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Extreme value theory (EVT) is useful for modeling the impact of crashes or situations of extreme stress on investor portfolios. EVT
is mostly utilized in financial modeling, risk management, insurance, and hydrology.,e price of gold fluctuates considerably over
time, and this introduces a risk on its own. ,e goal of this study is to analyze the risk of gold investment by applying the EVT to
historical daily data for extreme daily losses and gains in the price of gold.We used daily gold prices in the Pakistan BullionMarket
from August 1, 2011 to July 30, 2021.,is paper covers two methods such as BlockMaxima (BM) and Peak Over,reshold (POT)
modeling. ,e risk measures which are adopted in this paper are Value at Risk (VaR) and Expected Shortfall (ES). ,e point and
interval estimates of VaR and ES are obtained by fitting the Generalized Pareto (GPA) distribution. Moreover, in this paper,
return-level forecasting is also included for the next 5 and 10 years by analyzing the Generalized Extreme Value
(GEV) distribution.

1. Introduction

Gold is a familiar valuable metal for investment as com-
pared to silver, platinum, and palladium. Gold has been
widely used in many industries not only in the
manufacturing of jewelry but also in financing and
investing, medical and dentistry, manufacture of elec-
tronics, components of computers, and aerospace. In the
financing and investing industry, gold is held in the form of
gold bullion. Gold bullion is a valuable precious metal that
is usually in two main forms: gold bullion bars and gold
bullion coins. Nowadays, many institutions are including
gold as a major asset of the world’s investment due to their
stability which plays an important role in the global
economy. Gold is a good investment, neither in the short-
term nor the long-term, and it is a great asset that can be
converted into paper money [1].

Gold is one of the oldest and most widely-held com-
modities used as a hedge against the risk of disruptions in
financial markets, but gold prices fluctuated substantially
over time: slowly and gradually, and this introduces the risk
on its own. ,e gold prices in Pakistan are influenced by
many factors, such as the value of the US dollar, gold
production, consumer demand, devaluation of Pakistani
currency, and inflation. ,ese factors which affect the gold
prices are also discussed by Chaithep et al. [2].

In order to disclose the nature of the risks, under extreme
situations, and finally, to avoid the risks to the most degree,
we need certain risk measures. Extreme value theory (EVT)
is for assessing the asymptotic probability distribution of
extreme values for modeling the tail part of the distribution
where the risk exists. EVT is playing an important role in
dealing with modeling rare events. EVT applications are
found in many fields where extreme events may occur,
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including hydrology [3], insurance [4], and finance [5]. EVT
provides a solid framework for estimating the behavior of
extreme events. ,e performance of EVT is better than the
counterparts for predicting unexpected extreme movements
because of focusing on the tails of the distribution [6].

Mainly, there are two broad methods of applying EVT;
Block Maxima (BM) approach is based on the Generalized
Extreme Value (GEV), while Peak Over ,reshold (POT)
approach is based on the Generalized Pareto (GPA)
distribution.

,e BMmethod is the primary and the oldest method of
estimating extreme events in EVT.,is method was given by
Gumbal [7]. ,e BM method considers the distribution of
the maximum order statistic in a GEV distribution that best
fitted to the series of extremes observations. In this method,
a single-highest value is taken from a block. ,e second
highest value in this block may be larger than the highest of
another block but this value is not accounted for. ,is is the
conventional way of modeling extreme events and is used
mostly in hydrology and other engineering applications.
Further, the BMmethod is not suited for financial time series
because of volatility clustering. Due to this phenomenon,
extreme events tend to follow one another; the POTmethod
is efficient as compare to the BM method because it uses the
data more efficiently (it consider several large values instead
of only the largest one). ,is approach consists of using
observations that are above a given threshold, called
exceedances. ,erefore, the POT method has become the
method of choice in financial applications. ,is method can
be modeled by the Generalized Pareto (GPA) distribution
[8].

In Figure 1(a), the observations X2, X5, X7 , andX11
show that the BM for four periods with three observations
each. ,is is a traditional way of modeling extreme events
and is used effectually in hydrology and other engineering
applications. In Figure 1(b), the observations
X1, X2, X7, X8, X9, andX11 exceed the threshold (u), which
represents extreme events. ,e distribution of exceedances
above a threshold is based on a theory developed by Fisher
and Tippett [9] that gives the limiting distribution of sample
maxima provided the series which have certain mathe-
matical properties [10].

,e risk measures used in this paper are Value at Risk
(VaR) and Expected Shortfall (ES). ,e VaR is a statistical
technique that estimates the risk of an investment. In other
words, VaR is the maximum possible loss or gain that could
happen in investment over a given time period. ES is the
average amount of all losses which are greater or equal to
VaR. ,ere are two approaches, parametric and nonpara-
metric, which are used to compute VaR and ES. In this
paper, we used EVT that is a parametric approach for the
estimation of VaR and ES.

Ren and Giles [11] applied the EVT in daily returns of
crude oil prices in the spot market from years 1998 to 2006.
,ey concluded that the POT method by analyzing GPA
distribution provides an effective risk measure such as VaR
and ES. Jang [12] used the daily gold prices data from 1985 to
2006 to clear the main idea of EVT and discussed the tail
behavior. He computed VaR and ES by using GPA

distribution and normal distribution, and results show that
the GPA distribution is superior to the normal distribution
for VaR and ES estimations. Chaithep et al. [2] examined the
EVT approaches to daily gold prices from the years 1985 to
2011 in the U.S. dollar. He concluded that VaR estimation by
the GPA distribution model is more efficient than GEV
distribution. Chen [13] analyzed the gold investment risk by
using the EVT to historical daily data from years 1968 to
2014 in the London market. She compared the positive and
negative return results of VaR and ES of different metals
such as gold, silver, and platinum.

