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In this paper, a two-delay HIV-1 virus model with delay-dependent parameters is considered. The model includes both virus-
to-cell and cell-to-cell transmissions. Firstly, immune-inactivated reproduction rate R, and immune-activated reproduction
rate R, are deduced. When R, > 1, the system has the unique positive equilibrium E*. The local stability of the positive
equilibrium and the existence of Hopf bifurcation are obtained by analyzing the characteristic equation at the positive
equilibrium with the time delay as the bifurcation parameter and four different cases. Besides, we obtain the direction and
stability of the Hopf bifurcation by using the center manifold theorem and the normal form theory. Finally, the theoretical

results are validated by numerical simulation.

1. Introduction

AIDS is a very dangerous infectious disease caused by HIV-1
virus which attacks the human immune system. At present,
it has been proved that there are two different mechanisms
for the spread of HIV-1 virus in the host: virus-cell trans-
mission and cell-cell transmission [1]. A great number of
studies have considered the above two contagion mecha-
nisms [1-5]. Wang and Zou [4] considered an HIV-I model
with humoral immunity, which is a typical virus-to-cell
transmissions. In 2017, Lin et al. [5] proposed a cell-to-cell
transmission model and described global threshold dy-
namics of the model.

In recent years, delay differential equation has
attracted extensive attention worldwide. It has important
applications in many fields such as physics, information,
economy, and biomathematics. Depending on the

different circumstances, many differential equation
models with single delay or multiple delays have been
proposed and studied deeply [4, 6-10]. Dong et al. [6]
studied the dynamics of the tumor immune system in-
teraction model and investigated the existence of Hopf
bifurcation with two time delays as bifurcation parame-
ters. In [7], the authors discussed the influence of
awareness coverage and time delays on infectious diseases
and found that the endemic equilibrium existed a Hopf
bifurcation in both delayed and nondelayed system. A
two-delay model with Holling II functional response and
stage structure is considered in [8]. The authors have
investigated a predator-prey model with a class of Bed-
dington-DeAngelis functional response and two delays in
[9]. Recently, in [10], a two-delay HIV-1 virus model with
virus-to-cell and cell-to-cell transmission is considered as
follows:
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[ dx(t) x(t)
0 rx(t)<1 _xM) B (tt)
—Box (B)y (1),
dy (t
% =Brax(t-1)v(t-1,)
) (1)

+Hhyax(t —7,)y(t— 1) —ay (),

O~ ky(0) - w0 - privyz o,
dzy) =cv(t—1,)z(t - 1,) - bz (1),

where x(t), y(t),v(t), and z(t) represent the susceptible
cells, infected cells, virus, and B cells, respectively. x,, is
the number of carrying target cells. ; and 8, denote
infection rates of virus-to-cell transmission and cell-to-
cell transmission. » and b are the growth and death rate of
susceptible cells. a and u stand for the mortality rates of
infected cells and virus, respectively. k is the number of
free virus particles produced by per infected cell. « is the
surviving probability the time period from ¢ -1, to t.
pv(t)z(t) describes the virus killed by B cells, and
cv(t)z(t) represents the new B cells produced when
stimulated by antigen. The time delay 7, stands for the
time between virus entering into a cell and producing new
virus or the time between infected cells spreading virus
into uninfected cells and producing new virus. And 7, is
the time that the HIV-1 virus stimulates the production of
B cells.

In [10], the coefficients of equations are considered to be
constants independent of the time delay. The authors in-
vestigated the stability of positive equilibrium and the ex-
istence of Hopf bifurcation. The explicit formula for
determining the direction of Hopf bifurcation and the
stability of bifurcating periodic solutions was derived.
However, in practical situations, virus-cell transmission or
cell-cell transmission is not instantaneous but takes some
time defined by the average evaluation period 7. Moreover,
the growth of virus at ¢ is decided by the number of infected
cells at ¢ — 7 and still alive at ¢. On this occasion, it is in-
appropriate to regard survival rate as a constant. Let m be
death rate of infected cells, then the survival rate is e from
t — 7 to t. Adding time delays to parameters is helpful to
further explore the complex dynamic behavior of delay
differential equations and their generation mechanism.
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Based on Sun and Li'work, considering that the two con-
tagion processes are not instantaneous and the probability of
cell survival is proportional to the number of cells that can
survive to time t at t — 7;, we propose the following delay
model:

dx(t)
dt

rx(t)(l - ﬂ) = Bix(@®)v(t) = Bx (t)y (1),

XM

dy(t -mt
VO _ e mv(e-m)

1 +Bae "k (t—1)y(t—1,) —ay(t),

dl;it) =ky(t) —uv(t) - pv(D)z(t),
dfiit) =cv(t—1,)z(t - 1,) - bz (b),

(2)

where e”™" is the probability of surviving the time period
from t — 7, to t in case m is the death rate of infected but not
yet virus-producing cells.

The initial conditions for system (2) are given as

x(0) = ¢,(0),

y(0) = ¢,(0),

v(0) = ¢5(0),

z(6) = ¢,(6),

8,(6)20, ®
0 € [-71,0),

$;(0) >0,
i=1,2,3,4.

A number of scholars investigate the delay differential
equations with delay-dependent parameters [11, 12]. Song
et al. [11] studied a delayed viral infection model with lytic
immune response. The characteristic equations of the system
are like P, (1, 7) + P, (A, 7)e™** = 0. They discussed the in-
fluence of delay on the stability of the equilibrium and the
local and global asymptotic stability of the disease-free
equilibrium. Li and Ma introduced a method for deter-
mining the stability of the characteristic equations P, (A, 7) +
P, (A, 1)e™* + P, (A, 7)e” " = 0 with delay-dependent pa-
rameters in [13]. Reference [14] presented a practical geo-
metric method to study the stability switching properties of
the characteristic equation
Py(A, 1)) + P, (A, 1))e " + P, (A, 7)e M) =0 which
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may result from a stability analysis of a model with two time
delays and delay-dependent parameters that depend only on
one of the time delay. Jiang and Guo [15] studied a model
with double delays and a delay-dependent parameter con-
sidering the interaction between nutrients and plankton. The
authors took the time delay as the parameter to carry out the
dynamic analysis of the system, including the equilibrium
stability and Hopf bifurcation existence by using the method
in [14].

