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It is important to accurately estimate the SOC to ensure that the lithium-ion battery is within a safe working range, prevent over-
charging and over-discharging, and ultimately improve battery life. However, SOC is an internal state of the battery and cannot be
directly measured. /is paper proposes a SOC estimation method based on the wide and deep neural network model, which
combines the linear regression (LR) model and the backpropagation neural network (BPNN) model. /is article uses the dataset
provided by the Advanced Energy Storage and Applications (AESA) group to verify the performance of the model. /e per-
formance of the proposedmodel is compared with the common BPNNmodel in terms of root mean square error (RMSE), average
absolute proportional error (MAPE), and SOC estimation error. /e validation results prove that the effect of the proposed model
in estimating SOC is better than that of the ordinary BPNNmodel. Compared with the BPNNmodel, the RMSE values of the SOC
predicted value of the wide and deepmodel in the charging and discharging stages were reduced by 10.2% and 15.4%, respectively.
Experimental results show that the maximum SOC estimation error of the model in predicting the SOC during charging and
discharging is 0.42% and 0.86%, respectively.

1. Introduction

With the massive use of fossil fuels, environmental pollution
and energy shortages have become increasingly serious.
Governments are paying more and more attention to the
development and utilization of clean energy. In recent years,
electric vehicles have received great attention from the
government and enterprises [1]. Different types of electric
vehicles have emerged in the market, such as pure electric
vehicles (BEVs), hybrid electric vehicles (HEVs), fuel cell
vehicles (FCEVs), and so on [2]. Rechargeable batteries are
widely used in electric vehicles, such as lead-acid batteries,
nickel-cadmium batteries, nickel-hydrogen batteries, and
lithium-ion batteries. Among them, lithium-ion batteries are
favored by many companies due to their advantages such as
long life, low pollution, high power, and fast charging, and
its market proportion is also constantly increasing [3].

/erefore, battery management technology has attracted
much attention in recent years. In [4], the authors proposed
an enabling state of health (SOH) estimation scheme based

on the ICA method for real-world EVs. /is is realized by
combining an equivalent IC-value calculation for battery
packs with cell-level battery tests while taking cell incon-
sistency into consideration. In [5], the authors proposed a
multistage alternative current (AC) strategy for internally
hearting lithium-ion batteries. In [6], a data-driven method
was proposed for battery charging capacity diagnosis based
on massive real-world EV operating data.

/e estimation of state of charge (SOC) of lithium-ion
batteries is also a key part of battery management tech-
nology. Lithium-ion batteries will age, that is, their capacity
will gradually decay as the number of uses increases. /ere
are many reasons for the accelerated decay rate of lithium-
ion battery capacity, including excessive temperature, over-
charging, over-discharging, and not using it for a long time
after being fully charged [7]. To prevent over-charging and
over-discharging, there must be an accurate estimation of
the SOC of the lithium-ion battery.

/e state of charge (SOC) is a relative measure of the
energy stored in a battery, defined as the ratio of the amount
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of charge that can be extracted from a battery cell at a specific
point in time to the rated capacity [8]./e calculation for-
mula of SOC can be expressed as

SOC �
Qc

CN

, (1)

where Qc is the remaining capacity of the battery and CN is
the rated capacity. It is important to accurately estimate the
SOC to ensure that the lithium-ion battery is within a safe
working range, prevent over-charging and over-discharging,
and ultimately improve battery life. Because the capacity that
the battery can release is affected by many factors, including
discharge rate, discharge current, battery internal temper-
ature, self-discharge, charge and discharge cycles, battery
aging, and so on, the SOC must be related to these factors.