Chinhamu et al. [14] focused on the importance of the
EVTapproach for tail-related risk measures taking data from
years 1969 to 2012. ,ey concluded that GPA distribution
gives best results as compared to normal and Student’s t
distribution to estimate tail risk measures such as VaR and ES.
In [15], the authors explained that the classical extreme value
statistics consists of two fundamental techniques: the BM and
the POTapproach. It seems to be a general consensus among
researchers in the field that the POT method makes use of
extreme observations more efficiently than the BM method.
POT is preferable to quintile estimation, while BM is pref-
erable to return level estimation. In [16], the authors pre-
sented a study to assess the quality of VaR forecasts in various
states of the economic situation. Two methods based on the
EVT were compared, BM and POT. Forecasts were made on
the daily closing prices of 10 major indices in European
countries. Karahanoglu [17] analyzed the VaRmethod for one
single portfolio or for all similar portfolios, and it hampers the
opportunity for comparison in the finance market. ,e
dataset is chosen as the period from January 2, 2014, to April
20, 2020, when all returns are recorded daily.,e results show
for similar portfolios, and different VaR methodologies and
different back testing processesmust be applied for the best fit.
In [18], the author analyzed the VaR which has long been the
standard risk measure in financial risk management. In this
paper, he shows how EVT can be applied in estimating ES
using an unconditional POTmethod. Hemeasures the VaR as
the standard measure of financial risk. In terms of ES, we find
that cryptocurrencies are the high-risk asset and fixed income
the shield. In [19], the authors explained EVTtomodel the tail
behavior of the J580 Index for the right tail and the left tail.
,ey used the POTmethod to estimate the threshold using the
Pareto Q-Q plot, Hills plot, and mean residual live plot. ,e
MLE method was used to estimate the parameters. Extreme
tail risk measures were estimated at relatively high quantile at
the 95%, 99%, and 99.5% confidence intervals. ,e VAR and
ES are used to examine the extent of the potential extreme
downside and upside risk of the J580 Index. ,e results in-
dicate the importance of the GPA distribution in fitting
suitably the tails of financial time series data characterized by
extreme events.

,e rest of the paper is organized as follows: In Section 2,
we briefly describe the GPA and GEV distribution, Block
Maxima, and Peaks Over ,reshold method for establishing
extremes. Also, it describes the measures of extreme risks
VaR and ES. Empirical results obtained in GPA and GEV
distribution are discussed in Section 3. Finally, Section 4
concludes the study.
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2. Methodology

2.1. Basic Fundamental Assumptions. Basically, it is com-
pulsory to check the basic assumptions of data before
conducting the analysis in modeling of any annual maxi-
mum series approach in the field of statistical hydrology.,e
basic and fundamental assumptions are stationary, ran-
domness, homogeneity, and independence.

2.1.1. .e Homogeneity Assumption. ,e problem of ho-
mogeneity largely rises due to unexpected events in the
observed sample data. ,is is occurring due to changes that
occurred in the trend of the series. If a heterogeneity
problem appears in the observed data series and frequency
analysis results become unsuitable, then take out a partic-
ularly statistical investigation. In this situation, it is necessary
to check the assumption of homogeneity before starting the
statistical analysis of a given dataset. For checking the ho-
mogeneity assumption, we apply the Mann–Whitney U test.
It is a nonparametric test that can also be used in the
emplacement of an unpaired t-test and in the extreme type of
data (such as gold price, rainfall, and flood data) that present
variability that damaged the property of homogeneity.

2.1.2. .e Independence Assumption. ,e word indepen-
dence means that the observed value of the sample is not the
nonexistence of any other sample value. Puricelli [20] also
discussed the historical hydrology data series such as the
sequence of high and low, catchment flows, ARMS, annual
maxima, or minima. ,e dependence is expected on the
daily series, while no dependence is expected for periodic or
annual series. ,e independence assumption is formerly
tested before performing the statistical analysis for hydro-
logical variables. To check the independences’ assumption,
Wald and Wolfowitz [21] explained a test to check the
independence assumption for the observed data. WW test is
a nonparametric family test. ,e WW test is used to find
whether the observed sample value is not affected by the
existent of remaining sample data elements.

2.1.3. .e Assumption of Stationarity. ,e stationary as-
sumption is important on sample data for their probability
distribution, and related parameters are fixed with respect to

time. In nonstationarity conditions, monotonic and non-
monotonic trends (unexpected changes at some point in
time), we examined whether the sample data are stationary
with respect to monotonic nonlinear or linear trends. ,ey
help us in nonparametric tests based on Spearman’s rank
correlation coefficient. ,e British psychologist Charles
Spearman from 1863 to 1945 performed a nonparametric
estimate of the statistical dependence between two random
variables. It is shown by and named as in the Spearman rank
correlation. ρ is statistical dependence, and it compresses a
linear dependence as in usual Pearson’s linear correlation
coefficient.

2.1.4. .e Assumption of Randomness. NERC tests are used
to check the randomness and find whether a dataset has an
appreciable pattern and also whether the process that
generated it is significantly random. If the sample of a
hydrology variable can appear no randomness, then sta-
tistical dependence among its element has shown no ho-
mogeneity, and nonstationary causes can be also natural or
man-made. Flood, climate fluctuations, and earthquakes are
the natural causes that are mostly allied to where evolution
causes are connected with land-use changes and building of
big pool dams upstream, and humans make climate change.

2.2. Generalized Extreme Value Distribution. ,e General-
ized Extreme Value (GEV) distribution is three-parameter
flexible distributions. It consists of Gumbal, Frechet, and
Weibull distributions. ,e probability density function
(PDF) of GEV distribution is given as

f(x) �

1
α

1 + ξ
x − μ
α

 
− (1/ξ+1)

exp − 1 + ξ
x − μ
α

 
− 1/ξ

 , for ξ ≠ 0,

1
α

exp −
x − μ
α

  exp − e
x− μ/α

 , for ξ � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where ξ is the shape parameter, μ is the location parameter,
and α is the scale parameter. ,e shape parameter always
shows the thinkness of the tail. So, if the shape parameter
gives large value (means give positive value), then tail of the
distribution is the thicker.
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Figure 1: (a) Block Maxima method. (b) Peak-Over-,reshold Method.
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2.3. Generalized Pareto Distribution. According to Pickands
[22], the probability distributions of exceedances in an event
are approximated to the Generalized Pareto (GPA) distri-
bution. By introducing the shape parameter α and location
parameter β, the two parameter GPA distribution has the
following representation [23].

,e PDF of GPA distribution is given below as

fα,μ,β(x) �

1 − 1 + α
x

β
  

− 1/α

, if α≠ 0,

1 − e
− (x/β)

, if α � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where

(i) x> 0, when α≥ 0, and 0≤x≤ − β/αwhen α< 0
(ii) β> 0

Further, if the value of the shape parameter is high, then
tail follows heavy-tailed distribution.

