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*is paper investigates the problem of approximating the global minimum of a positive semidefinite Hankel matrix minimization
problem with linear constraints. We provide a lower bound on the objective of minimizing the rank of the Hankel matrix in the
problem based on conclusions from nonnegative polynomials, semi-infinite programming, and the dual theorem. We prove that
the lower bound is almost half of the number of linear constraints of the optimization problem.

1. Introduction

*e matrix rank minimization problem, or minimizing the
rank of a matrix subject to linear constraints, recently has
gained tremendous popularity due to wide applications in
various fields including machine learning [1], compressed
sensing [2, 3], system identification and control [4, 5], and
computer vision [6]. *is problem can be formulated as the
following program:

min r(X),

s.t.A(X) � b,
(1)

where X ∈ Rm×n is the optimization variable, r(X) is the
rank of X, A: Rm×n⟶ Rp is a linear map, and b ∈ Rp. A
special case of this problem is the matrix completion
problem [2], recovering an unknown low-rank matrix from
a sampling of its entries. For this special case, the constraints
are simply a subset of the entries of the matrix. *e majority
of existing work on algorithms for problem (1) has con-
centrated on this special case. Many papers addressed
methods to solve the matrix completion problem, for in-
stance, the singular value thresholding algorithm [7], the
accelerated proximal gradient algorithm [8], the matrix

factorization-based approach [9], and the facial reduction
[10–12]. Various other methods are well documented in
[13–15] and references therein.

In many engineering and statistical applications, for
example, dynamical systems problems [16] and time-do-
main signal problems [17], the recovered matrix of problem
(1), in addition to being low-rank, is required to have a
Hankel structure. Driven by the wide applicability of the
Hankel matrix minimization problem, there have been
several algorithms available for solving it. Based on the
nuclear norm model which minimizes the nuclear norm of
thematrix instead of its rank, Fazel et al. [4] discussed several
first-order algorithms for solving the structured rank
minimization problem, including gradient projection
methods, proximal point algorithms, and alternating di-
rection methods of multipliers. Several evolutionary algo-
rithms were proposed by Cai, including an iterative hard
thresholding algorithm based on the nuclear norm model
[18], an alternating direction method of multipliers based on
Vandermonde factorization of a Hankel matrix model [19],
and a projected Wirtinger gradient algorithm [20]. *e
major drawbacks of these methods are that the solutions
obtained are not guaranteed to be a good approximate global
solution for the problem since there have been no
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approximation bounds developed for these methods.
Moreover, they are highly sensitive to some parameters
which depend on a guess of the rank of the concerned
matrix. Hence, in view of improving performance of algo-
rithms for solving the problem, it is important to find an
approximation for the rank of the optimal Hankel matrix.
Along this direction, in this paper, we provide a lower bound
on the minimum rank of a positive semidefinite Hankel
matrix minimization problem with linear constraints, which
is modeled as the following program:

min r(X),

A(X) � b,

s.t. X≽0,

X is Hankel.

(2)

Note that the positive semidefinite Hankel matrix
completion problem is a special case of problem (2).

Most literature about estimation of the rank of a matrix
concentrates on the rank of the optimal matrix of a positive
semidefinite program [21–24] or a band matrix [25–28].
*ough the minimum rank of problem (2) is guaranteed
theoretically through these methods from the previous work,
they are not efficient since the structure emerging from a
positive semidefinite Hankel matrix is not completely uti-
lized. To our knowledge, this work is one of the first efforts to
address the lower bound of the objective value of the positive
semidefinite Hankel matrix rank minimization problem.We
first construct a semidefinite program to describe the feasible
region of problem (2); then derive an equivalent semi-
infinite program for the dual of the semidefinite program
using a conclusion from nonnegative polynomials; and fi-
nally, by the optimality conditions for the semi-infinite
problem, we prove that a lower bound for the minimum
objective of problem (2) is almost half of the number of its
constraints.

*e remainder of the paper is organized as follows.
Section 2 summarizes some notations and preliminaries that

serve as fundamentals of analysis. In Section 3, a detailed
stepwise analysis is shown to convert our problem into a
semi-infinite program. Moreover, we establish the main
results under some mild assumptions. Finally, we conclude
this paper in Section 4.