/ere are many traditional methods for SOC estimation,
including the coulomb counting method [9, 10], open circuit
voltage method [11], Kalman filtering method, and so on
[12, 13]. /e coulomb counting method is the most com-
monly used SOC estimation method. If initial state is SOC0,
then the current SOC is

SOC � SOC0 −
1

CN


t

0
ηIdt, (2)

where I is the battery current and η is the efficiency of
charging and discharging. /e shortcomings of this method
are as follows: inaccurate current measurement will cause
SOC calculation errors, which will accumulate for a long time,
and the error will become larger and larger; the battery
charging and discharging efficiency must be considered; and
the error will be larger under the condition of high tem-
perature and severe current fluctuations. /e open circuit
voltage of the battery is close to the electromotive force of the
battery in value. /ere is a relatively fixed functional rela-
tionship between the open circuit voltage and the SOC [14], so
that the SOC can be estimated based on the open circuit
voltage. /e obvious disadvantage is that the battery needs to
be left to stand for a long time to achieve voltage stability [11].
It takes several hours to restore the battery state from work to
stability, which causes difficulties in measurement. How to
determine the resting time is also a problem, so the method is
only suitable for the parking state of electric vehicles. /e
open circuit voltage method is effective in estimating SOC in
the initial and final stages of charging and is often used in
combination with the coulomb counting method. /e core
idea of Kalman filter theory is to make an optimal estimation
of the state of the dynamic system in the sense of minimum
variance. /is method is suitable for all kinds of batteries.
Compared with other methods, it is especially suitable for the
estimation of the battery SOC of hybrid electric vehicles with
severe current fluctuations. It not only gives the estimated
value of SOC but also gives the estimation error of SOC.

With the rapid development of machine learning tech-
nology in recent years, more and more researchers have
begun trying to use data-driven methods to make predictions
about SOC. /ese methods can automatically learn network
parameters through intelligent algorithms and obtain the
relationship between battery parameters and SOC from them
[15, 16]. Machine learning methods commonly used for SOC

estimation include neural networks [17], support vector
machine (SVM) [18], extreme learning machine (ELM) [19],
and so on. Recent neural network structures for SOC esti-
mation mainly include wavelet neural network (WNN)
[20, 21], backpropagation neural network (BPNN) [22], radial
basis function neural network (RBFNN) [23], and so on. In
[24], the authors combined adaptive wavelet neural networks
with a discrete wavelet transform, proposing a new hybrid
wavelet neural network model based on the Lev-
enberg–Marquardt algorithm to estimate the SOC. In [25], an
improved BPNN-based SOC estimation method for lithium-
ion batteries was proposed. /e method used two algorithms:
principal component analysis and particle group optimiza-
tion, to improve the accuracy and robustness of the model.

Neural network has strong expression ability and gener-
alization ability but lacks “memory ability.” “Memory ability”
can be understood as the ability of the model to directly learn
and use the “co-occurrence frequency” of items or features in
historical data./e linearmodel has strongmemory ability./is
article uses the wide and deep model to estimate the SOC. /e
wide and deep model is a hybrid model composed of a single-
layer wide part and a multilayer deep part [26]. Among them,
the wide part is a single-layer linearmodel whosemain function
is to make the model have the “memory ability,” and the deep
part is the BPNN model whose main function is to make the
model have generalization ability. It is this structural feature that
makes the model have the advantages of both linear model and
deep neural network. /erefore, the wide and deep model can
swiftly learn and memorize a large number of historical be-
havior characteristics while also having great expressive ability.

/e rest of this article is organized as follows. In Section
2, the principle and basic structure of the wide and deep
model are introduced in detail, and how to use it for SOC
prediction is also given. In Section 3, the method of
obtaining training data and the original data analysis are
introduced. Section 4 gives the experimental results and
analysis. Section 5 draws the conclusion.

2. Wide and Deep Model

/e wide and deep model connects the wide part of the
single input layer with the deep part, which is composed of
the embedding layer and multiple hidden layers, and then
inputs them to the final output layer./e wide part is good at
handling a large number of sparse category features. /e
deep part uses the strong expressive ability of the neural
network to mine the data patterns hidden behind the fea-
tures. Finally, using the linear regression model, the output
layer combines the wide part and the deep part to form a
unified model, as shown in Figure 1.