2.4. ExcessDistribution. For a random variable X, the excess
distribution function Fu above a certain threshold u is
defined as

Fu(x) � Pr[X − u≤x | X> u], (3)

where x represents the size of exceedances over threshold u.
Further, if we denote F as the distribution function for X,
then we may write

Fu(x) �
F(x + u) − F(u)

1 − F(u)
. (4)

A fundamental theorem in EVT, by Pickands [22],
identifies the asymptotic behavior of these exceedances with
Generalized Pareto (GPA) distribution. ,e excess distri-
bution function Fu can be well approximated by GPA
distribution for large enough u:

2.5.Peakover.resholdMethod. We fit a Generalized Pareto
(GPA) distribution to our dataset; we adopt the Peak Over
,reshold (POT) method that focuses on the distribution of
exceedances above some high threshold. Forx − u≥ 0, we
can rewrite the excess distribution function (4) as

Fu(x − u) �
F(x) − F(u)

1 − F(u)
,

F(x) � (1 − F(u))Fu(x − u) + F(u),

(5)

which allows us to apply the POT method:
,ere are two steps in applying the POTmethod. Firstly,

we need to choose an appropriate threshold. Secondly, fit the
GPA distribution function to data. Given the choice of a
sufficiently high threshold, we may estimate F(u) by 1 −

Nu/nwhere n is the total sample size andNn is the amount of
observations above the chosen threshold. And, Fu(x − u)

can be estimated by a GPA distribution using maximum
likelihood estimation; we then can obtain the following tail
estimator [11]:

F(x) � 1 −
Nu

n
1 +

α
β

(x − u) 

− 1/α

. (6)

2.6. Selection of .reshold. ,e selection of the threshold
level is an issue of adjusting bias and variance. In [24], the
authors brought up that if a threshold is too low, it is more
likely to violate the asymptotic property of the model and
cause bias; if we take a threshold too high, it will generate few
exceedances with which the model can be estimated and
results in high variance. A basic procedure is to select a
threshold as low as possible, as long as the limiting ap-
proximation of the model can give a reasonable result. So far,
there is no algorithm-based method available for the se-
lection of the threshold (u). Many researchers including
McNeil [4], Danielsson and De Vries [25], and others have
utilized this data-analytic issue, but none has provided a
convincing solution.

In this paper, we used graphical methods for selection of
the threshold level. In graphical methods, the most widely
used plots are mean excess (ME) plot and shape parameter
plot. ,ese plots are also used by Ren and Giles [11], Chen
[13], Chinhamu et al. [14], Jakata and Chikobvu [15], and
many other researchers for the selection of the appropriate
threshold level.

2.6.1. Simple Mean Excess Plot. Davidson and Smith in [26]
introduced the simple mean excess (ME) plot. ,e first
approach for threshold selection utilizes the ME plot. A
mean excess function is the mean of the exceedances over a
certain threshold (u). For a random variable X with right
end point Fx, the mean excess function is defined as

e(u) � E(X − u | X> u). (7)

For u<Fx, if the underlying distribution of X> u has a
GPA distribution, then the corresponding mean excess is

e(u) �
β + αu

1 − α
, β + αu> 0. (8)

In equation (8), we can clearly see that the mean excess
functionmust be linear in u. More precisely, it follows a GPA
distribution if and only if the mean excess function is linear
in u [24]. ,is gives us a way of selecting an appropriate
threshold.

Given the data, we define the empirical mean excess
function as

en(u) �


n
i Xi − u( I Xi>u( )


n
i I Xi>u( )

, (9)

where n is the sample size. ,e empirical excess plot is a
graphical representation of the locus of (u, en(u)), and we
can examine this plot to choose the threshold u such that
en(u) is approximately linear for X> u.

We use R software to make the plot. More discussion will
be presented in Section 2.6.
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2.7. Parameter Estimation. ,ere are several techniques for
estimating the parameters such as maximum likelihood
estimation (MLE), method of moments, and method of
probability-weighted moments.

In this paper, the MLE method is used for estimating the
parameter of GEV and GPA distribution because the MLE is

asymptotically normal and allows simple approximations for
standard errors and confidence intervals.

Suppose that block maxima X1, X2, X3, . . . , Xk are in-
dependent from a GEV distribution, and the log-likelihood
function for the GEV distribution from the equation (1) is
given as

InL �

− k ln σ − 1 +
1
ξ

  

k

i�1
ln 1 + ξ

Xi − u( 

σ
  − 

k

i�1
ln 1 + ξ

Xi − u( 

σ
 

− 1/ξ

, for ξ ≠ 0,

− k ln σ − 
k

i�1

Xi − u( 

σ
− 

k

i�1
exp

Xi − u( 

σ
 , for ξ � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Smith [27] declared that, for ξ > 0.5, the MLE for ξ, u,

and σ satisfies the regular condition and therefore having
asymptotic and consistent properties. ,e number of blocks
k and the block size form a crucial trade-off between var-
iance and bias of parameter estimation [2].

Given that we have a adequately high threshold u and
assuming there are m observations with xi − u≥ 0, the
subsample (x1 − u, . . . , xm − u) has an underlying distri-
bution of GPA distribution, where xi − u≥ 0 for α≥ 0 and
0≤ xi − u≤ − β/α; then, the logarithm of the PDF of xi can
be derived from equation (2) as

Inf xi − u(  �

− ln β −
1 + α
α

ln 1 + α
xi − u

β
  , for α≠ 0,

− ln β −
1
β

xi − u( , for α � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(11)

Hence, the log-likelihood function L(α , β | xi − u) for
the GPA distribution is the logarithm of the joint density of
the m observations is as

L α, β | xi − u(  �

− n ln β −
1 + α
α



m

i�1
ln 1 + α

xi − u

β
  , for α≠ 0,

− n ln β −
1
β



m

i�1
xi − u( , for α � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(12)

We can obtain the estimates for α and β by maximizing
the log-likelihood function of the subsample under a suitable
threshold (u) [14].

2.8. Assumption of Poisson Distribution. ,e POT approach
has many features in the modeling of exceedances in which
the observations exceed or occur over a given period of time.
In the POTmethod, the general and simple rule is that the
numbers of exceedances follow a Poisson process which is
however not necessary for modeling the BM approach [28].
However, Rosbjerg et al. [29] considered this assumption
compulsory for modeling of the POT method. A Poisson
distribution is given in the equation below:

P �
e

− µµx

x!
, (13)

where e is the base of natural log, μ is the number of success
mean, and x is the successes number.

In this assumption, the occurrences must be inde-
pendent and the probability of occurrence of an extreme
event at a time “t + s” does not depend on another extreme
event that occurs at a time “t.” ,is assumption may not
fulfill in the case of natural processes (i.e., outbreak of a
disease, floods, hurricanes, and draught) as they occur in
clusters. In this condition, the decluttering method is
normally used.