2. Preliminaries

In this section, we introduce some notations and basic
definitions which will be used in the remaining part of the
paper and some lemmas that serves as fundamentals to
recast a positive semidefinite system as an equivalent semi-
infinite program.

Notations. Let Rn be the n-dimensional Euclidean space and
Rm×n be the set of m × n real matrices. r(X) and Tr(X)

denote the rank and trace of a matrix X, respectively. A
matrix X is symmetric positive definite (resp., positive
semidefinite) and is denoted by X≻0 (resp., X≽0). xj rep-
resents the j-th component of vector x, and Xi,j represents
the (i, j) entry of matrix X. |Δ| is the number of elements of
set Δ. *e symbol T represents the transpose. I represents
the identity matrix. Pn is the set consisting of the polyno-
mials with coefficients in R and degree at most n. An
n-degree polynomial pn(t) ∈ Pn: Rn⟶ R is written as


n
i�0 αix

i. Denote coefficients of polynomial pn(t) by
pn � (α0, α1, . . . , αn)T ∈ Rn+1. p(t)≥ 0 means p(t) is a
nonnegative polynomial. Considering a collection of ma-
trices C � Ck 

m

k�1, where Ck ∈ Rn×n, we write

C
T
x � 

m

k�1
Ckxk, resp.CX � Tr CkX( ( 

m

k�1( , (3)

for the operations between a collection of matrices and a
vector (resp., a matrix), where x ∈ Rm and X ∈ Rn×n. LetH
be a base of the n × n Hankel matrix space, which is defined
as follows:

H � Hk 
2n− 1
k�1 , where Hk( i,j �

1 i + j � k + 1

0 else
, k � 1, 2, . . . , 2n − 1. (4)

Definition 1. An n × n real Hankel matrix is a matrix of the
form:

x1 x2 · · · xn− 1 xn

x2 x3 · · · xn xn+1

⋮ ⋮ ⋮ ⋮ ⋮

xn− 1 xn · · · x2n− 3 x2n− 2

xn xn+1 · · · x2n− 2 x2n− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where x1, . . . , x2n− 1 ∈ R. It is obvious that an n × n Hankel
matrix could be completely determined by its last row

and first column, a total of 2n − 1 entries. Let
x: � (x1, . . . , x2n− 1)

T ∈ R2n− 1. *e Hankel matrix can be
constructed by vector x and can be expressed uniquely as
HTx based on (3) and (4). *us, program (2) can be
rewritten as follows:

min
x∈R2n− 1

r(Hx),

s.t. Ax � b,

H
T
x≽0,

(6)

where A � (ak,j) ∈ Rp×(2n− 1).
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Problem (6) is a special case of the matrix rank mini-
mization problem (1) due to the special structure of the
positive semidefinite Hankel matrix. However, the addi-
tional positive semidefinite Hankel structure requirement
comes at a price, with theoretical and practical difficulties
involved in the process of solving such a problem. Hence, we
present some lemmas to provide tools to simplify the high
technical requirement.

Lemma 1 (see [29]). Suppose that p(t) ∈ P2n and
p(t)≥ 0, t ∈ R. -en, p(t) is a sum of squares, that is,

p(t) � 
s

i�1
q
2
i (t), (7)

where qi(t) ∈ Pn.
We are now ready to state a lemma, which accords us

with a mechanism to transform a semidefinite positive
system to a nonnegative polynomial, which is the most
useful part of our main result.

Lemma 2. Suppose p(t) ∈ P2n− 2, t ∈ R and p is the associ-
ated coefficient vector. -en, the following statements are
equivalent:

(a) p(t)≥ 0
(b) -ere exists a matrix X ∈ Rn×n such that

HX � p,

X≽ 0,
 (8)

where H is defined in (4)

Proof. Because p(t) ∈ P2n− 2 and p(t)≥ 0, according to
Lemma 1, we have

p(t) � 

s

i�1
q
2
i (t), (9)

where qi(t) ∈ Pn− 1.
Let β2n− 1 � (1, t, . . . , t2n− 2)T ∈ R2n− 1 and βn � (1, t, . . . ,

tn− 1)T ∈ Rn, then p(t) � pβ2n− 1 and qi(t) � qT
i βn, i �

1, 2, . . . , s, which means that

p(t) � pβ2n− 1 � 
s

i�1
βT

n qiq
T
i βn � βT

n 

s

i�1
qiq

T
i

⎛⎝ ⎞⎠βn. (10)

Define X � 
n
i�1 qiq

T
i ≽0; then,

pβ2n− 1 � βT
n Xβn. (11)

Based on the equivalence of the coefficients of ti on the
two sides of the above equation, we obtain HX � p and
complete the proof in one direction.