This paper’s goal is to delve into the local stability and
Hopf bifurcation analysis of a two-delay HIV-1 virus model
with delay-dependent parameters. The luminescent spots are
as follows: (1) in this paper, two different spreads of HIV-1
virus are studied, and we will introduce time delay into the
coeflicients to be more realistic; (2) the conditions of the
local stability of positive equilibrium and the existence of
Hopf bifurcation are discussed with the time delay as the
bifurcation parameters; and (3) the characteristic equation is
Py(L, 1)+ P, (A, 1)e ¥ + P, (A, 7)e" " =0 when
T, = T, = T, and the stability is determined by the geometric
stability switch criterion [13, 14]; and (4) the influences of
different delay values on system stability are investigated.

The rest of this paper is organized as follows. In Section
2, the existence of equilibrium is given. By analyzing the
characteristic equation, we discuss the stability of the pos-
itive equilibrium and existence of Hopf bifurcation in four
different cases. In Section 3, we consider 7, as a parameter
and determine the direction and stability of Hopf bifurcation
by using the center manifold theorem and the normal form
theory. In Section 4, we perform numerical simulations to
illustrate our results. Finally, the conclusions of the paper are
given in Section 5.

2. Stability of the Positive Equilibrium and
Existence of Hopf Bifurcation

Similar to [10], we can derive immune-inactivated repro-
duction rate Ry = ((kf; + upf,)/au)x,e”™" and immune-

P Bobxyz (1) + [ackrpe™ + By pxyy (—ckr + 2kbpB, + 2ubpB,)]z (t)

activated reproduction rate R, = ckrx,; (kB, + uf3,)/ (x,
(kBy +upf,) (kbB, +ubB,) + ckraue™) = Ry/(1 + b(kp,
+uf3,) Ry/ckr), and then the equilibria of system (2) are as
follows:

(i) Ry <Ry <1, then system (2) only has an infection-
free equilibrium E; = (x,,,0,0,0).

(ii) R; <1 <R, then system (2) has a no-immune re-
sponse equilibrium E, = (x;, y;,v;,0) except for

E,, where
o = aue™"
b kB, + up,’
LA R (@)
M= kB, +up, R,/

_L l—i
TR rup\ Ry)

(iif) 1 <R; <R, then system (2) has an immunity-ac-
tivated equilibrium E* = (x*, y*,v*,z*) except for
E, and E,, where
o= a(ub + pbz")e™
 kbp, + B,y (ub + pbz*Y

® _ub+pbz* (5)
ok

and z* is a positive, real root of the following
quadratic equation:

(6)

+[xp (KB, + upf,) (kb + ubpB,) + ckraue™ ] (1 - R,) = 0.
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The characteristic equation of system (2) at E(x, y,v,z)  where

is

that is,

where

det(M - A—Be ™" —Ce ') =, (7)
P pw-py B B 0\ say an an 0
A\ 0 w0 o | 0@ 0]
0 k —u-pz —pv 0 as as; asy
0 0 0 b 0 0 0 ay
0 0 0 0 0 0 0O
B Bie " v+ oy BremMx Bre™x 0 s by by, by O
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0O
000 O 00 0 O
000 O 00 0 O
C= s
000 O 00 0 O
00 czcy 0 0 cy3 cyy

M+ ALV + AV + AL+ A, +(Bl)\3 +B,\* +BA + B4)e_)”l +(C1)L3 +CA +CA + Czl)e_”2

+(DyA* + Dy + D3)e"A(Tl+TZ) =0,

Ay =—(ay; +ay +as; +ay),

Ay =110y, + 411033 + A11044 + 0033 + Ayl + A3304,
Ay = —(a1102033 + 0118504 + 011033044 + Ay033044),
Ay = a11050330y,

By = -by,

B, = ay by, — ayyby) — asbys + assby, + agyby,,

By = ay1a3,by3 — 4110330y, + a1,a330y1 — a13a3,0y) — 110440, + 01,0445 +A3,a44by5 — a33a44b5),

By = —a,1a3,044by3 + G11033044b; — A12033044D5) + 31303504415
C1 = =44, Cy = ay1Cyq + ApCyy + A33C4 — A34Cy3

Cs = =a1105)Cqq = A11A33C4y + A11A34C43 = A033C4y + A034Cy3
Cy = 41898334, = G1102034C43, D) = byyCyy,

D, = —ay1byycyy + a13by1C4y + A33053C44 — A33b55C44 + A34b55C45

Dy = —ay13,0y5044 + a11a3305C44 — 011034055043 — Q15033051 Cay + 01503405145 + A1305,051 €4y

(8)

©)

(10)
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Then, the local stability of the positive equilibrium E*
and the existence of local Hopf bifurcation are discussed in

Case 1. 7, =0,7, =0.

Equation (9) at the equilibrium E* (x*, y*,v*,z") re-

the following four cases. duces to
M4+ (A +B +COV + (A, + B, +C, + DOV + (A3 + By + C3 + Dy)A+ Ay + B, + C, + D, = 0. (11)
Let
(H{)R, > 1,

(H))A, = A, +B +C,; >0,

Ay =(A+B,+C,)(A,+B,+C, + D;) — (A3 + By + C3 + D,) >0,

Ay=(A+B,+C))[(Ay+B,+C,+D;)(A; +B; +C;+ D,) — (A, + B, + C,) (A4 + B, + C, + D5)]

—(A; +B; +C; + D,)* >0,
Ay=A;+B,+C,+D;>0.

From the Routh-Hurwitz criterion, we have the fol-
lowing theorem.

Theorem 1. If (H,) and (H,) hold, the positive equilibrium
E* is locally asymptotically stable for 1, = 0and 1, = 0.

