the problem of high noise of rolling mill
bearing vibration signal and difficulty in extracting fault
characteristic frequency. Bearing faults can be prelimi-
narily diagnosed according to the fault characteristic
frequency, but intelligent identification of bearing faults
cannot be realized, and the diagnosis results depend on
experience. DBN has excellent classification and predic-
tion ability, but the strong ability of DBN depends on
sufficient training samples and good input vector. In this
paper, we combine EEMD with DBN. First, EEMD is used
to process the vibration signal to preliminary identify the
fault. Next, extract the feature vector as the input of the
DBN and train the network. Finally, classify the feature
vectors by DBN network. EEMD and DBN complement
each other, EEMD solves the input problem of DBN, as
well as the problem of insufficient training samples in the
early stage of diagnosis and low diagnostic accuracy, and
DBN solves the problem that EEMD cannot intelligently
realize fault identification. Finally, a fault diagnosis model
of EEMD and GA-DBN is established, and the fault di-
agnosis process is shown in Figure 4. -e effective com-
bination of the two algorithms can improve the accuracy
and efficiency of rolling mill bearing fault diagnosis and
finally realize the fault diagnosis of rolling mill bearing
with different damage degrees.

3. The Experiment of Rolling Mill Bearing
Fault Diagnose

-e equipment used in this test mainly includes experi-
mental rolling mill, sensor, and data acquisition equipment.
-e test bench is shown in Figure 5. -e parameters of the
rolling mill are as follows: the diameter of roll is 120mm, the
length of roll is 90mm, the rotation of main motor is 18 r/
min, the maximum rolling force is 12 tons, the vibration
sensor is YS8202 acceleration sensor, the pressure sensor
model is HZC-01 to measure the rolling force, and the
torque sensor model is BHF350 to measure the torque of the
transmission shaft.

-e work roll bearing of the experimental rolling mill is a
single row cylindrical roller bearing installed side by side,
and its model is NU1012. -e vibration signals of 8 sets of
normal bearings, 2 sets of rolling body wear group bearings,
2 sets of cage damage group bearings, and 2 sets of rolling
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body spalling group bearings were collected with the test
bench and the equipment mentioned above.

-e working conditions of the roll are set as 5.04 r/min
and 3.96 r/min, and the reduction amount is 25% and 40%.
-en, collect the vibration signals of the above four groups of
bearings along X, Y and Z axes, rolling force signals of the
rolling mill driving side and operating side, and torque
signals of the upper and lower drive shafts. And the sampling
frequency is 2000Hz.

-e signal time domain diagram with the speed of 5.04 r/
min and the reduction of 40% is shown in Figure 6. -e first
2 seconds of the rolling mill is in the no-load state, and the
signal amplitude is small. After the 51st second, due to steel
throwing phenomenon, the amplitude increased sharply.
-erefore, the signals at both ends are discarded, and the
stationary signal in the middle is taken as the frequency
domain diagram as shown in Figure 7:

-e rolling bearing of the rolling mill has a low rotation
speed and a low fault characteristic frequency, which is
concentrated on the left side of the spectrum diagram, and
effective information cannot be obtained from the frequency

domain diagram shown. -erefore, it is necessary to process
vibration signal and extract the fault features by EEMD and
zoom spectrum. By this method, we could extract the
bearing fault characteristic frequency and accurately identify
the bearing fault.

4. Results and Discussion

4.1. Calculation of Fault Characteristic Frequency. -e fault
characteristic frequency of each component of the bearing is
shown in Table 2:

4.2. Results of EEMD and ZOOM Spectrum. Several com-
ponents of vibration signals obtained after EEMD pro-
cessing (showing the first 5 components with high
correlation with the original signal) are shown in Figure 8.
IMF1 still has more noise energy, while IMF2 and IMF3 have
impact characteristics.