,e property of Poisson distribution is that it has same
mean and variance. However, the gold price dataset usually
contain some outliers, which may result in violating the
Poisson process assumption. Cunnane [28] suggested a
criterion on the bases of confidence interval to test this
assumption; the test is called as “Fisher Dispersion Index”
(FDI). ,e test statistics proposed by Cunnane is based on
approximating the Poisson variants through normal variety.
,e number of peaks that occur in the ith year is expressed as
ni and is normally distributed with mean λ and standard
deviation λ; then, the test statistics:
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R � 
N

i

ni − λ( 
2

λ
, (14)

where ni is the number of exceedances that happen in the ith

year and λ is the mean of the numbers that exceed the
threshold level.

Following the chi-square distribution with degree of
freedom b � N–1, where N is total number of years, this is
valid for N greater than 5 (N > 5). ,e test statistics that
perform at “α” significance level under the null hypothesis
H0 is accepted if the value of R lies between

χ2α/2(b − 1)<R< χ21− α/2(b − 1). (15)

2.9. RiskMeasures’ Estimation. In this paper, we employ two
standard choices of risk measurement, which are Value at
Risk (VaR) and Expected Shortfall (ES). ,ese two risk
measures involved extreme quantile estimation.

2.9.1. Value at Risk. Value at Risk (VaR) is a statistical
technique, which measures the maximum possible loss for a
given time period. It calculates how much a set of expen-
ditures might lose.,eVaR is used for measuring themarket
risk starting in early 1990 [30].

For a random variable, X is usually the return in some
risky financial market with distribution function F over a
specified period, and the VaR for a given probability p can be
defined as the pth quartiles of F is as

VaRp � F
− 1

(1 − p), (16)

where F− 1 is the quartile function. VaR is a common
measure of extreme risks, and we used GPA distribution to
approximate this measure. In particular, using (6), we obtain
VaR as

VaRp �

u +
β
α

n

Nu

p  

− α

− 1
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, α≠ 0.

u − β log
n

Nu

(1 − p) , α � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where β and α are the maximum likelihood estimates of the
GPA distribution parameter.

2.9.2. Expected Shortfall. Expected Shortfall (ES) is proposed
by Artzner et al. [31], and it is the average amount of loss, or
in other words, ES is the average of all losses which are equal
to or greater than the VaR level.

In contrast to VaR, ES measures the risk of the market by
considering both the size and likelihood of the losses above a
particle threshold. ES gives the expected size of return that
exceeds VaR for a probability level p:

ESp � E X | X>VaRp , (18)

and equivalently,

ESp � VaRp + E X − VaRp | X>VaRp , (19)

where the second term above represents the excess distri-
bution FVaRp

(x), treating VaRp as the threshold level,
proceeding as before. If the threshold VaRp is sufficiently
large, then FVaRp

(x) is GPA distribution i.e.,

FVaRp
(x) � Gα,β+ξ VaRp− u( 

(x). (20)

,us, the mean of the excess distribution FVaRp
(x) can

be calculated as

β + α VaRp − u 

1 − α
, (21)

where α< 1 and substring into equation (19) will yield

ESp �
VaRp

1 − α
+

β − αu

1 − α
. (22)

2.10. Return Level Estimation. ,e most widely useful ap-
plication of the block maxima approaches is estimating the
return levels based on the Generalized Extreme Value (GEV)
distribution. It is the quantile points of the GEV distribution:

R
k
n � M

− 1 1 −
1
k

 , (23)

where M is the distribution of maxima observation of equal
length over a successive nonoverlapping period.

,e expected level to be exceeded in one out of k periods
of length n where k is the period and n is the length of this
period. ,e return level can be used as a measure of the
maximum loss of a portfolio, a rather more conservative
measure than the Value at Risk [32].

3. Results and Discussion

3.1. Data Description. ,e data used in this paper are the
daily gold prices in the Pakistan Bullionmarket over the time
period of August 1, 2011 to July 30, 2021, and the data is
taken from the following website: https://www.bullion-rates.
com/gold/PKR/2007-2-history.htm. ,e daily gold returns
are calculated by taking log differences of the daily gold
prices:

Daily Returnt � log Pi − log Pi− 1. (24)

,e total number of observations is 2707, and there are
2706 gold returns, among which 1304 are negative returns
and 1402 are positive returns. We separated the positive
returns and the negative returns and then take the absolute
values of the negative returns because Extreme Value,eory
(EVT) is only defined for nonnegative values [14].

Table 1 provides a summary of descriptive statistics for
the considered return series.

In Table 1, we observed that the mean of daily return is
0.00012 which is a positive indication that the overall gold
prices are increasing during the considered time period. ,e
standard deviation (SD) is 0.0128, the maximum value is
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0.0871, and the minimum value is − 0.1172 in daily return.
,e magnitude of the average return is very small as
compared to the standard deviation. Further, the large
kurtosis of 10.3284 indicates the distribution of returns has a
fat tail. ,e Jarque–Bera statistic has zero probability; it
indicates that we can reject the null hypothesis in favor of the
alternative hypothesis, so the distribution is nonnormal [13].

,e daily gold prices in the Pakistani rupee are shown in
Figure 2, and daily returns are shown in Figure 3.,e plot of
the daily gold prices (Figure 2) shows a substantial increase
since 2011 with lots of fluctuations, and the graph of daily
returns (Figure 3) shows a large number of extreme values in
the dataset. According to [12], the graph of daily return
confirms the volatility of the Pakistan Bullion Market. ,e
descriptive statistic and time series plots are obtained with
the help of Eview 8 software.

,e autocorrelations (ACF) pattern helps us to show the
unpredictability in returns and volatility clustering. Auto-
correlations investigate the correlations between today’s
value and value in the past time series. Figure 4 gives ACF of
return series, and Figure 5 gives the ACF plot of squared
returns series. ,e return autocorrelations are almost all
insignificant while the squared returns have significant
autocorrelations. Furthermore, the squared return auto-
correlations are all positive which is highly unlikely to occur
by chance. ,e figures give significant evidence for both the
unpredictability of returns and volatility clustering [14].

Further, to check the stationary of the daily return of
gold prices, we fit Augmented Dickey–Fuller (ADF) and
Philips Peron (PP) Unit Root tests’ results, which are given
in Table 2.