(12)

Case 2. 7,>0and 7, =0.
The characteristic equation of system (2) is

M+ (A +COV + (A, + GOV + (A + C)A + A, +Cy + [Bl)t3 +(By + D))\’ + (By + D,)A + B, + D3]e_}”1 =0. (13)

Denote
F =A +C,,
F,=A,+C,,
Fy;=A;+C;,
F,=A,+C,,
4 4 4 (14)
G, =By,
G, =B, + Dy,
G; =B;+D,,
G, = B, + D;,
then equation (13) is reduced to
P, 1) +QA1)e ™ =0, (15)

where P 1) =" +F\°
+F,A* + F,A+ F,andQ(A, 1,) = G,A° + G,A? + G54 + G,
Denote 7., = (1/m)n(x,, (kB +up,) (ckr — kb, -
ubf,)/ckrau) and I ={0< 1< 7y, thereisw (1) >
Osuchthat F(w, ) = 0}. According to the geometrical

criterion established by Beretta and Kuang [16], we can
easily verify the following conditions for w >0, 7, € I:

(@) P(0,7) +Q(0,7)) = F, + G, #0.
(b) P(iw, 7,) + Q(iw, 1)) = w!- (F, +G,)w* + F +
- [(F, + G)w?® = (F5 + Gy)iw + Gyw]i 0.
(c) hml —oo|l QA 1) P(A,1y)| = l1m|)t_)00||(G1
GA + GA +G )/ (A + F N+ FyA2 + Fbt F)[°2
)Lllmgkg,od(G 1k + G,k + Gk + G4k4)/(1 +Fk +
+ Fk° + F4k4)| =
(d) IP(lw,T)I —w + (F} —2F) w° + (F; +2F, ~
2F F3)w + (F - 2F F4) w +F4, IQ(zw,Tl)I = G
®+ (G -2G G3)a) + (G —2G2 48)60 +G4, F(w,
Tl) |P(zw T1)| - Q(iw, T1)| = w + (F —2F2
G)w +(F +2F4 2FF3 G + 2GG3)w+ (F
- 2F,F, G +2G,G,)w + F G

We can get easily F(w, 7;) has finite roots.

1/)L

(f) Each positive root w(t,) of F(w, ;) =0 is contin-
uous and differentiable.

Let A = iw(w > 0) be a root of equation (15) and separate
the real and imaginary parts, then we get
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w' - F,0* +F, = —(G4 - szz)cos(w‘rl) +(G1w - G3a))sin (wty),
16
~F,0’ + F30 = (G4 - szz)sin (wty) +(G1w3 - G3w)cos(wrl). (19
Then, we can obtain
cos (wr,) = (w4 - F2w2 + F4)(G2w2 - G4) +(F3w -F wS)(G1w3 - G3a)))
(Gw* - G4) +(Gyw’ - G3a))
(17)
4 2
sin(wr,) = (w -Fw +F4)(G1w —G3w) (F3w Fw )(sz —G4)
(G,0* - G,)" +(G,0’ - Gyw)’
From (16), it follows that
(w4 -Fw + F4)2 +(—F1w3 + F3a))2 = (G4 - G2w2)2 +<G1w3 - G3w)2, (18)

which is equivalent to F(w, 7;) = 0 for (15). Denote h = w?,
then we have F(w, ;) = G(h, ;) = 0. Therefore, equation
(13) has a pair of pure imaginary roots +iw; when
7,>0and 7, = 0 if w;] is the positive root of F(w, 7;). Then,
we denote w(r)1; = 0(1)) + 2n70 and
S, (1) =1, - (0(1)) + 2nm)/w(7,). Hence, iw] is a pure
imaginary root of equation (13) if and only if 7} is a zero of
S, (1,). We introduce the following theorem [16].

Theorem 2. Assume that S, (1}) = 0 have some positive roots
7} € I for somen € N. Then, a pair of simple pure imaginary

roots tiw, (1) exists which crosses the imaginary axis from
left to right if §(77) >0 and crosses the imaginary axis from
right to left if §(17) <0, where

* . i * * . dSn T
8(ry) = s1gn{le (@ (77)s Tl)}51gn{ d-l(—l 1)|71=T1‘}'

(19)

Since OF (w;,7,)/0w; = 2w, (0G (w},,)/0w,), equation
(19) is equivalent to

. dRe (A . oG . ds,
ﬂgn{%h iw, (7 )} = Slgn{zwl(a—wl)(w?’ Tl)} X Slgn{ d_l(_;rl)|11—ﬁ}' (20)

Next, we can easily get S, (0)<0and S, (7;)(n € N)isa
monotonic increasing function for all 7, € I. If S; has no
positive root in I, then S, also does not have positive root in
I. And if S, (7,) has a positive root 7, € I for some n € N,
then there is at least one positive root which satisfies
(dS,, (7y)/d7,) (1) > 0. We introduce the Hopf bifurcation
theorem:

Theorem 3. A single parameter system of form x, = F(a, x,)
where F («, ¢) has continuous first and second derivatives for
a € R,¢ € C. Define L: RxC — R"as L(a)y = Fy(a,0)y,
where F (a,0) is the derivation of F (a, ) with respect to ¢ at
¢ =0, and define f(a,¢) = F(a,¢) — L(a)¢. There are two
hypotheses:

(i) The linear differential equation (L(0)) has a pure
imaginary characteristic root Ay = iw, # 0 and none of
the other roots are multiples of iw,

(ii) Re (A’ (0)) £0

The hypotheses (i) and (ii) imply that there are non-
constant periodic solutions, and a Hopf bifurcation occurs.

From all above analysis, we have the following theorem.

Theorem 4. Assume that R, > 1 holds, then
(i) If Sy (1) has no positive root in I, E* is locally as-
ymptotically stable for all T, >0

(ii) If S, (1,) has at least one positive root in I, there exists
7} such that E* is locally asymptotically stable for all
€ [0, 17]
(iii) If (ii) holds and OF,/0w, (w?(7}),7})>0, a Hopf
bifurcation occurs at E* for 1, = 1}

Case 3. 1, =1, =T1.
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Denote Py(A, 7) = A* + A0 + A,0%+ AL+ A, P (M, T)
= (B, +C)A + (B, + C)A* + (B3 + Cy)A + (B, +Cy), P,
(A, 1) = D,A* + DA+ D3, then equation (9) reduces to

Py(L7)+P (L, De "+ P, (A, n)e P = 0. (21)

Obviously, P;(A,1),1=0,1,2, is a polynomial with A,
and its coefficients depend on 7. Next, we discuss the ex-
istence of pure imaginary roots of (21) by using the method
introduced in [17].

Let 7€ [0, Ty
conditions:

), we need to verify the following

R(w,7) = |P0 (iw, T)|2 - |P2 (iw, T)|2,
S(w, 1)
T(w, )

(f) Each positive root w () of F (w, T) = 0 is continuous
and differentiable in 7 whenever it exists

Next, we verify the above six conditions.

(a) It is obviously satisfied.