2.1. Wide Part. /e wide part is a generalized linear model,
which can be expressed as follows:

y � w
T
x + b, (3)

where y is the predictive value; wT � [w1, w2, . . . , wn] is the
weight of features; x � [x1, x2, . . . , xn]T is the feature vector;
and b is the bias.
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/e features utilized in the wide part are usually original
features or new features made by applying some simple
transformations to the original features. Cross-product
transformation is the most common transformation method
employed, and it is typically applied to category features.
Table 1 shows the data of a group of users watching videos.
/e original data have only two features: user id: u1, u2, u3 

andvideo id: f1, f2 . After one-hot encoding, the dimen-
sions of these two features are 3 and 2, respectively, and the
corresponding cross-product features of these two features
are user id × video id: u1∧f1, u1∧f2, u2∧f1, u2∧f2, u3∧f1,

u3∧f2}, with a dimension of 6. /e nonlinear features ob-
tained by the cross-product transformation can capture the
high-order correlation between the original features. If the
original dense feature is to be subjected to cross-product
transformation, it needs to be discretized.

/e advantage of the wide model with cross-product
features is that the model has high interpretability and the
feature importance is easy to analyse. /ere are three
main disadvantages. One is that a lot of manual design is
required. /e other is that if the original category feature
dimension is too high, then the feature dimension ob-
tained through cross-product transformation will be very
large, which will cause over-fitting problems. /e solu-
tion is to construct more coarse-grained cross features.
/e third is that when the number of original features n is
too large, in order to obtain high-order correlation be-
tween features, the number of cross-product features that
need to be constructed is O(n2), which is basically im-
possible. At this time, a deep neural network needs to be
used.

2.2. Deep Part. /e deep part is a backpropagation neural
network, which consists of three components: input layer,
hidden layer, and output layer. /e input features generally
include sparse and dense features. /e dense features can be
input directly. /e sparse feature must be encoded into a
vector form before input. A simple one-hot encoding method
can be employed when the sparse feature dimension is low.
When the sparse feature dimension is too high, the use of one-
hot encoding will cause the problem of dimensional explo-
sion. At this time, the sparse feature can be trained into a low-
dimensional word vector.

After the feature is input, it will enter the hidden layer,
and each neuron in the hidden layer will perform the fol-
lowing operations:

x
l+1
i � f W

l
ix

l
+ b

l
i , (4)

where Wl
i, bl

i are the weight and bias of the i-th neuron in the
l-th hidden layer; xl is the activation value of the l-th hidden
layer, and its dimension is equal to the number of neurons in
the l-th layer; xl+1

i is the i-th activation value of the l + 1-th
hidden layer; and f is the activation function. /is article
uses the Relu function as the activation function, and its
function expression is as follows:

f(x) � max(0, x). (5)

/e deep part can make up for the defects of the wide
part. /e deep part does not require much manual partic-
ipation, but it can have better generalization of the cross
features that the wide part cannot construct.

2.3. Joint Part. /e joint part uses the log-weighted sum of
the output of the wide layer and the output of the deep layer
as the final predicted value. /e calculation formula is as
follows:

yp � σ w
T
widexwide + w

T
deepx

lf

deep + b
lf

 , (6)

where σ is the sigmoid function; wT
wide is the weight of the

wide layer; wT
deep is the weight used for the final activation

value of the deep layer; and x
lf

deep is the activation value of the
last hidden layer.

/e model selects logistic loss as the loss function, and
the loss is calculated as follows:

J � −
1
m



m

i�1
y

(i)log y
(i)
p + 1 − y

(i)
 log 1 − y

(i)
p ⎡⎣ ⎤⎦ +Ω,

(7)

where m is the number of training samples; y(i), y(i)
p are the

true value and predicted value of the i-th sample, respec-
tively; and Ω is the regularization term. /e weights and
biases need to be updated according to the loss. Using
AdaGrad as the optimizer of the model, the calculation
method is as follows:

Output Units

Hidden Layers

Dense Embeddings

Sparse Features

Figure 1: Schematic diagram of the wide and deep model.
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W
l
i,j(n + 1) � W

l
i,j(n) −

η
�����
Gt + ε


zJ

zW
l
i,j(n)

,

b
l
i(n + 1) � b

l
i(n) −

η
�����
Gt + ε


zJ

b
l
i(n)

,

wi(n + 1) � wi(n) −
η

�����
Gt + ε


zJ

wi(n)
,

(8)

where η is the learning rate; ε is a very small value to prevent
the denominator from being 0; and Gt is the square accu-
mulation of the gradient of the parameter.