-e correlation coefficient provides a good response to
the correlation between the component signals and the
original signal, so we use it as a criterion for judging the IMF.
Calculate the correlation coefficient between the original
signal and each IMF component; the correlation coefficient
of IMF1, IMF2, and IMF3 is 0.6292, 0.2309, and 0.0452.
Because the correlation coefficient between the components
after IMF4 and the original signal is very low, little fault
information is included, so the components after IMF4 are
discarded. And take the first three components for signal
reconstruction, and then the reconstructed signal is pro-
cessed by zoom spectrum to realize the preliminary
diagnosis.

-e analysis spectrum diagram of rolling body fault
signal with a rotating speed of 5.04 r/min is shown in Fig-
ure 9. -e frequency display range is 0∼2.5Hz, the theo-
retical rotation frequency is 0.084Hz, and the rolling body
fault frequency is 0.36Hz. As shown in the figure, the
maximum peak frequency 0.08125Hz is the rotation fre-
quency, and the peak frequency 0.1667Hz is the double
rotation frequency. -e frequency peak of 0.3542Hz is the
rolling body fault frequency peak, and the frequency peaks of
0.7875Hz and 1.106Hz are the double and triple rotation
frequency of the rolling body fault frequency, respectively.
Compared with the envelope spectrum of the same signal as
shown in Figure 10, it can be seen that the resolution of the
signal processed by the envelope spectrum is obviously
insufficient, and the characteristic frequency peak may not
be displayed due to the low resolution. -e processing effect
of the envelope spectrum is worse than that of the zoom
spectrum, and the fault characteristic frequency cannot be
recognized normally.

y (n)
x (n)

y (k)

x (t)
Anti-aliasing filtering A/D sampling Frequency shi�

exp (–j2πf1/f2Dm) 

Digital low-pass filterResamplingFFTFrequency adjustment

Figure 1: -e flow chart of ZoomFFT.

Table 1: -e layer structure parameters of the DBN.

Layer Number of neurons Learning rate
Input 127 0.01
First hidden layer 127 0.01
Second hidden layer 10 0.01
-ird hidden layer 10 0.01
Output 1 0.01

Network input

Network output

GA-BP

RBM3

RBM2

RBM1

fine tuning

fine tuning

fine tuning

fine tuning

ω4

ω3

ω2

ω1

Figure 2: -e structure of optimization DBN using GA.
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-e analysis spectrum diagram of normal bearing signal
with a rotating speed of 3.96 r/min is shown in Figure 11.-e
frequency display range is 0∼2.5Hz, and the theoretical
rotation frequency is 0.066Hz.

As shown in the figure, the maximum peak frequency
0.0625Hz is the rotation frequency, and the frequency peaks

of 0.1042Hz and 0.2083Hz are the double and triple rotation
frequency of rotation frequency, respectively.

Compared with Figure 8, the spectrum in Figures 9 and
11 is clearer. EEMD and zoom spectrum can realize the
extraction of the fault characteristic frequency of rolling
bearings with low rotating speed. And the effective

Determine the extension structure of neural network

Get the initial population by coding the weights 
and thresholds of the neural network 

Obtain the weights and thresholds by decoding

Assign weights and thresholds to the BP network

Train the network by training samples

Test the network by test samples

Test the error of network

Calculate fitness

Select chromosomes with high fitness for replication

Chromosome crossover and variation

Get a new group

Decode

Get the best neural network weights and thresholds

Termination conditions

Y

N

Figure 3: -e flow chart of the optimization BP using GA.
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Table 2: Characteristic frequency of bearing fault.

Fault types -e 5.04 r/min group -e 3.96 r/min group
Inner ring fault (Hz) 1.065 0.839
Outer ring fault (Hz) 0.862 0.673
Roller fault (Hz) 0.388 0.306
Cage failure (Hz) 0.037 0.029
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Figure 8: Time domain diagram of IMF. (a) IMF1, (b) IMF2, (c) IMF3, (d) IMF4, and (e) IMF5.
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combination of the two methods can realize the determi-
nation of the fault location of rolling mills bearings.

