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Multiobjective evolutionary algorithm based on decomposition (MOEA/D) is the seminal framework of multiobjective evo-
lutionary algorithms (MOEAs). To alleviate the nonuniformly distributed solutions generated by a fixed set of evenly distributed
weight vectors in the presence of nonconvex and disconnected problems, an adaptive vector generationmechanism is proposed. A
coevolution strategy and a vector generator are synergistically cooperated to remedy the weight vectors. Optimal weight vectors
are generated to replace the useless weight vectors to assure that optimal solutions are distributed evenly. Experiment results
indicate that this mechanism is efficient in improving the diversity of MOEA/D.

1. Introduction

Multiobjective optimization problems (MOPs), different
from the single-objective optimization problems (SOPs),
have more than one objective function, and the objective
functions conflict with each other. In the optimization
process, the relationship between the objective function
values is partially ordered. +e optimization cannot be se-
lected by simply comparing the values. +e optimized so-
lution of MOPs is a set of mutually compromised solutions,
i.e., Pareto optimal solution set (PS) [1–5]. +e performance
metrics of the PS are diversity and convergence. Also, the
multiobjective optimization supports simplify the design of
products and their several key performances like efficiency,
reliability, availability, and lifetime cost-saving [6–11].

Conventional analytical algorithms aggregate multiple
objective functions into one, which can be solved by the
analytical method. However, these algorithms can only
obtain one optimized solution at each iteration. Only by
running multiple times and setting different single “com-
posite” objective functions can we obtain enough Pareto
optimal solutions. At the same time, since the optimization

process of each iteration is independent of each other, the
information in the iteration process cannot be shared, re-
quiring complex computations [12]. Furthermore, these
algorithms are problem-dependent. Different aggregation
strategies would be only applicable for specific MOP
problems. An evolutionary algorithm (EA) is a population-
based and problem-independent optimization algorithm. It
poses computers the ability to solve complex optimization in
the absence of gradient information and obtains a set of
optimization solutions in parallel at each iteration. Multi-
objective evolutionary algorithms (MOEA) have become an
important branch in the field of EA and evolutionary
multiobjective optimization (EMO) research. +e iconic
research on employing EA to solveMOPs refers to Goldberg,
by which the notion of nondominated sorting and niching
technique are introduced [13]. It established the non-
dominated based framework of MOEAs, by which many
researches are developed [14–17]. However, most objective
optimization problems (MaOPs) with more than 3 objec-
tives, which make it is difficult for nondominated based
MOEAs to obtain efficient solutions. Because the portion of
nondominated solutions in the whole population increase
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dramatically, it would be difficult to discriminate optimized
solutions from the population. Relaxed dominance based
MOEAs [18–21], preference-based MOEAs [22–24], indi-
cator based MOEAs [25–27], and decomposition based
MOEAs [28, 29] are introduced to tackle MaOPs. +e de-
composition based MOEAs decompose the MOPs into a set
of single-objective subproblems with reference to prescribed
weight vectors and then optimize these subproblems at the
same time. Due to its superiority in strong convergence to
the Pareto front and wide scope of adaption in complex
MOPs and MaOPs, decomposition based MOEAs have been
the research hotspot in EMO. Recently most researches on
decomposition based MOEAs are based on the seminal
framework of MOEA/D proposed by Zhang and Li [28].

In the preliminary algorithm, MOEA/D assumes that a
set of uniformly distributed weight vectors could result in
well-distributed solutions. However, Li and Zhang found
that different weight vectors could result in different dis-
tributed solutions with respect to different optimization
problems [30]. Referring to a convex problem illustrated in
Figure 1, a set of uniformly distributed weight vectors w �

w1, w2, w3, w4, w5, w6  would result in a set of non-
uniformly distributed solutions s � s1, s2, s3, s4, s5, s6 .