2.4. Estimating SOC with the Wide and Deep Model. /is
article uses the wide and deepmodel to predict the SOC state
value during the charging and discharging process of lith-
ium-ion batteries. /e features used are current i, voltage v,
dv, di, d2v, d2i, and the battery charge cycles. All features
must be normalized before entering the model. In this ex-
periment, the max-min normalization method was used to
normalize the value to [0,1]. /e formula is as follows:

xi
′ �

xi − xmin

xmax − xmin
, (9)

where xi is the original value; xmin, xmax are the minimum
and maximum values of the feature, respectively; and xi

′ is
the normalized value.

/e input of the wide part includes the original 7 fea-
tures. For the deep part, the 7 original features were first
processed into embedding vectors by PCA and then input
into the model. /e model structure is shown in Figure 2.

3. Training and Testing Data

3.1. Data Sources. In order to verify the performance of the
wide and deep model, this paper uses the lithium-ion battery
charge and discharge data of the Mendeley dataset of AESA.
/ese data are obtained by charging and discharging two
lithium-ion batteries with a standard capacity of 27Ah for 100
times. When charging, the CC-CV protocol is used. First, the
battery is charged with a constant current of 27A until the
terminal voltage reaches 4.2V, and then the terminal voltage
is kept at 4.2V for constant voltage charging until the current
drops to 2.7A to stop charging. When discharging, adopt the
CC discharge protocol. Keeping the current at 81A, stop
discharging when the terminal voltage drops to 2.75V. /e
above process is repeated 100 times, with an interval of 30
minutes each time, and the ambient temperature is always
40°C. /e overall procedure of the lithium-ion charge and
discharge experiment is shown in Figure 3.

3.2. Data Analysis

3.2.1. Changes of the Battery Maximum Charge Capacity.
In practice, the maximum charge capacity of the battery will
reduce with the increase in the number of charges. Since the
current, voltage, and temperature are strictly controlled
during the experiment, over-charging, over-discharging,
and the influence of the external environment on the battery
capacity are avoided. /erefore, the capacity degradation of
the battery in this experiment is mainly caused by the in-
ternal factors of the battery. In terms of the electrode, re-
peated charging and discharging reduce the active surface
area of the electrode, the structure of the active material
changes, and the electrical contact of the active particles
becomes worse. In the electrolyte solution, the electrolyte or
the decomposition of conductive salt causes its conductivity
to decrease, and the decomposition product causes interface
passivation. /e change in the charge capacity of the two
batteries in this experiment is shown in Figure 4(a).
Figure 4(b) shows the difference in capacity between the two
batteries. It can be seen that the largest difference in capacity
between them is only 0.122Ah. /e change in battery ca-
pacity is almost the same.

3.2.2. .e Difference between Charge Capacity and Discharge
Capacity. During each round of charging and discharging,
the discharge capacity of the lithium-ion battery is often
smaller than the charging capacity, as shown in Figures 5 and
6. /is is mainly caused by two reasons. One is that during
the first few rounds of charging, a solid electrolyte interface
(SEI) is formed on the surface of the negative electrode,
which consumes lithium ions from the positive electrode.
/ese lithium ions no longer participate in the subsequent

Table 1: User-video data.

Userid Userid-one-hot Videoid Videoid-one-hot Userid× videoid Watch
0 u1 [1,0,0] f1 [0,1] [0,1,0,0,0,0] 0
1 u2 [0,1,0] f2 [1,0] [0,0,1,0,0,0] 1
2 u3 [0,0,1] f1 [0,1] [0,0,0,0,0,1] 1
3 u3 [0,0,1] f2 [1,0] [0,0,0,0,1,0] 0

current voltage cycle dv di d2v d2i

PCA 
Embeddings

Relu(32)

Cross Product 
Transformation

Logistic Loss

Relu(32)

Relu(32)

Figure 2: Estimating SOC with the wide and deep model.
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discharge process. It can be seen from Figure 5(b) in the
figure that the charge and discharge capacity of the previous
rounds is quite different. /e second is due to the fact that a

very small amount of lithium ions cannot be extracted after
being inserted into the negative electrode under normal
conditions.