(b) P,(0,7) + P, (0,7) + P,(0,7) = A, + B, + C4 + D,
according to (H,), P, (0,7) + P, (0,7) + P,(0,7) > 0.

(c) Py (iw,T) + P, (iw, 1) + P, (iw,7) = w*— (A, + B, +
C,+D))w? + A, +B,+C,+ Dy + iw[-(A;+ B+
C,) w* + Ay + By +C5 + D,] #0.

(d) limyy o |P; (A, 7)/Py (A, 7)[+ [Py (A,7) /| Py(A,7)| =
limp o [[(By+C A’ + (B, +C,) A2+ (B +C3)A+
B,+C,l/ (A + AL + A 07+ A+ A+ (DA* +D,
A +Dy)/ (A AL + AZ)L2+A3/\+A4)|) 0.

(&) P, (iw, 1) = (w* - zw +A)+ (A, 0= A0 Py
(zw 7) = [- (B, +C2)w + (B4+C4)] +[-(B; +C))

7
(a) deg (P, (A, 1)) > max{deg (P, (A, 7),deg (P, (A, 1)}
(b) Py(0,7) + P, (0,7) + P,(0,7) #0
(c) If A =iw,w € R, then

P, (iw,7) + P, (iw, 7) + P, (iw, 7) #0, 7 € R
(d) limy_,,|P, (A, T)/Py (A, T)| + [P, (A, 7)/Py (A, T)| < 1

(e) F(w,7) = R?(w,7) - T*(w, 1) — $*(w, ) = 0 for
each 7 has at most a finite number of real zeros where

=Re (P, (iw, 7)) [Im (P, (iw, 7)) + Im (P, (iw, 7))] - Im (P, (iw, 7)) [Re (P, (iw, 7)) + Re (P, (iw, 7))], (22)
= Re (P, (iw, 7))[Re(P, (iw, 7)) — Re(P, (iw, 7))] + Im (P, (iw, 7)) [Im (P, (iw, 7)) — Im (P, (iw, 7))].

W’ + (B, +C3w]z, Pz(zw T) = —(Dlw + D;) +D2
wlR(wT) (0 —A2w+A4) + (As0 - Aw) -
(Dlw + D ) +D w?, S(w,r) [-(B, +C2)w +
(By +Cy)] (A3a) A w + D,w) - [ (By+C )a) +
(B; + C5)w] (0 —Azw +A, - Dla) + D), T(w, T)
=[- (B +C2)w + B, +C4][ (Dlw + D) —(w
—A2w +A)] + (Ayw—Ajw %) [D,w— (A;w —Aw ).
Substituting R(w,1),S(w,7),T(w,7) into F(w,T1)
=R*(w,7) — T*(w,7) - $*(w,7) =0, then we get
this condition holds.

(f) The implicit function theorem shows that this
condition is true.

Assuming that A =
then we have

iw(w>0) is a root of equation (13),

(w4 —Ajiw’ - Ay’ + Ajiw + A4) (cos(w7) +1i sin(w7)) — (B, + C,)iw’ — (B, + C,)w” + (Bs + C3)iw + (B, + C,)

+(—D1w2 + D,iw + D3) (cos(wT) — i sin(wT)) = 0.

Separating the real and imaginary parts, we have

cos (wT) [w4 — (A, + D)) + A, + D3] + sin (w7t) [A1w3 +(D, - A3)w] = (B, +C,)w’
cos (wr) [—A1w3 +(A5+ Dz)w] + sin (wT) [w4 (A4, -D))w* + A, - D3] =

(23)

—(By +Cy),

24
(B, + Cl)w3 - 24

(B; + C3)w.



Therefore, w = w(7) >0 needs to satisty the following
equations:

lw® + 10" + Lo +1 T(w, T)
cos(wt) = —5 > ¢ 6 47 28 = ,
w + ko + ko +ko’ +k, R(w1)
, Lo + Lo’ + Lo + L S(w,7)
sin(wt) = — ¢ 7} 3 = ,
W + k0 + ko' + ko’ +k, R(w,T)
(25)
where
k, = A} - 24A,,

k, =24, + A} - D} —2A,A,,
ky = AZ - D - 2A,A, + 2D, D,
k, = Al - D3,
I, = (B, +Cy),
I,=A,(B,+C,)— (B3 +C3) - (B, +C,) (A, + Dy),
I; = (B, +Cy)(Ay+ D3) + (B; + C3) (A, + Dy) = (B, + Cy)
(A;+D,) - AB,,
I, =(By+Cy) (A5 + D,) — (B; + C5) (A4 + D3),
Is=(B,+C,) - A (B +Cy),
lg=-(B,+C,) + (B, +C;)(A; - D,) - (B, +C,) (A, — Dy)
+ A, (B; +C5),
I, =(B,+C,) (A, - D3) = (By + C3) (A; — D,) + B, (A, - D),
Iy =-(By+C,)(Ay - Dy).
(26)

Equation (25) is equivalent to the condition that w =
w(1)>0 is the root of F(w,7)=R*(w,1)-T*(w,7)-
§?(w, 1) = 0.

From (29), we have
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Let I={1:thereis w(7)>0suchthat F (w,7) =
0}u[0,7,,,), then we denote S,(7)=7-(0(7)+ 2nm)/
w(7),Trel,neN,, where 0(7)€[0,2n]. w(7)T=0(7)+2nm.
Hence, iw* (w* = w (7*) >0) is the pure imaginary root of (21)
and is a necessary and sufficient condition for 7* being the
root of S, (1) =0. We need to introduce the following the-
orem [18].

Theorem 5. Assume that S, (1) = 0 has some positive roots
7 € I for somen € N,,. Then, a pair of simple pure imaginary
roots tiw (7*) exists when T = T* which crosses the imaginary
axis from left to right if §(7*) >0 and crosses the imaginary
axis from right to left if §(7*) <0, where

. . [dRe(})
o(r") = mgn{Th_iw(T*)}

= sign{[R(w (1), T)F (@ (1), T)]l,—,- } x sign{S, (t")}.
(27)

From the above discussion, the following theorem can be
obtained.

Theorem 6. Assume that R, > 1 holds, then

(i) IfI = ¢ or I+ ¢, S, (1) = 0 has no positive root T* € I
and E* is locally asymptotically stable for all
T € [0, Tpay)

(ii) If I # ¢, S, (1) = 0 has at least one positive root T* € I
and § (1*) # 0, E* is locally asymptotically stable when
7€ [0,7*), and a Hopf bifurcation occurs at E* for
T=1"

Case 4. 7, € [0,1]),7,>0,7, # 7,.

