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In this paper, an online optimal energy distribution method is proposed for composite power vehicles using BP neural network
velocity prediction. Firstly, the predicted vehicle speed in the future period is obtained via the output of a BP neural network,
where the current vehicle driving state and elapsed vehicle speed information is used as the input./en, according to the predicted
vehicle speed, an energy management method based on model predictive control is proposed, and online real-time power
distribution is carried out through rolling optimization and feedback correction. Cosimulation results under urban drive cycle
show that the proposed method can effectively improve the energy efficiency of composite power sources compared with the
commonly used method with the assumption of prior known driving conditions.

1. Introduction

Zero-emission pure electric clean vehicles, which can ef-
fectively solve the problems of environmental pollution
and resource shortage in the automotive field, are the most
valuable and significant research direction at present [1–4].
/e current problems of pure electric vehicles are as fol-
lows. Firstly, the power battery as a single power source
cannot meet the endurance requirements and power
performance requirements of electric vehicles, especially
under acceleration and climbing conditions. Secondly,
frequent charging and discharging will affect the life of the
power battery, and the high power output current will also
cause certain damage to the power battery and affect the
working life. In addition, pure electric vehicle with single
power source cannot recover regenerative braking energy,
which leads to partial energy loss and reduces energy
utilization. /erefore, it is necessary to find an auxiliary
energy source with high specific power to improve the
power performance and energy utilization of pure electric
vehicles.

Supercapacitor has the advantages of high power, long
cycle life, and fast charging and discharging speed, but it has
low energy density and weak energy storage capacity [5].
/erefore, the composite power system composed of power
battery and supercapacitor can not only meet the require-
ments of vehicle power performance but also recover
braking energy, increase driving range, and improve energy
efficiency. Unlike electric vehicles with a single power
source, the composite power source involves the power
distribution of two power sources, so it is necessary to design
an optimal control strategy for energy management. /e
current research on energy management strategies of
composite power supplies can be roughly divided into two
categories: rule-based and optimization-based energy
management control strategies. /e rule-based energy
management control strategy is mainly divided into logic
threshold control based on deterministic rules [6] and fuzzy
control based on fuzzy rules [7]. Its obvious advantage is that
the control rules are simple and easy to implement, but it
relies on engineering experience to set rules, which is dif-
ficult to adapt to the real-time changes of different driving
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conditions, and cannot give full play to the advantages of
composite power system. /e optimization-based energy
management control strategy uses global optimization
[8–10] and instantaneous optimization [11–13] to obtain the
optimal solution according to the selected objective function
and corresponding constraints. Dynamic programming al-
gorithm based on optimal control theory and recursive
thought is considered to be a more effective method [14, 15].
However, the optimal control decision can only be obtained
offline when the information of vehicle state and driving
condition is fully known, which cannot be solved online.
Model predictive control [16] searches for the optimal
control sequence in the finite time domain at each sampling
instant, which makes it possible to achieve the online op-
timal solution. However, this method largely relies on ef-
fective prediction of future vehicle speed.

/ere are mainly two kinds of speed prediction methods.
One is to use some kind of prediction algorithm, such as
exponential prediction [17] and random prediction [18],
which requires an accurate mathematical model; the other is
to predict the future vehicle speed with the help of vehicle
navigation system [19] or identifying the repeated working
conditions of special working vehicles [20], which needs the
help of GPS system or prior driving condition information
and is not suitable for off-road vehicles without positioning
system and perception radar. /e back propagation (BP)
neural network algorithm is a multilayer feedforward net-
work trained according to error back propagation algorithm
and is one of the most widely applied neural network models
[21]. BP neural network can learn and store the mapping
relationship of various input-output models, which is very
suitable for vehicle speed prediction. /is paper presents an
intelligent model prediction energy management method
based on BP neural network velocity prediction. Firstly, the
BP neural networkmodel is used to predict the future vehicle
speed accurately. /en, based on the principle of model
predictive control, the optimal control quantity at each
moment is obtained through rolling optimization and
feedback regulation, so as to achieve the instantaneous
optimal distribution of composite power system. Finally,
simulation results from the whole composite power vehicles
model obtained by integrating the composite power
Simulink model into the ADVISOR verify the improved
performance compared with the commonly used method.