Start

CC Charge:
I=27 A/4.2 V cut off

CV Charge:
U=4.2 V/2.7 A cut off

CC Discharge:
I=81 A/2.75 V cut off

30 min rest

repeat

Figure 3: /e procedure of lithium-ion battery cycle experiment.
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Figure 4: (a)/e charge capacity of battery 1 and battery 2 changing with the number of charges. (b)/e difference in charge capacity of the
two batteries.
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Figure 5: Difference in charge and discharge capacity of battery 1.
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Figure 6: Difference in charge and discharge capacity of battery 2.
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3.2.3. Changes in Current, Voltage, and Charging Capacity
over Time. Figure 7 shows the change in the terminal voltage
with the charging time in different rounds. It can be clearly
seen from Figure 7(c) that as the number of charge and
discharge increases, the terminal voltage will reach 4.2V
faster during charging. Figure 8 shows the changes in
current and SOC over time after entering constant voltage
charging.

4. Experimental Results and Analysis

4.1. Performance Indicators. /is article uses two statistical
errors to verify the performance of the wide and deep model:

root mean square error (RMSE) and mean absolute per-
centage error (MAPE). /eir calculation formulas are as
follows:

RMSE �

����������������������

1
N



N

i�1
socestimate − soctrue( 

2




, (10)

MAPE �
1
N



N

i�1

socestimate − soctrue
soctrue




, (11)

where soctrue, socestimate are the real SOC and the estimated
SOC, respectively, and N is the number of samples.
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Figure 7: (a) /e change of terminal voltage with time in different rounds. (b, c) /e partially enlarged diagrams of (a).

Mathematical Problems in Engineering 7



0

5

10

15

20

25

30
cu

rr
en

t (
A

)

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
time (s)

0 cycle
20 cycle
40 cycle

60 cycle
80 cycle
100 cycle

(a)

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
time (s)

22

23

24

25

26

27

ca
pa

ci
ty

 (A
h)

0 cycle
20 cycle
40 cycle

60 cycle
80 cycle
100 cycle

(b)
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Figure 9: Continued.
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4.2. Neural Network Parameter Selection. /is paper selects
the experimental data of the 50th charge and discharge as the
verification set and the rest as the training set. /e back-
propagation neural network (BPNN) and wide and deep
model are used in this experiment to estimate the SOC. /e
number of training epochs and the number of hidden
neurons in each hidden layer are critical parameters that
may influence the performance of the neural network on

SOC estimation./is paper conducts various experiments to
select the best parameters of the two models.

/e data of battery 1 during charging stage are used to
study the influence of these parameters. Firstly, the influence
of the number of training epochs on the estimation per-
formance is studied. To be fair, the learning rate and number
of hidden neurons are same in the two models. /e values of
RMSE and MAPE in different training epochs are plotted in
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Figure 9: RMSEs and MAPEs of wide and deep model and BPNN model with respect to the number of epochs.
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Figure 10: RMSEs and MAPEs of wide and deep model and BPNN model with respect to the number of hidden nodes.
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Figure 11: SOC prediction results (a) and errors (b) of battery 1 during charging stage.
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Figure 12: SOC prediction results (a) and errors (b) of battery 1 during discharging stage.
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Figure 9. In both models, the values of RMSE and MAPE
decrease sharply in the first few epochs and remain steady
after 50 epochs. Performance after epoch 100 is almost the
same. Trading off between testing performance and training
time, 100 epochs present an optimal choice.

Next, the performance of the two models is tested under
different hidden nodes, ranging from 0 to 200 at intervals of
10. /e results are plotted in Figure 10. Generally speaking,
using more neurons can better fit the training set, but it will
lead to over-fitting problems. On the other hand, too few
neurons cannot effectively capture the high-order rela-
tionship between input and output. From this perspective,
combined with the experimental results, 140 hidden nodes
are recommended for the wide and deep model and 150
hidden nodes are recommended for the BPNN model.