In this case, we consider 7, as a parameter and
T, = T}y € [0, Tpay)- Let A = iw(w > 0) be a root of (9), then
we get

(W' - Aw® + A, +(B4 - Bzwz)cos (wty) +(B3w - Blw3)sin (w7y) = [C2w2 -C, —(D3 - Dlwz)cos(wrl) -D,w sin(wrl)]
cos(wT,) + [C1w3 -Cw +(D3 - Dlwz)sin(wrl) - D,w cos (wrl)]sin(wrz),
—AW + Ayw —(B4 - Bzwz)sin (w1y) +(B3w - Blw3)cos (w1)) = [C4 -Gy’ +(D3 - Dlwz)cos (wt,) + D,w sin (wrl)]

| sin(wT,) + [C1w3 -Cw +(D3 - Dlwz)sin(wrl) - D,w cos (wrl)]cos (wT,).

(28)

(w1,) h@® + hyw’ + hyw' + hyw’ + hsw” + hgw + h,
Cos\wT, ) =
’ [10°+ 207 + fr0" + f,0° + 50" + fow+ f;

(29)
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where

h, =C, - A,C, + (D, - B,C;)cos (wT,),

h, = (A,D, - D, - B,C, + B,C, )sin(w1,),

hy = A,C; - C, - A,C, + A,C, + B,D, - B,D, + (-D5 + A, D, — A,D, + B,C; — B,C, + B;C,)cos (wT,),
h, = (A,D, — A,D; - A;D, + B,C, — B,C; + B;C, — B,C,)sin(wt,),

hs = A,Cy — A3Cs + A,C, + B,D; — ByD, + B,D, + (A,D; - A;D, + A,D, + B,C, — B;C; + B,C,)cos (wt,),
he = (A;D3 — A,D, — B;C, + B,C;)sin (wT,),

h, = -A,C, - ByD; — (A,D; + B,C,)cos (wT,),

fi= C%’

f, =-2C, Dy sin(wt,),

f5 =C3-2C,C, + D} +(2C,D, - 2C, D, )cos (wt,),

f4=(2C,D; -2C,D, +2C;D, )sin(w1,),

f5=-2C,C, + C3 + D5 = 2D, D, + (2C3D, — 2C,D; — 2C,D, )cos (wr, ),

fs =(2C,D, - 2C;D5)sin (wr,),

f, = Ci + D} +2C,D; cos (wr,)).

(30)

We can also get where

F(w)20®+1,0° + Lo + L + I, + I sin (wT,) (31)
+Igcos(wty) =0,

I, = -24, + A} -C} + B},

I,=2A, + B, - D} + Al —C; - 2A,A; - 2B,B; + 2C,C;,

I, = B: - D} + A2 - C: - 2A,A, - 2B,B, + 2C,C, + 2D, D;,

I,=B,-D}+Al-Cj,

Is = -2B,w +(2B; — 2A,B, + 2A,B, + 2C,D,)w’ + (2A,B, - 2A,B; + 2A,B, - 2A,B, + 2C,D, - 2C;D, - 2C,D;)w’
+(2A,B; — 2A;B, + 2C3D; — 2C,D,)w,

I = (2B, + 2A,B))w’® + (2B, + 2A,B, — 2C,D, — 2A,B; — 2A;B, + 2C,D,)w"

+(2A;B; - 2C;D, — 2A,B, — 2A,B, + 2C,D, + 2C,D;)w’ + 2A,B, - 2C, D,

If Bi-D?+A2-C3-2A,B,-2C,D;<0, then eight positive real roots of (31) which are w},w},...,w;.
F(0)<0 and lim, , F(w) — + co. We obtain that (31) According to (29), we have
has at least one positive real root. Suppose that there are

oy 1 hw® + hyw” + hy* + hyw® + how” + hew + h
Tzk(]):—* arccos( 16 2 z 3 1 4 3 > 5 6 7 +2jme, (33)
Wy f10” + fL07 + fr0° + fy0” + fs0" + fewt f;
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where k=1,...,8,7=0,1,2,.... Define

Ty = Toro (0) = kg}ing{T;ko (0}
(34)
Wy = Wk,

Taking the derivative of (9) with respect to 7,, we can get
|: dA ]—1 ~ 1 Ql + Qze—lTl + Q3e—/\T2 + Q4e—l(Tl+T2) T,
dr, A Qse—/\fz + Qée_h (11+12) A
(35)

where

Q, = 4N’ + 3402 +2A,1 + A,

Q, =3B,A* +2B,A + By - 7,(B,\’ + B,A* + B;A + B,),
Q, = 3C,A* +2C,A + Cs,

Q, =3CA* +2C,A + C; - 7,(DyA* + Dy + D),

Qs =C A +CA A +CA+C,,

Qg = D,;A* + D,A + D,
(36)

Mathematical Problems in Engineering

From (35), it follows that

s ()17 R,R, + R,R
R%—Eﬂﬁ] S i R (37)
dr, A=iw), R; + R

where

R, = -3A,0° + A, +(—3Bl(u2 + B, + By1,0” - B4rl)cos (w1)) +(232w +B, 1,0 - B311w)sin (w1))

+(—3C1w2 + C3)cos(wrz) +2C,w sin(wT,)

+(—3>C1w2 +Cy + D10 - D3rl)cos (w(1, +15)) + (2Cw - D7 w)sin(w (177 + 1,)),

R, = —40’ + 2A,w —(—3Blw2 +B; + B,1,0” + B4‘rl)sin(w‘rl) +(232w +B, 1,0 — B3rlw)cos (wty)

—(—3C1w2 + C3)sin (07,) + 2C,w cos(wT,)

(38)

—(—3C1w2 +C;y + D10 - D311)sin (w(1, +15)) + (2Cw — D,1y0)cos (w (11 + 15,)),

R, = (C4w - C2w3)sin (wt,) —(C3w2 - C1w4)cos (wt,) +(D3w - Dlw3)sin(w(r1 +1,)) = Dy’ cos (w (T, +1,))s

R, = (C4w - C2w3)cos (wty) +(C3(u2 - C1w4)sin (wty) +(D3w - D1w3)cos (w (1, +1,)) + Dy sin (0 (7, + 7,)).