Much research has tried to redesign the generation
method of weight vectors so that the optimized solutions can
be evenly distributed in the target space, thereby enhancing
their diversity. So far, representative weight vector generation
methods include simplex-lattice [31], double-layer simplex
lattice [32], and uniform design [33]. To obtain an optimal
solution with uniform distribution, it demands that the Pareto
optimal frontier is not of discrete, degenerate, and singular
shapes. In view of this, the current research on weight vectors
is mainly focused on the adaptive strategy. According to the
sparse degree of the optimized solution, the weight vectors are
automatically added or deleted to meet the needs of im-
proving diversity. Relevant researchers have developed ef-
fective algorithms regarding the adaptive strategy. Jain and
Deb proposed an adaptive reference point reduction strategy
based on NSGA-III [32] and A-NSGA-III [34]. A-NSGA-III
constructs (m-1) simplex lattices of reference points and
deletes the reference points around crowded reference points
that have no correlation with the optimized solution. Qi et al.
[35] proposed an adaptive weight adjustment strategy
(MOEAD-AWA). In the optimization process, first assume
that the algorithm converges to the real Pareto optimal
frontier, periodically delete the crowded weight vector, and
add a new weight vector to the sparse area. Cheng et al. [36]
adopted two sets of reference vectors to deal with different
problems. However, these methods have certain limitations.
+ese algorithms are specifically designed to solve certain
problems. Giagkiozis et al. [37] pointed out that the use of
adaptive strategies to generate new weight vectors may cause
insufficient convergence for the entire evolution process. In
view of this, Wang et al. [38] proposed a method PICEA-w
based on the coevolution strategy of weight vectors and
optimized solutions. By calculating the Chebyshev function
values of the optimized solutions with respect to the weight
vectors, the optimal solution and the dominant weight vector
are selected into the next iteration together. However, the

process of adding weight vectors adopts a randomly generated
method and does not make full use of the current solution
information. +erefore, based on the coevolution strategy of
PICEA-w, this paper introduces an adaptive weight genera-
tion mechanism based on MOEA/D (MOEA/D-AW), which
adopts the weight vector generation mechanism [35, 39] to
make full use of the distribution of the generated solution in
the objective space, and reversely guide the addition and
deletion of the weight vector.

+e remainder of this paper is organized as follows:
Section 2 describes the mechanism of PICEA-w. Section 3
introduces the optimized weight generation mechanism and
proposes a novel adaptive weight generation based on the
coevolution strategy of PICEA-w. Experiment settings are
illustrated in Section 4 and experimental results are illus-
trated in Section 5. Finally, Section 6 concludes this paper.

2. Description of PICEA-W

2.1. Basic Procedure of PICEA-W. +e pseudocode of
PICEA-w is illustrated in Algorithm 1. 5 functions involved
in PICEA-w are illustrated in Table 1.

Brief introductions of the functions involved in Table 1 are
listed below (refer to the original research [38] for details),

2.1.1. weightGenerator. Function weightGenerator is used to
generate Nw weight vectors wj � w1, . . . , wi, wM ,
j � 1, 2, . . . , Nw. We define the weight vector wj in the
following form:

w1 � 1 −
����
randM−1

√

wi � 1 − 
i−1

k�1
wk) 1 −

����
randM−1

√
 ⋮wM � 1 − 

i−1

j�1
wk,⎛⎝

(1)

where Nw is the number of weight vectrors, rand is a random
number between 0 and 1, and M is the number of objectives.

2.1.2. updateA. Function updateA is used to upgrade the
nondominated solutions in A. When the size of A surpasses
A size, it will execute function trimA to make sure that the
size of A remains A size.
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Figure 1: Nonuniformly distributed solutions with respect to
uniformly distributed weight vectors.
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2.1.3. trimA. Function trimA is used to confine the size of A
to remain initialized value with reference to the clustering
technique in SPEA2 [15].

2.1.4. thetaConfiguration. Function thetaConfiguration is
used to obtain an angle θ as one of the input parameters of
function coEvolve, and the θ is generated as follows:

θ �
π
2

iter
itermax

, (2)

where iter is the current number of iterations and itermax is
the maximum number of iterations.

2.1.5. coEvolve. Function coevolve generates optimized so-
lution S, optimized objective values F_S, and optimized
weight vector W by coevolution algorithm with all input
parameters which are θ, JointS, JointF and JointW. JointS is
the joint of parent and offspring solutions at iter, JointF is the
mapping of JointS in the objective space, and JointW is the
joint of optimized weight vectors and randomly generated
weight vectors.