In Table 2, we are applying the ADF and the P-P unit root
tests on the return series of the gold prices to show the
stationarity. In the ADF test, we used Schwartz Information
Criterion to set at lag 0, and Bartlett Kernel spectral esti-
mation method was used in the P-P test. ,e null hypothesis
of unit root is rejecting in both tests (p≤ 0.001); in this
situation, we accept the alternative hypothesis and conclude
that the daily return of gold prices series are stationary.

3.2. Basic Fundamental Assumptions. It is compulsory to
check the basic assumptions of data before conducting the
analysis; the basic and fundamental assumptions are
stationarity, randomness, homogeneity, and indepen-
dence. ,e details of these assumptions are available in
Section 2.1.

In Table 3, the results are satisfying the basic and fun-
damental assumptions of stationarity, randomness, homo-
geneity, and independence. We checked all fundamental
assumptions for monthly, quarterly, and yearly Block
Maxima (BM) of negative return. ,e test statistic value for
each BM of a negative return is small and p≥ 0.050.
,erefore, we concluded that the monthly, quarterly, and

yearly BM of a negative return is satisfying the fundamental
assumptions of stationarity, randomness, homogeneity, and
independence.

3.3. Determination of Best-Fitted Distribution. In this paper,
first, we used the BlockMaxima (BM) approach in which the
Generalized Extreme Value (GEV) distribution is fitted. ,e
same distribution was used by Pratiwi et al. [33]. In order to
find the best fitting of GEV distribution, both graphical and
formal tests of goodness-of-fit are applied. In graphical, to
find the best-fitted distribution for BM of negative return, we
used crude residual plot and Quantile-Quantile (Q-Q) plot.

In Figure 6(a), crude residual and Q-Q plot are for
monthly BM of negative return, Figure 6(b) for quarterly BM
of negative return, and Figure 6(c) for yearly BM of negative
return.

,e crude residual plot for monthly, quarterly, and
yearly BM of negative return shows the concave pattern from
the straight line, and it indicates that the data series come to
a heavy-tailed distribution. ,e Q-Q plot looks linear to
show that the GEV distribution is best-fitted for BM of
negative return.

After graphical view, we concluded that GEV distribu-
tion is best fitted for monthly, quarterly, and yearly BM of
negative return.

Now, Kolmogorov–Smirnov (K–S), Anderson–Darling
(A–D), and chi-square tests are applied to find the best-fitted
distribution for BM of negative returns.

In Table 4, some formal tests K-S, A-D, and Chi-Square
tests’ goodness-of-fit test are applied to find the best-fitted
distribution. ,e test-statistics value of these goodness-of-fit
tests is calculated by the R software. Table 4 shows the test-
statistic value of GEV distributions and their p value.
According to the K-S, A-D, and the Chi-Square test, all the p

values are greater than 0.05, so GEV distribution is the best-
fitted distribution for monthly, quarterly, and yearly BM of
negative return.

We are focusing on GEV distribution which is a best-
fitted distribution for BM of negative return. Next, we
calculate the parameters of the selected distribution.

3.4. Parametric Maximum Likelihood Estimates. ,e Block
Maxima (BM) of negative returns has been fitted to the
Generalized Extreme Value (GEV) distribution with three
different block sizes (yearly, quarterly, and monthly). We
estimate the parameter by using the Maximum Likelihood
(MLE) method. Refer to Section 2.7, equation (11) for the
maximum likelihood function. ,e R software is used for
modeling the extreme events.

Table 5 shows the the estimates of three-parameter lo-
cation, scale, and shape with their standard error of GEV
distribution for three different blocks size (yearly, quarterly,
andmonthly). According to Jang [12], all block numbers show

Table 1: Descriptive summary statistic of gold returns.

Obs. Mean Median Maximum Minimum SD J-B test Skewness Kurtosis
2706 0.00012 0.00013 0.03858 − 0.03784 0.00477 6061.756 (0.001) − 0.09688 10.3284
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Figure 2: Time series plot of daily gold prices from the Pakistan Bullion Market.
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Figure 3: Time series plot of daily gold returns from the Pakistan Bullion Market.

A
CF

Daily return

0.0

0.4

0.8

5 10 15 20 25 30 350
Lag
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Figure 5: Autocorrelation function plot (ACF) of square daily gold returns.

8 Mathematical Problems in Engineering



that the shape parameter is positive. All the parameters have
decreasing estimated standard errors as the number of blocks
increased. In general, the BM of the negative returns follows a
Frechet family of GEV distribution for yearly, quarterly, and
monthly block frames. ,e Frechet type of GEV distribution
confirms that the original series has a fat tail.

3.5. Estimation of ReturnLevel. In this paper, we divide the n

sample block into monthly, quarterly, and yearly blocks by
taking the highest value in each block. ,e point estimate is
estimated for the sample data (obtained through the BM
approach) based on the MLE method using the probabilities
of nonexceedances for different return periods. By putting
the nonexceedances probability to the distribution’s, the
certain return period is computed. Refer to Section 2.8 for
the maximum likelihood function. ,e R software was used
for modeling the extreme values.

In Table 6, we estimate the point and interval estimates
for the next five years and ten-year return period. We have
monthly BM of the negative returns, and for the next five
years’ returns period, the point estimate is 0.0293, the
corresponding probability of nonexceedances is 0.80, and
the probability of exceedances is 0.20. It means that there are
80% chances that monthly maximum loss will not exceed
2.93% once in the next five years on average and a 20%
chance it will be exceeded.

For the next ten-year return period, the point estimate is
0.0363 and the corresponding probability of nonexceedances
is 0.90, and the probability of exceedances is 0.10. It means
that there are 90% chances that the monthly maximum loss
will not exceed the value of 3.63% once on average in the
next ten years and a 10% chance it will exceed.

According to Jang [12], the point estimate is increased
with decreasing block sizes. With the increasing time in-
terval, the point estimate increases, and the confidence in-
terval is wider. It reveals that time is a risk factor.

Similarly, we interpret the return level for quarterly and
yearly BM of the negative returns.

3.6. Selection of .reshold. As we have discussed in Section
2.6, there is no algorithm-based method available for the se-
lection of the threshold; therefore, we used a graphical method
for the selection of the threshold level. Two plots could help

with the determination of the threshold level. Figure 7 presents
the Mean Excess (ME) plot, and Figure 8 presents the estimate
of the shape parameter for positive returns, and Figure 9
presents the estimate of the shape parameter for negative
returns. ,ese plots are obtained with the help of R software.