/e remainder of this paper is organized as follows. In
Section 2, the composite power vehicle model is given. /e
proposed online optimal power distribution strategy of
composite power vehicles is introduced in Section 3. Sim-
ulation model and the simulation results of the proposed
approach based on the whole vehicle model from advisor are
also analyzed in Section 4. Finally, the conclusions are drawn
in Section 5.

2. Modeling of Composite Power Vehicles

Considering the weight, initial cost, energy efficiency, and
control strategy implementation, the composite power to-
pological structure, as shown in Figure 1, is selected in this
paper. /e lithium battery pack as the main energy source of

composite power supply system is directly connected with
the DC bus. Meanwhile, the supercapacitor bank is con-
nected in series with DC/DC and then connected to the DC
bus in parallel with the power battery pack. /e above
structure not only enables the power battery to respond to
the energy demand of the load in time but also makes the
transient performance of the supercapacitor connected in
series with the DC/DC converter easier to control, thereby
greatly improving the energy conversion efficiency of the
composite power supply system.

After the topological structure of the composite power
supply system is determined, it is necessary to match the
design of the series or parallel number of power battery
packs and the capacity of the supercapacitor group
according to the vehicle system parameters, as shown in
Table 1.

/e rated voltage of the motor selected in this paper is
384V; according to the characteristics of vehicle lithium
battery, the series number of lithium battery can be calcu-
lated as

Nb �
UM

Ub

, (1)

where Nb is the series number of lithium batteries, UM is the
rated voltage of the motor, and Ub is the voltage of single
lithium battery. If the rated voltage of lithium battery is
selected as 2.2V, then we have Nb � 172. Considering that
the internal resistance increases when the battery declines,
the number of units in series is taken as 180.

/e capacity of lithium batteries can determine the
number of lithium batteries in parallel. For the determi-
nation of battery capacity, the driving range requirements of
the vehicle are mainly considered./e calculation formula is
as follows:

s �
W · v

Pm · η
, (2)

where s is the driving range of the electric vehicle, W is the
energy stored in the battery, v is the driving speed of the
vehicle, Pm is the power required for constant speed driving
of the vehicle, and η is the efficiency of the transmission
system.

/e calculation formula of battery energy is written as

W � Qe · Ue · Nb · ηdod, (3)

where Qe is the rated capacity of battery cell, Ue is the rated
voltage of single battery, Nb is the number of battery cells,

Lithium battery pack DC bus

Super capacitor DC/DC

Figure 1: Composite power topological structure.
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and ηdod is the discharge depth, which is determined
according to the characteristics of the selected battery; here,
we have ηdod � 80%.

/e rated capacity of lithium battery selected in this
paper is 10Ah, and other parameters have been determined
in the previous introduction, so the number of parallel
connections required is 6. /at is to say, the matching result
of power batteries in this paper is 180 single batteries in
series and 6 batteries in parallel.

/e parameter matching of supercapacitor should be
considered from two aspects: braking energy recovery and peak
power of vehicle during driving. /e parameter configuration
of supercapacitor should meet the following formula:

Eu �
1
2
NuCu U

2
u max − U

2
u min􏼐 􏼑,

Eu ≥ Pmax − Pa( 􏼁 · T,

(4)

where Nu is the series number of supercapacitors, Cu is the
capacity of supercapacitor unit, Uu max is the maximum
voltage of supercapacitor unit, Uu min is the minimum
voltage of supercapacitor unit, Pmax is the peak power of
vehicle driving process, Pa is the average power of vehicle
driving process, and T is the duration of peak output power.

In this paper, the rated voltage of supercapacitor is 2.7 V,
and the rated capacity of monomer is 9500 F. /e series
connection of supercapacitor is 180, and the number of
parallel connections of supercapacitor is 2, which can meet
the maximum energy demand.