+e basic procedure of coevolution in function coevolve
is listed as follows:

(1) Calculate the angles between each weight vector
wj, j � 1, 2, . . . , 2Nw in JointW and each objective
vector Fi, i � 1, 2, . . . , 2N in JointF to obtain a rel-
evant angle vector Φ in the scale of 2N × 2Nw when

the angle between Fi and wj is less than θ, Fi, i �

1, 2, . . . , 2N is regarded as the neighbor of wj. Any
elements inΦ surpassing θwill be treated as inf. +e
performance of Fi is evaluated by calculating the
Chebyshev scalarizing function of wj and Fi. Re-
place the elements that manifest the neighboring
relations inΦwith the Chebyshev scalarizing values
to obtain a performance vector Ρ in the scale of
2N × 2Nw. Sort the elements of P in descending
order by wj to obtain a sequence vector R in the
scale of 2N × 2Nw of which 1 represents the best
performance.

(2) Choose N Fi as new F_S based on the sequence
vector R. Sort R in ascending order. +e 1st column
is marked as the best performance, followed by the
2nd column, and so on.+en, choose the firstN Fi to
form a new F_S.

(3) Choose Nw wj as newW with reference to the newly
obtained Fi of F_S. If Fi performs the same with
multiple weight vectors, choose the farthest wj away
from Fi to be its most optimal weight vector.

2.2. Flaws of PICEA-W. At each iteration, weight vectors are
randomly generated in accordance with “(1).” In the evo-
lution, as the distribution of the mapping of obtained so-
lutions in the objective is not fully used, which induces that
the weight vector generated in step 10 of Algorithm 1 is very

Table 1: Functions involved in Algorithm 1.

Name of functions Description
weightGenerator Generate random weight vectors
update A Update archive in accordance with the obtained nondominated solutions
thetaConfiguration Obtain the value of angle intended for the function coEvolve
coEvolve Obtain new solutions and new weight vectors
trim A Confine the size of the archive

Inputs: Number of population N, initial population S, Nw weight vectors W � w1,w2, . . . ,wNw
 , maximum iteration number itermax,

number of objective functions M, size of archive A A size
Outputs S, W, A, BestF

(1) BestF←ϕ
(2) S←initialize S(N)

(3) F S←obj(S)

(4) BestF←updateA(BestF, F S)

(5) W←weightGenerator(Nw)

(6) while iter< itermax do
(7) Sc←geneticOperator(S)

(8) F Sc←obj(Sc)

(9) (Joint S, JointF)←Union(S, Sc, F S, F Sc)

(10) Wc←weight Generator(Nw)

(11) θ←theta Configuration(iter, π/2)

(12) (S, F S, W)←coEvolve(JointF, Joint S, JointW, θ)

(13) BestF←updateA(BestF, F S, A size)
(14) end while

ALGORITHM 1: PICEA-w.
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likely to be the same as the last generation and eventually has
a lack of diversity.

3. A Novel Decomposition-Based MOEA with
Adaptive Weight Generation (MOEA/D-AW)

3.1. Optimal Weight Generation Strategy. Given a reference
point z∗i � (z∗1 , z∗2 , . . . , z∗M), the optimal weight vector w �

w1,w2, . . . ,wM  can be obtained by calculating the Che-
byshev scalarizing functions with respect to z∗i . +e basic
procedure is listed as follows:

f1(s) − z∗1
w1

�
f2(s) − z∗2

w2
� · · · �

fM(s) − z∗M
wM

. (3)

Meanwhile, as w1 + w2 + · · · + wM � 1, the optimal
weight vector can be expressed as follows:

w � w1, . . . ,wM(  �
f1(s) − z∗1


M
i�1 fi(s) − z∗i

, . . . ,
fM(s) − z∗M


M
i�1 fi(s) − z∗i

 .

(4)

3.2. Basic Idea of the Proposed Algorithm. MOEA/D-AW
makes full use of the current solutions to update the weight
vectors instead of a set of fixed weight vectors to improve the
diversity of the solutions. Different from PICEA-w, the
coevolution strategy is amended by replacing the weight
generation mechanism shown in “(1)” with that of “(4).”

3.3. Detailed Description. +e pseudocode of MOEA/D is
illustrated in Algorithm 2. Firstly, an evenly distributed
weight vector is generated by means of that proposed by Das
and Dennis [31], W← w1,w2, . . . ,wN . N subproblems
pi, i � 1, 2, . . . , N are determined by wi, i � 1, 2, . . . , N to
form the initialized population P0 � p0

1, p0
2, . . . , p0

N . +e
ideal point z∗0 in step 3 of Algorithm 2 is determined by
minimizing all populations in each objective.