If (Hs) RyR; + R,R, #0 holds, we can obtain the exis-
tence of a Hopf bifurcation as follows.

Theorem 7. For 7, € [0,717}), if (H,), (H,), (Hs) holds and
Bi-D3+ A2-Ci-2A,B, -2C,D;<0, then E* is locally
asymptotically stable when T, € [0, 75,). System (2) undergoes
Hopf bifurcations at E* for 7,= T;k(]) (k=1,...,
8,j=0,1,2,...).

3. Direction and Stability of the
Hopf Bifurcation

In this section, we consider 7, as a parameter and discuss the
direction and stability of the Hopf bifurcation of (2) when
T, = T}, € [0,7]) by using the normal form and the center
manifold theorem. Denote 1, =73, (j) (k=1,2,...,8,j=
0,1,2,...) as 75,. We can obtain the existence of a Hopf
bifurcationat E* = (x*, y*,v*,z*). Letu; = x —x*,u, =y —
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yus=v-viu, =z-2zt=t/1,1, =175+, andyuce€
R*. System (2) can be written as an FDE in
C = C([-1,0], R*) as the following form:

u(t) =L, (u) + f (uy), (39)

¢, (0)
. ¢, (0)

L,(¢)= (t3 +#)A
¢5(0)

¢4(0)

+ (730 + #)B

f
f,

) = (15 +p) >
‘ “I f,

fa

where

fi= = B1¢1 (0)¢5 (0) = B,¢; (0), (0) + ...,

fa=Ppe mrl¢1<_:_i))¢3<_;_£o)
7] T

f3=-p¢5(0)$,(0) +...,
fa=chs (D (=1) +...,

_ rd, (0)2
XM

- ﬁZemn()bl(

(41)
and ¢ = (¢, 5, ¢35, ¢,) € R%.

By the Riesz representation theorem, there exists a
function 7 (6, u) of bounded variation for 8 € [-1,0], such
that

0
L@ =] a@uwe@. ¢c(l-LOLR) @)

-3)
T2

(43)

Next, we choose

n(0,u) = (5 + y)[Aa(e) +C8(0+1) + B(S(

11

where u(t) = (x(t),y(t),v(t),z(t))T € R* and L:C—
R*, f: Rx C —> R* are shown as follows:

¢1< T;o)
¢2(_TT*1 ) ¢, (-1)
20 X ¢, (-1)
+ (15 +1#)C
¢ < TI) ¢5(=1)
3\ T x
T -1
20 ¢, (-1) (40)
71
¢4(_T;o)
where 6 is the Dirac delta function. Define
d¢(0)
TR 0 € [-1,0),
A(we =
0
| antsseo. o-o,

where ¢ € C'([-1,0],R*). When 6 = 0, equation (39) be-

comes u, = A(pu, + R(uwu,, where u,(0)=u(t+6) =
(x(t+6), y(t+0),v(t+0),z(t+0),0 ¢ [-1,0). Define

_dy(s)

ds ’

s€ (0,1],
ATy (s) = (45)

JO i’ (& 0)y (~t), s=0,
-1

0 0
W90 =FOHO - [ [ E-0)an©)0 @
(46)

where #(0) = 1(0,0). A and A* are adjoint operators. Let
A = A(0), we know that +iw},75, are eigenvalues of both A
and A*. Assume that q(0) = (1,a,p, y)Tei9w50750 is the ei-
genvector of A corresponding to iw,75,. Then, we have
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12
iwy, = ayy —a —a;3 0 1 0
| b T iy —ay, — byye N —byye 0 o 0
T20 . = > (47)
0 —a3 1wy — Az —03y 0
0 0 —Cype 0 il —ay, —cye 0™ ) \y 0
which yields
- . - . PP T
q(0)=(1 byse” 7 (iw3y — ayy) + byapze” o™ iwy, —ayy —apa cy3fe” 0T (48)
“apbyse e +ay, (iwsg — ay — bzze_lwgorl), a3 Tiw3y = gy = Cqge 0 )
Similarly, it can be verified that g*(s) = D(1,a", According to equation (46), we obtain that
B, y*)en™0 is the eigenvector of A* corresponding to
—iw3,T5,> Where
o - iwy +ay
bZIeiw;U‘rl >
a, +(iw§0 +ay, + by, o )oc*
B = , (49)
as;
* _ a34ﬁ
Wy + Ay + Cyye 0
(. % oF ¥ T
9" (5),.q(0)y =D(1,a",°,y") (1, & B, )
0 6 — —= —= : * _k crok
_ J. J D(l, oc*,[é’*, y*)e—z(f— G)wzorzodﬂ (0) (1’ a, /3) y)Tetszorzodf
-1 Je=0
— — o, [° T e\ e T (50)
=D|1+aa” +BB" +yy = | (La’, By )0 »™dn(6) (1, pB,y)
-1

= D[L+aa” + BB +7)" —wpe e [@ (B + Boy”) + 0 x4 fx"]
_T;Oe’i“’zo*TEn (ﬁ?*CZ* + Y?*CV*)]

2

Thus, we have W (5,6) = W (2(0,Z(0).6) = Wy (0) 5+ W, (6)22

.
—iw3, mr;

Tl—
e 2 3

Ez[l+cx§+[3{?+)}f—‘r§oe . ,
@BV By ) va@x + ] (51) W (6) 5+ Wi ()5t
_Tzoe—iwzo*rgo (ﬂ?*CZ* + )/?*CV*)]il, (53)
where z and Z are local coordinates for center manifold
C, in the direction of g and g.

When 6 = 0, we have

such that {q* (s),q(0)) = L.
Then, we compute the coordinates that describe the
center manifold C; at g =0. Let u, be the solution of

equation (39) at g = 0 and define ) .. . L
Z(t) = iwy Tz +q (0)f((2,2) 2iw,, 1502 + g(2,2),

¢ =g m), (52) (54)
W (t,0) = u, (0) — 2Re{z (t)q (6)}.