For the other directions, since X≽0, X � 
s
i�1 qiq

T
i (s is

the rank of X ), which together with HX � p, it implies
that

p(t) � pβ2n− 1 � (HX)β2n− 1 � 
s

i�1
βT

n qiq
T
i βn

� βT
n 

s

i�1
qiq

T
i

⎛⎝ ⎞⎠βn � βT
n Xβn ≥ 0.

(12)

□

*e following lemma, which can be obtained from ([21],
*eorem 2), provides us a useful property of the optimal
matrix of program (6).

Lemma 3. Let Kn be the cone of positive semidefinite n × n

matrices and B be an affine subspace of the space of sym-
metric matrices such that the intersection Kn ∩B is non-
empty and bounded. If codim B � (l + 2)(l + 1)/2, where
1≤ l≤ n − 2, then there is a matrix X ∈Kn ∩B such that
r(X)≤ l.

3. A Lower Bound on the Optimal Objective of a
Positive Seimdefinite Hankel Rank
Minimization Problem

In this section, we investigate a lower bound on the mini-
mum rank of problem (5). Beginning with a lemma, we first
explore an important property of the optimal value of
problem (6).

Lemma 4. -e objective value of problem (6) is small than n.

Proof. An equivalent formulation for program (2) is stated
as follows:

min r(X),

s.t.A(X) � b,

Xi,k− i � Xi+1,k− i− 1 � · · · � X[k/2],k− [k/2],

i � 1, . . . , n − 1, k � 2, . . . , n + 1,

X≽0,

(13)

where [·] represents the floor function. It is clear that the
affine subspace of the above program, denoted byB, can be
expressed by the following system:

A(X) � b,

Xi,k− i � Xi+1,k− i− 1 � · · · � X[k/2],k− [k/2],

i � 1, . . . , n − 1, k � 2, . . . , n + 1.

⎧⎪⎪⎨

⎪⎪⎩
(14)

It is evident that codim B � ((n − 2)(n − 1)/2) + p,
which means

l �

������������������
(n − 2)(n − 1)

2
+ p +

1
4



−
3
2
, (15)

where l is as defined in Lemma 3. A direct application of the
statement of Lemma 3 to estimating the objective value of
program (2) results in r(X)< l. Recalling p≤ 2n − 1< (n2 +

9n + 2/2), it follows that l< n, which implies r(X)< n.
Hence, we prove the desired conclusion of the lemma due to
the equivalence of programs (2) and (6).
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Lemma 4 shows that optimal solutions of program (6) lie
exactly on the boundary of the feasible region since the rank
of that optimal solutions is smaller than n. *is says that
there exists a nonzero vector f � (f1, f2, . . . , f2n− 1)

T

∈ R2n− 1 such that program (6) and the following semi-
definite program have the same solution:

minf
T
x,

s.t. Ax � b,

H
T
x≽0.

(16)

Hence, it suffices to estimate the objective value of
program (16). It is easy to see that system (16) is a semi-
definite program, which can be solved by many methods, for
example, the interior point method [30] and the feasible
direction method [31]. However, these methods just give
numerical solutions for given A and b and cannot provide
analytical solutions for any A and b. Hence, we explore a
novelty method to solve this issue.

Recall that the dual of program (16) is given by

min b
Tλ,

s.t.HX � f + A
Tλ,

X≽0.

(17)

where λ ∈ Rp and X ∈ Rn×n are associated multipliers.

Hereafter, we state a lemma showing that the strict
complementarity holds almost everywhere, whose most
essential nature is given by ([32], Lemma 2).

Lemma 5. Suppose that x∗ and (λ∗, X∗) are primal and dual
optimal solutions, respectively. -en, we have that

r X
∗

(  + r H
T
x
∗

  � n (18)

holds almost everywhere.