4.3. SOC Estimate Results. /is paper selects the experi-
mental data of the 50th charge and discharge as the verifi-
cation set and the rest as the training set. Figures 11–14 show
the SOC prediction results of battery 1 and battery 2 at the
50th charge and discharge stage. /e solid line in
Figures 11(a)–14(a) represents the real SOC value, and the
dotted line and point line are the SOC values predicted by the
wide and deep model and BPNN model, respectively.
Figures 11(b)–14(b) show the errors between the corre-
sponding real SOC and the predicted SOC. It can be seen

from the figures that the difference between the SOC pre-
dicted by the wide and deep model and the real SOC is very
small. /emaximum prediction errors of battery 1 during the
charging and discharging stage are 0.42% and 0.86%, re-
spectively. /e maximum prediction errors of battery 2
during the charging and discharging stage are 0.50% and
0.56%, respectively.

4.4. Performance Comparison. /is paper uses the common
backpropagation neural network (BPNN) to compare various
performance indicators with the wide and deep model. Table 2
shows the prediction performance of these two models. Next,
the performance of the SOC prediction result of battery 1 is
described in detail. Compared with the BPNN model, the
RMSE values of the SOC predicted value of the wide and deep
model in the charging and discharging stages are reduced by
10.2% and 15.4%, respectively. /e values of MAPE in the
charging and discharging stages for the proposed model are
improved and reduced by 53.4% and 26.9%, respectively, in
comparison to the common BPNN model. In addition, the
SOC error interval of the wide and deep model was smaller
than that of the BPNNmodel./emaximum prediction errors
of BPNNmodel during the charging and discharging stage are
0.50% and 1.39%, respectively./emaximumprediction errors
of the wide and deep model during the charging and dis-
charging stages are 0.42% and 0.86%, respectively.
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Figure 13: SOC prediction results (a) and errors (b) of battery 2 during charging stage.

Mathematical Problems in Engineering 11



5. Conclusion

/is paper proposes a method to predict the SOC state of
lithium-ion batteries based on the wide and deep neural
network model. /is paper uses the experimental data of 100
times of charging and discharging of two lithium-ion batteries
as the training and validation data for the model. /e features
selected were i, v, di, dv, d2i, d2v, and the number of charging
cycles./e wide part of the wide and deepmodel used a linear
regression model, and the input included the original 7

features. /e deep part used the BPNN model, and the input
was the embedding vector of the 7 original features.

Compared with the common BPNN model, the SOC
prediction method proposed in this paper did not consume
more time and computing resources, but the accuracy and
stability of the prediction were significantly improved. For
example, the values of MAPE in the charging and dis-
charging stages for the proposed model are improved and
reduced by 53.4% and 26.9%, respectively, in comparison to
the common BPNN model. Compared with the BPNN
model, the RMSE values of the SOC predicted value of the
wide and deep model in the charging and discharging stages
are reduced by 10.2% and 15.4%, respectively.

However, the data used in this article were obtained
under ideal constant temperature conditions, so the model
did not take the influence of temperature into account. In
addition, the battery always adopted CC-CV charging and
CC discharging protocols, which is rare in real life. In
subsequent research, temperature can also be used as a
feature, and at the same time, a more realistic charging and
discharging protocol can be used to verify the performance
of the wide and deep model.

Data Availability

/e data used to support the findings of this study can be
accessed by visiting https://data.mendeley.com/datasets/
c5dxwn6w92/1.
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Figure 14: SOC prediction results (a) and errors (b) of battery 2 during discharging stage.

Table 2: Performance comparison between the wide and deep
model and BPNN model.

Model Stage RMSE
(%)

MAPE
(%) Error (%)

Wide and
deep

Cell 1 charge 0.115 0.419 [−0.42,+0.38]
Cell 1

discharge 0.312 0.640 [−0.86,+0.38]

Cell 2 charge 0.116 0.528 [−0.34,+0.50]
Cell 2

discharge 0.150 0.327 [−0.48,+0.56]

BPNN

Cell 1 charge 0.128 0.9 [−0.50,+0.45]
Cell 1

discharge 0.369 0.875 [−1.39,+1.1]

Cell 2 charge 0.131 0.848 [−0.41,+0.47]
Cell 2

discharge 0.171 0.412 [−0.77,+0.41]
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