4.3.ComparativeAnalysis ofGA-DBNandDBNClassification
Results. -e first three IMF components are used to cal-
culate nine time-domain indicators (including maximum
value, minimum value, average value, standard deviation,
root mean square value, skewness value, peak-to-peak value,
kurtosis value, and waveform factor) and two frequency
indicators (including the center frequency and frequency
variance). And the rolling force signals of the driving side
and the operating side as well as the torque signals of the

upper shaft and the lower shaft are used to calculate seven
time-domain indicators (including the maximum value,
minimum value, average value, standard deviation, skewness
value, peak-to-peak value, and kurtosis value).

-e initial conditions in iterative algorithms can have a
large impact on the convergence and stability of the model,
so we need to set the initial conditions of the network
reasonably to reduce tracking errors in iterative control
learning [22, 23]. -erefore, it is necessary to process the
data reasonably and to design the initial conditions of the
network structure reasonably. -e eigenvector of [S1, S2, S3,
N1, N2, F1, F2] is composed of the characteristic values of
vibration signals, torque signals, and rolling force signals of
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10

9

8

7

6

4

3

2

1

0

5

0.5 1.5 2.51 20

A
m

pl
itu

de

Frequency (Hz)

f=0.0824 Hz

f=0.1648 Hz

f=0.3571 Hz

f=0.6866 Hz

Figure 10: Envelope spectrum of rolling body fault bearing with rolling speed of 5.04 r/min.

Mathematical Problems in Engineering 9



various faults. -e dimension of S1∼S3 is 11, representing 9
time-domain indicators and 2 frequency-domain indicators
of vibration signals in three directions of the bearing seat,
respectively. -e dimensions of N1 and N2 are 7, repre-
senting 7 time-domain indicators of upper and lower shaft
torque signals, respectively. -e dimensions of F1 and F2 are
7, representing 7 time-domain indicators of rolling force
signals of rolling mill operation measurement and trans-
mission side. Feature vector with dimension 127 is used to
represent the characteristic information of various fault
vibration signals as the input vector for DBN.

-e labels of normal bearings are set to 1, the labels of
cage damage bearings are set to 2, the labels of roller surface

wear bearings are set to 3, and the labels of roller surface peel
bearings are set to 4.

-e eigenvectors are put into the GA-DBN and the
ordinary DBN for training, and predict the eigenvalues of
the second, third, and fourth hidden layers. -e results are
shown in Figures 12 and 13:

-e root-mean-square error of the hidden layer of the
network can well characterize the specific performance of
the network, so we use it as a performance evaluation index
and guide the setting of the network structure. -e root-
mean-square errors of each hidden layer of DBN optimized
by genetic algorithm are 0.0730, 0.0283, and 0.0499, and the
root-mean-square errors of each hidden layer of
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Figure 11: Refinement spectrum of normal bearing with speed of 3.96 r/min.

0

1

2

3

4

5

2 4 6 8 10 12

Pr
ed

ic
t l

ab
el

s

0
Predict samples

�e real value
Second hidden layer

�ird hidden layer
Fourth hidden layer

Figure 12: -e forecast chart using GA-DBN algorithm.
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Figure 13: -e forecast chart using DBN algorithm.

Table 3: -e performance parameters of the model.

Structure Model -e root-mean-square errors
Two hidden layers DBN 0.0730
-ree hidden layers DBN 0.0283
Four hidden layers DBN 0.0499
Two hidden layers GA-DBN 0.0897
-ree hidden layers GA-DBN 0.0493
Four hidden layers GA-DBN 0.0641
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Figure 14: GA-DBN prediction chart without roll force and torque.
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conventional DBN are 0.0897, 0.0493, and 0.0641. -e
performance parameters of the model obtained under dif-
ferent hidden layer conditions are shown in Table 3.

Because the root-mean-square error of the third hidden
layer is the smallest, the optimal hidden layer number of
DBN is determined to be 3. And the prediction results of
each hidden layer of GA-DBN are better than the con-
ventional DBN, because the genetic algorithm can jump out
of the local minimum point through crossover and muta-
tion, which overcomes the shortcomings of BP network.