,e ME plot is helpful in detecting graphically the
quintile above which Pareto’s relationship is valid. In Section
2.5, the ME plots are approximately linear in the threshold
(u) given that the underlying distribution of sample data is a
Generalized Pareto (GPA) distribution. More specifically,
the ME plot of the data can be used to distinguish between
light and heavy-tailed models; the plot of a heavy-tailed
distribution shows an upward trend, a medium tail shows a
horizontal line, and the plot is downward-sloped for light-
tailed data. Common ground in our sample data is that both
the ME plots of positive and negative returns have an up-
ward trend followed by an irregular the portion in the far
end.

Figure 7 shows ME plots for positive and negative
returns. According to Chen [13], we take the threshold (u),
where the ME plots are linear and upward-sloping. In this
paper, the ME plots’ upward-sloping is started from 0.001 to
0.015 thresholds’ level. ,erefore, we take the range of
threshold level where the plots look like linear and upward
slope in different segments.

Figures 8 and 9 show that the shape parameter plots of
MLE estimates the shape and scale parameters under dif-
ferent thresholds’ level. ,e 95% level of confidence intervals
is computed for upper and lower dashed lines of plots.
According to Chen [13], we took the threshold level before
which the shape parameters are stable. According to Ren and
Giles [11], we took the threshold level before the plot is
comparatively flat.

,e gain shows an approximate upward trend in the
threshold from 0.001 to 0.015. ,e loss shows approximate
linearity with a slightly upward trend in the threshold from
0.001 to 0.010. ,erefore, there is some evidence to choose
thresholds from 0.001 to 0.012 for the right tail and from
0.001 to 0.009 for the left tail.

3.7. Parameter Estimation. Given the thresholds selected in
the previous section, we could estimate the shape and scale
parameters of the corresponding GPA distribution. Refer to
Section 2.7, equation (13) for the maximum likelihood

Table 3: ,e basic fundamental assumptions of block maxima of negative return series.

- Randomness Independence Homogeneity Stationary
Tests (NERC 1975) (Wald e Wolfowitz) (Mann–Whitney test) (Spearman test)
Values p value Statistic p value Statistic p value Statistic p value Statistic
Month 0.4633 0.7334 0.0501 1.6441 0.0512 − 2.7293 0.0498 − 2.2678
Quarter 0.0682 1.4891 0.3869 0.2875 0.3167 − 0.4770 0.3344 − 0.4277
Year 0.2903 0.5526 0.1593 0.9972 0.3008 − 0.5222 0.3786 − 0.3091

Table 2: Results of ADF and P-P unit root tests of gold return series.

Unit root test Test statistic p value
ADF test − 55.7761 (0.001)
P-P test − 55.7518 (0.001)
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Table 4: Goodness-of-fit tests for GEV distribution.

Tests K-S test A-D test Chi-square test
Values Statistic p value Statistic p value Statistic p value
Month 0.0573 0.8251 2.0966 0.0814 0.4282 1
Quarter 0.2201 0.0933 0.5245 0.7205 0.1076 1
Year 0.3510 0.1319 0.2995 0.9375 0.0312 1
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Figure 6: (a) Crude residual plot (left) and Q-Q plot (right) of fitted GEV distribution. (b) Crude residual plot (left) and Q-Q plot (right) of
fitted GEV distribution. (c) Crude residual plot (left) and Q-Q plot (right) of fitted GEV distribution.
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function. ,e R software was used for modeling extreme
events. Table 1 summarizes all the parameter estimates and
their standard errors under different thresholds.

In Table 7, the confirmed choice of the threshold is u �

0.008 for positive returns and u � 0.001 for negative
returns. For positive returns, there are 99 observations above
the threshold which is 0.008. Compared to the sample size
1402, the tail only accounts for 7.06% of the total distri-
bution. As mentioned in previous sections, EVT only ana-
lyzes the extreme events; thus, even if we started with a large
sample, we contend with few observations. Moreover,
compared to using weekly returns, daily returns provide a
large sample size.,is reduces the variance by increasing the

number of observations in the tail. It is the same situation for
negative returns.

Since the maximum likelihood estimator is asymptoti-
cally normal, the associated MLE of the parameters under
selected thresholds is statistically significant at the 5% sig-
nificance level [13].

3.7.1. Assumptions of Poisson Distribution. According to
Cunnane [28], if the dataset contains outliers, the as-
sumption is tested through Poisson distribution statistics
with fixed confidence intervals. He also shows the use of the
criterion of the Fisher Dispersion Index to check the Poisson
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Figure 7: Mean Excess plot for positive returns and negative returns.

Table 6: Return level based on GEV distribution for the three block frames with 95% confidence bounds.

Return period p (probability exceedances) 1/
return period

1 − p (probability
nonexceedances) Monthly Quarterly Yearly

Once in five
years 0.20 0.80 0.0293 (0.0224,

0.0449)
0.0249 (0.0194,

0.0444)
0.0237 (0.0177,

0.0568)
Once in ten
years 0.10 0.90 0.0363 (0.0262,

0.0621)
0.0311 (0.0226,

0.0693)
0.0314 (0.0211,

0.0942)

Table 5: Parameter estimation of GEV distribution based on the Maximum Likelihood method.

Parameter Location (standard error) Scale (standard error) Shape (standard error)
Monthly 0.0063 (0.0003) 0.0031 (0.00002) 0.2657 (0.0981)
Quarterly 0.0101 (0.0007) 0.0039 (0.0003) 0.2618 (0.1822)
Yearly 0.0151 (0.0011) 0.0038 (0.000002) 0.5181 (0.5405)
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process assumption. ,e details are discussed about Poisson
assumption in Section 2.8. ,e calculation is done in Excel
by using equation (15).

In Table 8, the test statistic R is tested at 1% and 5%
significance levels. For positive return, the threshold 0.008
and 0.012 of a sample of 99 and 39, respectively, and ob-
servations are considered for positive return. ,e test sta-
tisticR is 15.44 and 11.51 which falls in the acceptance region
for both 1% and 5% significance levels which indicates that
the sample obtained through the POT approach follows the
Poisson process assumption.,e sample of sizes 99 and 39 is

selected on the level of threshold. ,is sample satisfies the
Poisson process assumption; therefore, further POT mod-
eling analysis for positive return analysis is carried on the
basis of this sample.