On the center manifold C,, we have where
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- e 7 From (52), we have u,(0) = W(t,0) + zq(0) +zg(0).
9(z,2) =q (0)f,(2,2) = 92075 + 9112z + Jors Comparing the coeflicients with (54), we get
(55)
_2
Lo 7
9 >
Then,
£1(0)
_* TN* * F % fZ (0)
9(2.2) =q" (0)f,(2,2) = Dryy(1,a", ,7")
150
f4(0)

2
= e |0 i, Oy 0 i, Oy 0)

T T
—x — mT- 1 1
ta |:ﬁle ‘u1t<_ * >u3t<_ * )
T20 Ty
T T
—mT 1 1
+pre '”n(_T)“zr(_ * >]
T T20

_B*P”3t (0)144,0 + V" ciayy (—1)uiz, (-1) }

(56)

% r _* -mty n - 2iw; T, -mty = 2iw5) T e x = 2iw3 Ty

920 :ZDTzo[_xM_ﬁl/j_ﬁz“‘*“ (/316 e ? +pe " ae 2 )_ﬁ pBy +y cPye 2 >]
= 2r - — . -mt, /7 -mT, (— F . R —\ % D —
gu = DTzo[—x——ﬁ1(/3+/3) ~Byla+@+a (Bie ™ (B+p)+Pre " (@+a) — B p(By +BY) +y C(/3V+/3)’)]>
M

% r 5 — % -mt, 7 2iw; 15, —mt)— 2iw Ty E L, ¥ e 210575
G2 = 2D720[_a_ﬁ1ﬁ_ﬁ2“+“ (/316 Be +pye e )_/3 PRy +y cpye ]>

— r 1 1
9o = 2Drzo{—x— [2w P (0) + Wi (0)] - B, [ﬁWfP (0) + BW3g) (0) + W (0) + W3y, <0)]

M

1 1
- B, [ani’ (0) +@W 5y (0) + Wi (0) + W57 (0)] &7

e B ( pre ity W _TLY lﬁeiw;(,r;ow(l) T ety O T leiwgofgow(s) _h
1 1 11 * 5 20 * 11 * B 20\ T F
T20 Ta0 T20 20

e [ ae o O _ o), Lewhmp O _ T e ienmy @ T Liwi iy @ 0
2 11 T 2 20 T 11 T 2 20 T
20 20 20 20

— 1— 1_
=B [ ) + W ©) + WD 0) 4 5w (0)]

T e A o 1o
+y c[ﬁe leOTZOWI(f) (-1 + E/SeleOTZ"WZ(g) (-1) + ye ’wZUTZOWS) (-1 + EVeI“’ZOTZUWéS) (—1)],

where
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ig, 750 L 02 = oy it T2 Ziwyt,0
W (0) = —92_g(0)e“n0 + 9027 (0)e ™ol 4 p ePeonTinf
Wi T2 W7y
igll 1wy o 0 1?11 — —iw,,Ts 0
Wy () = ——I1_ g (0)enmn? + 29Uz (g)eiwnmi 4
20720 W0 T2
L. -1
2wy, —ay —ap —ai3 0
_bZIe_ 2iw5, Ty 21'(1)50 —a,, - bzze_ 2iw5) Ty —b23e" 2iw5) Ty 0
E =2 M,
. *
0 —as 2iwy, — as; —Asy
0 0 —cyze” 0T 2w} — gy — cyye” H0T
0 -1
—an —ap —a3
—by —ay —by, by, 0
E, = N,
0 —as; —as3 —asy
0 0 —Cy3 —Oyy —Cyy (58)

r
—_— - B
TR

ﬁﬂle—mrl—ziw;orl 4 (Xﬂze_mTl_Ziw;”TI

—pBy

PO
- 2w, 75,

cPye

_2 2B Re(p) - 2B,Re (@)
Xpm

2B, ™" Re(P) +2B,e” """ Re(a)

~2pRe (By)

2cRe (By)

Next, we can calculate the following values:
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9940 : 90

X 9935 Y :
9930 85 .
0 0 5 10
t x10% t x10%
105 2800
V 100 ; Z 2700 ‘y
95 2600
0 5 10 0 5 10
t x10* t x10*
105 S EE R T 2800, T
V100 {0 @ : 7 27004 - &
35 — 9930 T 9930
9935 9935
90 994
v 9940 X % 90 9940 <

FIGure 1: E* is asymptotically stable when 7, = 7, = 0. The initial value is 9930, 85, 95, and 2760.

; lg |2 Then, for system (2), when 7, € [0, 17), T, >0, T} # 7,, the
C(0) = —— < 91192 — 2| anl’ - i) 192 direction and the stability of periodic solution of Hopf bi-
2w,,T 3 2 . .
20720 furcation are determined by (59).
Re(C, (0)) . . .
By =~y 4. Numerical Simulation
P Re(V (1)) (59)
D In this section, we consider the following system:
L In(C )+ pIm() (53))
2 >

¥ %
Wi T2

B, = 2Re(C, (0)).

[(dx(t) x (1) -5 s
T rx(t)(l ~ 10000 ) ~ 4.8 x 10 "x(t)v(t) —4.7 x 10 "x () y (1),
% =4.8x10 7% "ix(t—1))v(t - 1)) +47x 10 % " Pix(t - 1)y (t - 1,) —ay (1),
4 (60)
dz(tt) = ky () - 13v(t) - 0.06v (£)z (£),
O o1t —1,)z(t-1,) - 2(0),
dt
and the numerical simulation is carried out under the fol- Let a=1, k=200, and r =0.01, then we have
lowing four cases: R, =191>1, and (H,) is satisfied. Meanwhile,

. A, =179.53>0, A, =297x10*>0, A;=2.66x
(@) 7,=7,=0. 10>0, A, = 0.79>0, and (H,) holds. Then, E* is
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9998.4 112
X 9998.2 | Y 110
9998 108
0 2 4 0 2 4
t x10* t x10*
110 2950
V 100 |- Z 2900
90 2850
2 4 0 2 4
t x10* t x10*
100.00000000004 1 |
o\ 2945.016005845
100.00000000002 { - -
v - 7 2945.0160058445
1004 2945.016005844
2945.0160058435

99.99999999998 | - * - -
111.5888002063

9996

10000

X

Y

111.5888002063

Y

10000
X

9996

FIGURE 2: E* is asymptotically stable when 7, = 7, = 0. The initial value is 9998, 110, 90, and 2940.

x10%

2.99
0 5 10 15
t x10%
105
V 100 |
95
0 5 10 15
t x10%
105 § -
V100v~""
95 -
48 46 - B 3.01
Y 44 2.99 X