A total of 120 test samples were randomly selected to test
the accuracy of the prediction model.-e prediction accuracy
of GA-DBN model with three hidden layers was 92.5%,
98.3%, and 97.5%, respectively, while that of the conventional
DBNmodel was 87.5%, 94.2%, and 92.5%, respectively. It can
be concluded that when the number of hidden layers is three
optimal layers, the accuracy of GA-DBN algorithm was the
highest, and the accuracy is 98.3%. And the accuracy of each
hidden layer of GA-DBN algorithm is higher than that of
conventional DBN algorithm. It can be confirmed that the
prediction accuracy of GA-DBN proposed in this paper has
been improved compared with that of conventional DBN.

4.4. Comparative Analysis of NON-LOAD Input Network
Model. -e prediction graph of GA-DBN without rolling
force and torque signal input is shown in Figure 14.
Compared with Figure 11, the simulation results prove that
the identification accuracy of network with rolling force and
torque signal input is higher.

-e accuracy of themodel without rolling force and torque
input is 77.5%, 88.3%, and 85.0%, and the highest prediction
accuracy of the model is 88.3%, which is 10 percentage points
lower than that of the mixed input model 98.3%, thus proving
the effectiveness of the mixed prediction model.

-e final results show that the training time of the force
and torque input model and the strength and torque input
model is 431 s and 357 s, respectively. Compared with the
training time of 6114 s when Wang et al. [19] directly used
spectral signal as input model, the training time was greatly
shortened. And the results can prove that the method
proposed in this paper can effectively shorten model training
time. And the results of themodel comparison under various
input conditions are obtained as shown in Table 4.

5. Conclusions

-is paper differs from existing laboratory research by ap-
plying mathematical models and networks to actual rolling

production, enabling condition monitoring and fault di-
agnosis of mill bearings.

(1) It is difficult to extract fault features from bearing
signals of strip rolling mill under low frequency and
heavy load condition, and the diagnosis effect of
bearing with different damage at the same position is
poor. In order to solve this problem, EEMD is used
to realize fault feature extraction, and GA-DBN is
used for fault diagnosis. Finally, the fault diagnosis
model of heavy-duty bearing is established.

(2) By analyzing the vibration data of the experimental
rolling mill, the results show that the signal recon-
struction by EEMD can effectively realize the signal
noise reduction. We could accurately extract the
characteristic frequency and preliminarily diagnose
faults of low-frequency bearing faults by zoom
spectrum. It is proved that the GA-DBN model has
high accuracy in fault feature recognition.

(3) -e experimental results show that the prediction
accuracy of GA-DBN model is significantly im-
proved by 10 percentage points by adding rolling
force and torque signals as feature vectors, which
proves the advantages of the method in this paper.

In this paper, we have achieved fault diagnosis of rolling
mill bearings. However, the amount of data from vibration
signals in signal processing still has a large impact on model
calculations, and we still need to work in the direction of
data processing in the future. And our model is built under
steady state conditions and does not take into account the
difficulty of obtaining data, so in future work, we need to
further develop fault diagnosis under small samples and
variable conditions, and the application of GAN [27] pro-
vides a good solution to the above problem, which will be
our future work.

Data Availability

-e experimental data can be obtained through request
(743167051@qq.com). -e experimental data were obtained
through the rolling experiment of National Cold Rolling
Strip Equipment and Process Engineering Technology Re-
search Center of Yanshan University. -e experimental
results are reproducible. Relevant scholars can use similar
experimental models or go to the National Cold Rolling Strip
Equipment and Process Engineering Technology Research
Center of Yanshan University to further verify the reliability
of the experimental data.

Table 4: Comparison of models for various input conditions.

Input Model Best accuracy (%) Time (s)
Time domain signals DBN 85.6 5427
Time domain features of vibration signals DBN 82.1 321
Time domain features of all signals DBN 92.5 403
Time domain signals GA-DBN 87.3 5803
Time domain features of vibration signals GA-DBN 85.0 357
Time domain features of all signals GA-DBN 98.3 431
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