After the parameter calculation of each part, the whole
vehicle model can be established in the ADVISOR software,
as shown in Figure 2. In this model, the power required by
the cycle is transferred to the power bus module through the
vehicle module, wheel module, main reducer module,
transmission module, and motor controller module. /e
power required by the bus is provided by the composite
power supply through the energy management strategy.

After setting all vehicle parameters and vehicle simu-
lation cycle conditions, the secondary development based on
ADVISOR software is completed. Click the “run” button to
enter the simulation output interface to view and analyze the
simulation results. /e simulation output interface of

ADVISORmainly includes simulation result output window
of each component, output window of vehicle energy uti-
lization result, acceleration and climbing test result output
window, energy utilization window, and output result
drawing window. For the composite power electric vehicle, it
is necessary to check the output of simulation results of each
component, which is generally the curve of vehicle speed
following the driving condition, the change curve of battery
SOC and current, and the change curve of torque out of
composite power, as shown in Figure 3.

3. Online Optimal Energy Distribution
Strategy of Composite Power Vehicles

/emain purpose of the energy management strategy of the
composite power bus is to reasonably distribute the output
power of the two power sources online, which can not only
meet the power performance requirements of the vehicle but
also ensure that the lithium battery works in the appropriate
working area and avoid overcharge and over discharge. In
this paper, the real-time optimization of power allocation is
based on model predictive control method. Consider the
following control system model:

_x � f(x, u, v),

y � g(x, u, v),
􏼨 (5)

where x is the SOC of the supercapacitor, the output power
of lithium is selected as the control input u, v is the velocity,
the system output y � SOCb SOCu􏼂 􏼃

T, SOCb is the state
charge of battery, and SOCu is the state charge of capacitor.

At each sampling time k, the optimal objective function
in the prediction time domain is

J � 􏽚
k+P

k
wb SOCb(t) − SOC0( 􏼁

2
+ wu SOCu(t) − SOC1( 􏼁

2
􏼐 􏼑 dt, (6)

where wb and wu are the weight coefficients of the corre-
sponding item, respectively, SOC0 is the SOC reference value
of power, SOC1 is the SOC reference value of supercapacitor,
and P is the prediction time domain.

/e constrained inequality equation of the optimization
problem is as follows:

Table 1: /e parameters of composite power vehicle.

Vehicle parameters
Full load mass 18000 kg Rolling radius 478mm
Curb weight 12000 kg Centroid height 1307mm
Distance (centroid to front axle) 3846mm Rolling resistance coefficient 0.012
Drive ratio 6.2 Air drag coefficient 0.55
Wheelbase 5950mm Windward area 8.7m2

Corresponding power demand for vehicle performance index
Maximum speed Maximum gradient Acceleration performance

Dynamic performance index 70 km/h 18% and 12 km/h 0–50 km/h–20 s
Motor power demand 74 kW 122 kW 128 kW

Permanent magnet synchronous motor performance parameters
Maximum power 150 kW Maximum torque 3300 nm
Maximum speed 2600 r/min Rated voltage 384V
Rated current 200A Pole pair number 2
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Ibmin ≤ Ib(t)≪ Ibmax,

Iumin ≤ Iu(t)≪ Iumax,

SOCbmin ≤ SOCb(t)≤ SOCbmax,

SOCumin ≤ SOCu(t)≤ SOCumax,

Pbmin ≤Pb(t)≤Pbmax,

Pumin ≤Pu(t)≤Pumax,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where Ibmin and Ibmax are the minimum and maximum of
the battery charging and discharging current, respectively,
Iumin and Iumax are the minimum and maximum of the
capacitor charging and discharging current, respectively,
SOCbmin and SOCumin are the minimum of the SOC of
battery and capacitor, respectively, Pbmin and Pbmax are the
minimum and maximum power of the battery, respectively,
and Pumin and Pumax are the minimum and maximum
power of the capacitor, respectively.