Proof. For program (16), the KKT conditions are

Ax
∗

� b,

HX
∗

� f + A
Tλ∗,

X
∗
H

T
x
∗

� 0,

X
∗≽0,

H
T
x
∗≽0.

(19)

Let r(X∗) � r and r(HTx∗) � s. Using the comple-
mentarity conditions X∗HTx∗ � 0, we have r + s≤ n and
eigendecompositions as follows:

X
∗

� Q diag μ1, . . . , μr, 0, 0, . . . , 0( Q
T
,

H
T
x
∗

� Q diag 0, 0, . . . , 0, η1, . . . , ηs( Q
T
,

(20)

with Q ∈ Rn×n and QTQ � I. Plunging eigendecompositions
(20) into the KKTsystem, (19) yields the following system of
equations:

Ax
∗

� b,

H Q diag μ1, . . . , μr, 0, 0, . . . , 0( Q
T

  � f + A
Tλ∗,

H
T
x
∗

� Q diag 0, 0, . . . , 0, η1, . . . , ηs( Q
T
,

Q
T
Q � I.

(21)

*is is a system of p + (2n − 1) + (n(n + 1)/2) + (n(n +

1)/2) equations in 2n + p + r + s + n2 variables x∗i , μi, ϑi, ηi,

τi, (Q)ij. If r + s< n, the system is unsolvable almost. Hence,
r + s � n holds almost everywhere. We derive the conclusion
of the lemma.

Let β � (1, t, . . . , t2n− 1)T ∈ R2n− 1. According to Lemma
2, program (17) can be represented as the following semi-
infinite program,

min b
Tλ,

s.t.(Aβ)
Tλ≥ − f

Tβ, ∀β ∈ R2n− 1
.

(22)

*e lemma below states that the feasible set of program
(22) is bounded.

Next, we will establish the main result on a lower bound
on the optimal value of the positive semidefinite Hankel
matrix rank minimization problem.

Theorem 1. If A is full rank and the Slater condition holds
for program (16), then the objective value of the positive
semidefinite Hankel matrix rank minimization problem
(program (6)), denoted as v∗, is almost not smaller than p/2,
that is, v∗ ≥ (p/2).

Proof. Based on Lemma 4 and the Slater condition, the
solution set of program (22) is nonempty and finite. Let λ∗
be an optimal solution of program (22). *en, λ∗ is a local
minimizer of the following program:

min b
Tλ,

s.t. Aβi( 
Tλ � − f

Tβi, i ∈ I λ∗( ,
(23)

where I(λ∗) is an finite index set of the active constraints of
problem (22) at λ∗ since if I(λ∗) is infinite, we can select its
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finite subset such that, for all i in the subset (Aβi)
T, λ �

− fTβi holds. *us, λ∗ satisfies the following KKT system:

b � 

I λ∗( )| |

i�1
μiAβi, (24)

Aβi( 
Tλ � − f

Tβi, i ∈ I λ∗( , (25)

where μ is the corresponding Lagrange multiplier vector.
Equation (24) is a system of p equations in 2|I(λ∗)|

variables μi, λi. If 2|I(λ∗)|>p, the system is almost un-
solvable. Hence, |I(λ∗)|≤ (p/2) holds almost everywhere.
Moreover, for i ∈ I(λ∗), we have (Aβi)

Tλ∗ � − fTβi, which
means HX∗βi � βiX

∗βi � 0 since HX∗ � f + ATλ∗, where
βi � (1, tj, . . . , tn

j)T. *us, X∗βi � 0 since X≽ 0. *is says
that r(X∗)≤ n − |I(λ∗)|. Consequently, according to the
conclusion of Lemma 5, we almost have

r H
T
x
∗

  � n − r X
∗

( ≥ n − n − I λ∗( 


 ≥
p

2
. (26)
□

4. Conclusion

*is paper focuses on approximating the global optimal
value of a Hankel matrix rank minimization problem
subjective to linear constraints. A lower bound for this
optimization problem is provided based on some conclu-
sions from nonnegative polynomials, dual theorem, and
semi-infinite problems. We conclude that the lower bound is
almost half of the number of linear constraints of the
problem.*is result is useful for simplifying the requirement
of guessing the rank of the objective matrix in existing
methods for solving such problem.
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