+e adaptive weight generation mechanism is man-
ifested in Step 7 of Algorithm 2 with reference to a com-
bination and revision of Step 10 to 12 in Algorithm 1. +e
weight generation is embedded in function coEvolve, once
the weight vector with respect to Piter

i could not be its
neighbor, the optimal weight vector generated by “(4)”
would replace the current one, and then the subproblems in
the next iteration would also be updated. +e diversity of the
solutions is ensured by updating the weight vectors (Al-
gorithms 3 and 4).

As Differential Evolution (DE) operator outstands in
convergence with respect to most cases [40], it is used to
generate offspring.

4. Experiment Settings

4.1. Test Problems. In this paper, 8 problems from the
Walking Fish Group (WFG) test suite [41] invoked in 2-, 4-,
7-objective instances are introduced to test our proposed
algorithm and other competitors. +e WFG parameters k
and l are set to be 18 and 14.+e attributes of these problems

include nonseparable/separable, unimodal/multimodal, bi-
ased (polynomial, flat, parameter dependent)/unbiased,
convex/concave, connected/disconnected, etc. Note that the
decision variables in WFGs are zi � [0, 2i], i � 1, 2, . . . , n.
Hereinafter, WFGm-n referrers to the test problem WFGm
with n objectives.

4.2. Performance Metrics. In this paper, 1 qualitative per-
formance metric (Median Attainment Surface [42]) and 4
quantitative performance metrics are included, which are
Hypervolume (HV) [16], Inverted Generational Distance
(IGD) [43], Generational Distance (GD) [44], and Pure
Diversity (PD) [45]. +e Median Attainment Surface could
intuitively indicate the diversity and convergence of ob-
tained solutions in the objective space (normally less than 3
objectives). HV and IGD are the most widely used metrics
that could evaluate the diversity and convergence simulta-
neously. A greater value of HV and a smaller value of IGD
both indicate that the solutions perform better. At the same
time, a smaller value of GD and a larger value of PD indicates
better performance in convergence and diversity, respec-
tively. Note that the PD metric could assess the diversity of
solutions not only in the dimensions of spread and uni-
formity but also dissimilarity.

4.3. CompetitorMOEAs. To evaluate the performance of the
proposed MOEA/D-AW, 4 recent published outstanding
MOEAs, which are Reference Vector Guided Evolutionary
Algorithm (RVEAa) [36], A-NSGA-III [34], Preference
Inspired Coevolutionary Algorithm Using Goals (PICEA-g)
[46], and Ensemble Fitness Ranking with Ranking Re-
striction Scheme (EFR-RR) [47], are introduced to be
compared with.

In Reference Vector Guided Evolutionary Algorithm
(RVEA), a set of evenly distributed reference vectors is
prescribed to divide the objective space into the same
number of subspaces as that of reference vectors. At each
iteration, RVEA combines the parent and the offspring to
obtain the next generation based on the elitism strategy of
NSGA-II [17]. Angle-Penalized Distance (APD) is intro-
duced to balance the performance of RVEA in diversity and
convergence. APD is calculated with reference to the
number of iterations so that RVEA could bemore inclined to
converge at the early iterations while spreading at the final
iterations. In the presence of the performance degeneration
of RVEA in dealing with irregular Pareto fronts, RVEAa
introduces a strategy that could adaptively regenerate the
reference vector to alleviate the degeneration. Specifically,
after subpopulations are generated by the reference vectors,
the reference vectors with respect to empty subpopulations
are replaced to be random unit vectors that are ranged from
the maximum and minimum objective values of the current
translated population.

A-NSGA-III is the adaptive version of NSGA-III which
is manifested in adaptively adding and reducing reference
points. Similar to NSGA-II, at iteration t, NSGA-III first
select the nondominance levels (F1,t, F2,t, . . . , Fl−1,t) prior to
the critical (last) nondominance level (Fl,t) to construct part
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of the next generation (Qt+1), St and much efforts are put
into choosing remaining populations from Fl,t. Associate the
solutions in St with reference points by calculating the
closest perpendicular distance between a solution in St and
an reference line j. Based on the number of associated so-
lutions concerning reference point j, pj, reference points
with minimum pj are first classified. In the case of pj � 0,
choose the population member from Fl,t which is closest to
reference line j to construct Qt+1; otherwise exclude the
reference point j. In the case of pj ≥ 1, a randomly chosen
member from Fl,t, if exists, would be included if it is as-
sociated with reference point j. Based on NSGA-III, referring
to the case of pj > 1, A-NSGA-III adds a corresponding
number of reference points according to the number of
objectives near the crowed point j and deletes all reference
points that pj � 0. By doing this, the ideal state (each pj � 1)

could be achieved to obtain an evenly distributed Pareto
front.