48

Y 46

44
0 5 10 15
t x10%
1400
7 1300 _Uf*__»
1200
0 5 10 15
t x10*
1400

x10*

6
Y 44 299

3.01

3
X x10*

FIGURE 3: E* is asymptotically stable when 7, = 30 and 7, = 0. The initial value is 29980, 45, 95, and 1340.
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x10*
4.89444 : 6.5015
X 4.894435 {|| I/ LT Y 6.5014
4.89443 . 6.5013
7.8 7.9 8 7.8 7.9 8
t x100 t x100
100.002 _ 0.04614
Y2 100 ! 1|4 7 0.04613
99.998 . 0.04612
7.8 7.9 8 7.8 7.9 8
t x100 t x100
100002, 71 T 0.04614 '
v 100 : 7 0.04613
99.998 - 6.5015 0.04612 6.5015

— . 489443 : '
4.89444 6.5013 489444 6.5013 .
x10* X Y x10* X

489443

FIGURE 4: The trajectories of system (6) with 7, = 72.98 and 7, = 0. The initial value is 48930, 6, 95, and 1.

10000 - 30

X 9999 ffv~ - Y 25

9998 ‘ 20
0 2 4
t x10°
120 : 600
V 100 Z 400
80 ‘ 200
0 2 4
t x10°
10002 o -l L
Vo 100y 7 4714
99.98 L - o L 999901
24.29 ) :
24.27 9999.0096 999901 2429 2428 5457 9999.0096

Y X Y

FIGURE 5: E* is asymptotically stable when 7, = 7, = 20. The initial value is 9998, 20, 90, and 470.
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10000

X 9999

9998
0

120

V 100

80

t x10°

110
V 100
90

9999.2 —g
X 9999.4 7

10
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Y

9999, 9904

X

79999

FIGURE 6: The trajectories of system (6) with 7, = 7, = 40.1. The initial value is 9998, 7, 90, and 3.

1 4
1.0005 <10
X 1h- =
0.9995 .
0 2 4 6
t x10°
110
V 100
90
0 2 4 6

105
V 100

95 L. -~
9999.12

9999.14 —
9999.16 7.6
X Y

t x10°

7.5 9999.15

79999.2

7 9999.1
X

FIGURE 7: The trajectories of system (6) with 7, = 40.2and 7, = 0. The initial value is 9995, 7, 95, and 1.

locally asymptotically stable from Theorem 1 (see
Figure 1).

Let a =0.9, k =170, and r = 60; by simple calcu-
lation, we get R; =7.49>1, and (H,) is satisfied.
And A, =250.12>0, A, =2.89 x 10° >0,
A; =3.05x10°>0, and A, =4.56x10°>0, we
know that (H,) holds. Then, E* is locally asymp-
totically stable from Theorem 1 (see Figure 2).

(ii) 7, >0and 7, = 0.

(iii)

Choosing a =1, k = 200, and r = 0.01, E* is locally
asymptotically stable when 7, = 30(see Figure 3),
and Hopf bifurcation occurs when 1, = 72.98(see
Figure 4). It supports the results of Theorem 4.

T, =7, =7>0.

Considering a = 0.9, k = 170, and r = 60, we obtain
E* is locally asymptotically stable when 7 = 20(see
Figure 5), and Hopf bifurcation occurs when

7 = 40.1(see Figure 6). The results of Theorem 6 are
verified.
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x10%
1.0005
X 1
0.9995
0 1 2 3
t x10°
110
V 100
90
0 1 2 3
t x10°
105

V 100

95 e . Lo
9999.1 s
9999.15 7.5
< 9999.2 7 v

19

9
Y 8
7
0 1 2 3
t x10°
5
2 3
t x10°
5 .
z
0 :
9 9999.2

9999.1

s 7 9999
Y X

FIGURE 8: E* is asymptotically stable when 7, = 40.2and 7, = 5. The initial value is 9995, 7, 95, and 1.

x10*
1.0005

0.9995
0

110

V 100

90

110
Vv 100

90 L.~
9999

9999.2 7 Y

X

9999.2

9999.1

8 79999
Y X

FIGURE 9: The trajectories of system (6) with 7, = 40.2 and 7, = 48. The initial value is 9995, 7, 95, and 1.

(iv) 7, € (0,7, )and 7, >0

Considering a = 0.9, k = 170, and r = 60, by simple
calculation, we get 7,,,,, = 40.29 and we choose 7, as
a parameter and let 7, =40.2. When 7, = O(see
Figure 7) and 71, = 5(see Figure 8), E* is locally
asymptotically stable. And when 7, = 48, Hopf bi-
furcation occurs (see Figure 9).

5. Conclusion

On the basis of [10], considering that e” ™" is more practical
that stands for the probability of surviving the time period
from t — 7, to t, this paper establishes and investigates an
HIV-1 virus model with two delay and delay-dependent
parameters to describe both virus-to-cell and cell-to-cell
transmissions. We find out basic reproductive rate R;, and
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system (2) has the unique positive equilibrium E* when
R, > 1. Without time delays, E* is asymptotically stable (see
Figures 1 and 2). In other words, system (6) does not have
any excitable nature. When 7, = 0, there exists a threshold
limit beyond which the stability exchange takes place and
system shows periodic orbits around E* (Figures 3 and 4). It
shows that the number of cells and virus can fluctuate in
time. Similarly, we find out that as 7, and r, vary, E* loses its
stability and Hopf bifurcations occur when 7, = 7, = 7 and
T, € (0, Tay)> T, > O(see Figures 5-9). Moreover, we obtain
the direction and stability of the Hopf bifurcation when
7, € [0,7}), 7, >0 using the normal form theory and center
manifold theorem. Finally, numerical simulations help us
illustrate the main results of model (2). Clearly, we can show
that delay value is responsible for changing the stable system
to system with periodic cycles. In the discussion of the
characteristic equations, when neither 7, nor 7, is zero, the
characteristic equation of system (2) is Py(A, ;) + P (A,
7.0 + P, (A, 1))e M + Py (A, 7,)e” M(1*™) = 0. We only
discuss about the case when 7, = 7, = 7> 0 by applying the
geometric stability switch. When 7, # 7,, it is very difficult to
discuss the root of such characteristic equation. We leave the
analysis of the more complicated bifurcations as the future
work.
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