For negative return, the threshold is 0.001 and 0.003 of a
sample of 962 and 493, respectively, and observations are
considered for a negative return. ,e test statistic R is 10.14
and 17.89 which falls in the acceptance region for both 1%
and 5% significance levels which indicates that the sample
obtained through the POT approach follows the Poisson
process assumption. A sample of sizes 962 and 493 are
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Figure 9: Shape parameter plot for negative returns.
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Figure 8: Shape parameter plot for positive returns.

Table 7: Maximum likelihood estimates of fitted GPA distribution under different thresholds’ level.

,reshold # of exceed Probability less threshold Shape parameter (standard error) Scale parameter than (standard error)
Parameter estimate for positive returns
0.001 1068 0.2382 0.0989 (0.02895) 0.0028 (0.00007)
0.004 375 0.7325 0.1530 (0.05438) 0.0029 (0.00015)
0.008 99 0.9294 0.1282 (0.11608) 0.0039 (0.00049)
0.012 39 0.9722 0.0978 (0.18580) 0.0045 (0.00094)
Parameter estimate for negative returns
0.001 962 0.2623 0.1251 (0.03247) 0.0028 (0.00008)
0.003 493 0.6219 0.1762 (0.05001) 0.0029 (0.00013)
0.006 188 0.8558 0.1508 (0.08331) 0.0034 (0.00029)
0.009 81 0.9378 0.1443 (0.14659) 0.0040 (0.00061)
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selected on the level of threshold. ,e samples satisfy the
Poisson process assumption for a negative return. ,ere-
fore, further POT modeling for negative return analysis is
carried on the basis of these two sample data.

3.8. Assumption of Generalized Pareto Distribution. ,e
exceedances in the POT approach are considered to iden-
tically distribute with exponential distribution, but in the
presence of outliers, the exponential distribution fails to
fulfill the model requirements. In recent years, GPA dis-
tribution attained high consideration in POT modeling
because of its flexibility. We test the goodness-of-fit of GPA
distribution above the threshold level by using K-S and A-D
tests. ,e results of GPA distribution of goodness-of-fit for
positive and negative threshold are given in Table 9.

Table 9 shows goodness-of-fit results for GPA distri-
bution of positive and negative daily return at the threshold
level; for positive return, the value of test statistic at
threshold 0.008 is 0.1105 and 0.3312, respectively, and the p

value are 0.1653 and 0.9128 for both K-S and A-D tests. Since
p≥ 0.050, therefore we can say that the exceedances or the
POTseries follow the GPA distribution.,e similar behavior
is observed for the other threshold level.

It means that daily positive return of gold prices at
threshold level 0.008 and 0.012 and daily negative return of
gold prices at threshold level are 0.001 and 0.003 which are
best fitted for GPA distribution.

EVT suggested that the excess distribution above a
suitable threshold of daily returns should follow a GPA
distribution. To determine how the GPA distribution fits the
tails of the return distribution, we plot the empirical dis-
tribution of exceedances along with the cumulative distri-
bution simulated by a GPA distribution and compare the
results visually. Figures 10–13 are the residual diagnostic
check of GPA distribution fit to daily positive and negative
returns of gold prices.

Figures 10 and 11 provide the plots of excess distribution
plot and tail of underlying distribution plot for gains and
loss, and the plots show that the GPA distribution fitting to
99 exceedances at the threshold u � 0.008 with the shape
parameter estimate 0.1282, and the GPA distribution fitting
to 39 exceedances at the threshold u � 0.012 with the shape
parameter estimate 0.0978. For losses, the plots give the GPA

distribution fitting is 962 exceedances at the threshold u �

0.001 with the shape parameter estimate of 0.1251, and the
GPA distribution fitting is 493 exceedances at the threshold
u � 0.003 with the shape parameter estimate 0.1762. For
both positive and negative returns, the graph of the excess
distribution function follows closely the trace of a corre-
sponding GPA distribution, implying that the GPA distri-
bution models the exceedances very well [11].

Figures 12 and 13 provide the plots of scatter plot of
residuals and Q-Q plot for gains and loss and are the quantile
plots to measure the quality of best-fitted GPA distribution.
,e GPA distribution is sensibly fitted to the exceedances
above the threshold when the Q-Q plot shows a linear
pattern. If the scatter plot of residuals does not show any
pattern, it means that the peaks values are independent [14].

Overall, based on different fittings with different values
of the threshold and associated parameter estimates, the
GPA distribution models the tail behavior of our daily
returns very well and the fits exhibit reasonable robustness to
the choice of thresholds.

3.9. Risk Measures’ Estimation. ,e Value at Risk (VaR),
Expected Shortfall (ES), and their respective confidence inter-
vals for both positive and negative returns give different levels of
the threshold and different tail quintiles.,e riskmeasures used
in this paper are VaR and ES.,e VAR is a statistical technique
that estimatesmaxima possible risk over one trade day and ES is
the average amount of all losses which are greater or equal to
VaR.,ere are two approaches, parametric and nonparametric,
to compute VaR and ES. In summary statistics, we suggest that

Table 8: Output of Fisher Dispersion Index test statistics.

,reshold Exceedances R-statistic C.I (1%) C.I (5%) Decision
Fisher Dispersion Index test for positive return
0.001 1068 42.62 1.74<R< 23.59 2.70<R< 19.20 Rejected
0.004 375 30.97 1.74<R< 23.59 2.70<R< 19.20 Rejected
0.008 99 15.44 1.74<R< 23.59 2.70<R< 19.20 Accepted
0.012 39 11.51 1.74<R< 23.59 2.70<R< 19.20 Accepted
Fisher Dispersion Index test for negative return
0.001 962 10.14 1.74<R< 23.59 2.70<R< 19.20 Accepted
0.003 493 17.89 1.74<R< 23.59 2.70<R< 19.20 Accepted
0.006 188 47.98 1.74<R< 23.59 2.70<R< 19.20 Rejected
0.009 81 59.62 1.74<R< 23.59 2.70<R< 19.20 Rejected

Table 9: Goodness-of-fit of GPA distribution for both positive and
negative returns.

Goodness-of-fit for positive return
,reshold value 0.008 0.012
No. of exceedances 99 39
K-S test (p value) 0.1105 (0.1653) 0.1173 (0.6145)
A-D test (p value) 0.3312 (0.9128) 1.0893 (0.3132)
Goodness-of-fit for negative return
,reshold value 0.001 0.003
No. of exceedances 962 493
K-S test (p value) 0.0325 (0.2616) 0.0448 (0.2753)
A-D test (p value) 0.2909 (0.9453) 0.4512 (0.7968)
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Figure 10: Excess distribution functions’ plot for positive and negative returns.
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the returns’ distribution has a fat tail. In fat tail distribution, the
nonparametric approaches for computing VaR and ES failed.
,erefore, in this paper, we used EVTfor estimation of VaR and
ES which is a parametric approach [14].