/e system model is discretized when solving the op-
timization problem, because of the prediction time domain
is short, and the feasible area of SOC is small at every time.
Dynamic programming algorithm can be used to solve

optimization problems online and in real time. Assuming
that U∗(k) � [u∗(k), . . . , u∗(k + P − 1)] is the sequence of
optimal control variables in the prediction time domain, the
control variable adopted by the system at the current time is

u(x(k)) � u
∗
(k). (8)

/e core idea of predictive control is to solve an opti-
mization problem in the finite prediction time domain at
each sampling time and calculate the optimal control se-
quence in the prediction time domain, but only implement
the optimal control at the sampling time and discard other
control variables, and then repeat the process at the next
sampling time. In order to overcome the problem existing in
energy management strategy which needs to know the whole
cycle in advance, we proposed an energy management
method based on BP neural network speed prediction which
can predict the future speed of the working condition
through the neural network model. /e model predictive
algorithm is solved by rolling optimization to obtain the
optimal control quantity, improve the energy utilization
efficiency of the composite power system, and realize the
optimization of energy management.
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Figure 3: Simulation results from ADVISOR.
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/e energy management method of composite power
supply based on neural network speed prediction, as shown
in Figure 4, comprises the following steps.

Step 1: according to the historical speed information
and the current driving state of the vehicle, a neural
network speed prediction model, as shown in Figure 5,
is established to obtain the predicted speed of time K in
the future;
Generally speaking, the three-layer BP neural network
has met the learning requirements of most nonlinear
systems./e three-layer structure of BP neural network
is shown in Figure 5. /e first layer is the input layer,
which mainly undertakes the task of receiving data
input; the second layer is the hidden layer, which is
composed of neurons and activation functions to de-
scribe the input-output mapping relationship; the third
layer is the output layer, which is used to generate
specific information of output data. /e activation
function of BP neural network is hyperbolic tangent
S-type function, which is defined as follows:

n � W + y0 + b,

y � tan sig(n) �
1 − e

− 2n

1 + e
−2n

,

(9)

where n is the cumulative output, y0 is the input layer
neuron output, y is the hidden layer neuron output, W

is the weight value, and b is the bias value. /e main
disadvantage of BP neural network is that the con-
vergence speed of sample training is slow, and local
minimum may appear.
Before the speed prediction of BP neural network,
network training should be carried out first, and the
optimal weight and threshold value can be obtained
through network training. In this paper, the above-
mentioned urban congestion driving conditions
(NYCC) and urban unimpeded driving conditions
(UDDS), as shown in Figure 6, are selected as training
samples. At each sampling time of the cycle, the
characteristic parameters of the driving cycle in the past
10 s are calculated. /rough the experimental analysis,
five characteristic parameters which can distinguish the
two driving cycles are selected as part of the prediction
model input, such that average speed is v(m/s),
maximum speed vmax(m/s), maximum acceleration
amax(m/s2), standard deviation of vehicle speed
fv(km/h), and idle time ratio Pi.
/e speed in the past period is taken as a part of the BP
neural network model input, such that

Nin � v, vmax, amax, fv, Pi, vk, vk−1, . . . , vk−Hh
, (10)

where v represents the average speed, vmax represents
the maximum speed, amax represents the maximum
acceleration, fv represents the standard deviation of
vehicle speed, Pi represents the proportion of idle time,
Hh is the length of historical vehicle number vector,

and vk, vk−1, . . . , vk−Hh
is the vehicle speed at each time,

respectively.
/e output of BP neural network model which rep-
resents the predicted speed in a period of time in the
future is expressed as

Nout � vk+1, vk+2, . . . , vk+P. (11)

After the overall structure and input/output are de-
termined, the BP neural network can be trained. /e
typical urban road conditions are selected for speed
prediction. /e number of hidden layer neurons is
selected as 50, and the training algorithm is trainscg
with fixed variable ratio. Figure 7 shows the speed
prediction results and speed error of BP neural net-
work. Figure 8 shows the change of mean square error
during training. Figure 9 shows the fitting result of BP
neural network corresponding data measured by re-
gression line. As can be seen from the training results,
the speed predictionmethod proposed in this paper can
accurately predict the speed.
Step 2: according to the predicted speed obtained in
step 1, the required power of the motor is calculated;

Drive cycle

Vehicle speed prediction based on
BP neural network

Solving optimization problems in
the prediction time domain

Apply the first component of the
obtained optimal control sequence

to the system

Actual vehicle speed and
acceleration at time K

k → k + 1
Output

Figure 4: Energy management strategy flow chart.
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Figure 5: Topology of BP neural network.
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Step 3: according to the power demand in step 2, the
model predictive control algorithm is used to solve the
optimal control sequence in time domain from K time;

Step 4: the first control variable of the optimal control
sequence obtained in step 3 is applied to the vehicle
system to correct the predicted value at the next
moment;
Step 5: repeat the operation process of step 4 at the time
of K+ 1 until the optimal control quantity of the whole
system is obtained.

4. Cosimulation between ADVISOR
and MATLAB/Simulink

In order to verify the effectiveness of the optimal power
distribution method proposed for composite power vehicles
using BP neural network velocity prediction, the ADVISOR
vehicle simulator was used to conduct simulation analysis
combined with the MATLAB/Simulink environment. /e
sampling interval was set as 1 s, and the time domain was
predicted to be 5 s. /e initial condition of battery SOC and
supercapacitor SOC was in full state. Simulation results of
the proposed control strategy under typical road conditions
are shown in Figures 10–12.

It can be seen from Figures 10–12 that both lithium
battery and supercapacitor have energy consumption and
braking energy recovery. Meanwhile, the battery SOC curve
drops smoothly, and the energy consumption is relatively
small. Supercapacitor has more braking energy recovery,
which can prevent the battery from large current output and
ensure the service life of the battery. At the same time, the
proposed optimal power distribution method can improve
the energy utilization efficiency of the composite power
supply system.

In order to further illustrate the effectiveness of the
optimal power distribution strategy proposed in this article,
we also give the compared simulation results of other three
commonly used control strategies such as rule-based logic
threshold [5], fuzzy control [6], and dynamic programming
(DP) [13]. /e comparison results are shown in Figures 13
and 14.

It can be seen from Figures 13 and 14 that the SOC
consumption curve of the battery under the proposed
method based on BP speed prediction is relatively flat, and
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the energy consumption is similar to the result of the dy-
namic programming algorithm and is lower than the rule-
based logic threshold control and fuzzy control. /e SOC
curve of supercapacitor fluctuates greatly, which can provide

large current output and more braking energy recovery. At
the same time, notice that the SOC consumption curve of the
supercapacitor under each control strategy does not vary
greatly. /is is because the total energy of the composite
power supply is calculated and matched according to the
total cruising range of the passenger car, and the simulation
working condition is only 1304 s in a typical city driving
cycle./is will cause the power battery and supercapacitor to
remain in a high SOC state, but the control effect can still be
analyzed according to the specific numerical conditions.

In order to further compare the control effects of dif-
ferent control strategies, the total energy consumption is
compared. It can be seen from Table 2 that the total energy
consumption of the dynamic programming algorithm using
global optimization is the smallest, the total energy con-
sumption of using the rule-based energy management
strategy is the largest, and the fuzzy control algorithm is the
second. However, the dynamic programming algorithm can
only obtain the optimal distribution rate of the composite
power system through offline calculation when the entire
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driving cycle conditions are known and cannot be imple-
mented online and in real time. /e total energy con-
sumption of the proposed online optimal power distribution
method based on BP speed prediction can not only reach a
level close to that of the dynamic programming algorithm
but also can be implemented online for practical application.

5. Conclusions

/is paper proposes an online optimal energy distribution
method of the composite power supply composed of lithium
battery and supercapacitor for electric buses. /e compared
simulation results show that the proposed method can
achieve the optimal energy distribution between lithium
battery and supercapacitor based on the online prediction of
future driving speed and do not require the assumption of
prior known driving conditions in the general dynamic
programming method, which is more convenient for
practical application.
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