In this paper, Value at Risk (VaR) measures the best and
worst-case scenario on the Pakistan BullionMarket value of the
par-gram gold price over one trade day, given a specified degree
of confidence. We first consider the cases of point estimates
under the lower threshold for both tails (0.008 for the right tail
and 0.001 for the left tail) with statistics shown in Table 10. ,e
calculated VaR is 0.0325 with 1% probability (99th percentile)
for the right tail. ,at is, given usual conditions, we expect a
daily gain in the value of par-gram gold prices in the Pakistan
Bullionmarket would not increase bymore than 3.25%, and the
average gain above this level will be 4.06%. In other words, the
market value, with a probability of 1%, would be expected to
gain by Rs.32,500 or more, and on the average basis, the gain is
by Rs. 40,600 if we have an investment of 1 million Pakistani
rupees in that market.

On the contrary, VaR is estimated as 0.0185 with a
probability of 1% (99th percentile) for the left tail. ,e worst
daily loss in the market value could fall below 1.85%, and the
average loss below this level will be 2.42%. Put differently, if
we invest 1 million Pakistani rupees in the Pakistan bullion
gold market, we are 99% confident that our daily loss at

worst will not exceed Rs.18,500, and on the average basis, the
loss is Rs.24,200 during one trade day.

On the contrary, VaR is estimated as 0.0185 with a
probability of 1% (99th percentile) for left tail. ,e worst
daily loss in the market value could fall below 1.85%, and the
average loss below this level will be 2.42%. Put differently, if
we invest 1 million Pakistani rupee in Pakistan bullion gold
market, we are 99% confident that our daily loss at worst will
not exceed Rs.18,500, and on the average bases, the loss is
Rs.24,200 during one trade day.

Similarly, at a lower quantile of 95-level, the estimated
VaR is 0.0223 for gains and 0.0112 for losses. It can be stated
at, with the 95% confidence, the expected market value of
par-gram gold prices would not gain by more than 2.23% for
the best-case scenario or lose more than 1.12% for the worst-
case scenario within the one-day duration.

,e adequacy of VaR estimates’ essential depends on
their accuracy. ,e easiest way to examine this method is to
construct the confidence intervals. For instance, we discuss
the right tail here. An approximate 95% confidence interval
constructed for the 99-level quintile VaR is (0.0257, 0.0541)
under threshold is 0.008 and (0.0289, 0.0579) under
threshold is 0.012; for the 95-level quantile VaR, the asso-
ciated 95% confidence intervals are (0.0193, 0.0284) and
(0.0232, 0.0425).
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Figure 12: Scatter plot of residuals for positive and negative returns.
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Figure 13: Quantile-Quantile (Q-Q) plot of residuals for positive and negative returns.

Table 10: Point and interval estimates of Value at Risk and Expected Shortfall of GPA distribution.

Quantile ,reshold Estimate CI lower CI upper
Value at Risk for positive returns
90-level

0.008
0.0185 0.0165 0.0217

95-level 0.0223 0.0193 0.0284
99-level 0.0325 0.0257 0.0541
90-level

0.012
0.0236 0.0204 0.0308

95-level 0.0276 0.0232 0.0425
99-level 0.0380 0.0289 0.0579
Value at Risk for negative returns
90-level

0.001
0.0085 0.0079 0.0091

95-level 0.0112 0.0104 0.0122
99-level 0.0185 0.0165 0.0213
90-level

0.003
0.0110 0.0102 0.0120

95-level 0.0114 0.0129 0.0159
99-level 0.0231 0.0197 0.0287
Expected Shortfall for positive returns
90-level

0.008
0.0245 0.0206 0.0357

95-level 0.0288 0.0233 0.0474
99-level 0.0406 0.0294 0.0579
90-level

0.012
0.0298 0.0244 0.0578

95-level 0.0342 0.0269 0.0579
99-level 0.0458 0.0319 0.0579
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Some characteristics of the estimation can be summa-
rized as follows: (1) under different thresholds, the estimates
of VaR exhibit strong stability; (2) given the quantile level,
under either the lower or higher threshold, the corre-
sponding VaR estimate in the right tail is larger than in the
left tail, but the difference is small, implying that the be-
havior difference in both tails is likely to be small.

4. Conclusion

,e high unpredictability of gold prices in Pakistan bullion
markets requires the application of effective risk manage-
ment. Extreme Value ,eory (EVT) is a capable method to
estimate the effects of extreme events in risky markets. In
this paper, we have described the EVTwhich can be used to
model the tail-related risk measures, such as Value at Risk
(VaR), Expected Shortfall (ES), and return level by applying
it to the daily returns of gold prices in the Pakistan Bullion
Market. We used the POTmethod to estimate the threshold
using the mean excess plot and shape parameter plot. ,e
MLE method was used to estimate the parameters of GEV
and GPA distribution. ,e point and interval estimates of
VaR and ES calculated under different high quantile levels
show strong stability through a range of the selected
thresholds, suggesting the accuracy and reliability of the
estimated quantile-based risk measures.

Moreover, it is included in the paper return level fore-
casting in the next 5 and 10-years by analyzing the Gen-
eralized Extreme Value (GEV) distribution. It is to be noted
that, with the increase in the time interval, the point estimate
increases slowly and the confidence interval becomes wider.
,erefore, this indicates that time is a risk factor.

Our application studies the heavy-tailed behavior in daily
returns and the asymmetric characteristics in distributions,
suggesting we treat positive besides negative returns separately.
,e results show that the EVT is a powerful technique to
estimate the effects of extreme events in financial markets.

Our EVT-based VaR approach provides quantitative
information for analyzing the point of potential extreme
risks in bullion gold markets. Organizations and corpora-
tions may use this technique as a means of risk management.
Further, for the people who want to invest in the Pakistan
bullion markets, the estimates of VaR and ES provide
quantitative indicators for their investment decisions.

Data Availability

We used the daily gold prices in Pakistani rupees from
Bullion Rates > Gold Price History in Pakistan Rupees

(PKR) for February 2007 from the following website: https://
www.bullion-rates.com/gold/PKR/2007-2-history.htm.
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