Based on the coevolution strategy, PICEA-g uses the
range of current objective values to construct a set of goal
vectors to divide the objective space. It combines the con-
ventional Pareto dominant relationship and fitness calcula-
tion based on goal vector. Like that of NSGA-II, it sorts the
fitness of the members in the combined population which is
constructed by the parent and the offspring to choose the
optimal generation.

Based on the Ensemble Fitness Ranking (EFR), EFR-RR
introduces a ranking restriction scheme to formulate the
outstanding EFR-RR. +e fitness evaluation in EFR is barely
executed based on the aggregating function, which would
result in distant solutions to the weight vectors and poor
performance in diversity. In view of this, EFR-RR devised a

Initialization N: number of population, T: the size of the neighbors, itermax: maximum number of iteration
(1) Generate an evenly distributed weight vector, W← w1,w2, . . . ,wN 

(2) Generate an initialized population, P0 � p0
1, p0

2, . . . , p0
N  based on W and calculate the corresponding objective functions,

F P0←obj(P0)

(3) Set the initialized ideal point based on P0

(4) Calculate the T closest weight vectors to wi to form the neighbor, λi← wi,wj, . . . ,wT 

(5) iter←1
(6) while iter< itermax do
(7) (F Piter, Piter, W)←coEvolve(F Piter, Piter, W)

(8) Piter←GenerateOffspring(Piter, DE)

(9) F Piter←obj(Piter)

(10) end while
(11) return non-dominated solutions in P

ALGORITHM 2: MOEA/D-AW.

Inputs DE: the operator, Piter: population at iter
Outputs Piter

(1) for i←1: N do
(2) Randomly pick 3 individuals from the neighbors of piter

i , use DE operator to generate its offspring uiter
i

(3) Piter←Update( uiter
i , piter

i )

(4) end for

ALGORITHM 3: GenerateOffspring.

Inputs uiter
i : offspring, subproblem: piter

i

Outputs piter
i : updated subproblem

(1) Based on the weight vector with respect to piter
i , wi � w1, w2, . . . , wM , calculate the Chebyshev function of uiter

i and the other
solutions in piter

i , fTch(uiter
i ), fTch(noxiter

i,k ), noxiter
i,k ∈ piter

i , k � 1, 2,{ . . . , T}

(2) for k←1: T do
(3) if fTch(uiter

i )<fTch(noxiter
i,k ) then

(4) noxiter
i,k ←uiter

i

(5) end if
(6) end for

ALGORITHM 4: Update.
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ranking restriction scheme under which the solutions could
only be sorted by calculating the fitness function formulated
with its neighboring weight vectors. A set of diversely dis-
tributed solutions can then be obtained in accordance with
an evenly distributed weight vector.

+e reference vector in RVEAa, A-NSGA-III, and PICEA-
g (goal vector in PICEA-g) could be adjusted adaptively based
on the current population to obtain a set of more diverse
solutions. At the same time, EFR-RR restricts the fitness sorting
to be executed between the solution and its neighboring fitness
function to obtain a set of more diverse solutions.

4.4. Parameters. +e general parameters involved in the
experiment are set as follows:

(1) Population size, N
+e N in A-NSGA-III, RVEAa, PICEA-g, and EFR-
RR are all set to be 100 when dealing with the 2, 4,
and 7 objectives WFGs. +e N in our proposed
MOEA/D-AW is set to be 100, 126, and 210 with
respect to the 2, 4, and 7 objectives WFGs,
respectively.

(2) Rate of change of penalty function, α, and the fre-
quency of reference vector adaption, fr,in RVEAa
α is set to be 2 and fr is set to be 0.1 in accordance
with that of the original research [35].

(3) Number of goals in PICEA-g, Ngoal

Ngoal is set to be N · m/2, where m the number of
objectives in accordance with that of the original
research [46].

(4) Number of neighboring weight vectors in EFR-RR,K
K is set to be 2 in accordance with that of the original
research [47].

(5) Position parameter, k, and distance parameter, l, in
WFGs
k is set to be 18 and l is set to be 14

(6) Mutation and crossover operators
All algorithms adopt the simulated binary crossover
(SBX) and polynomial mutation to generate off-
spring. +e distribution index, ηc, and crossover
probability, pc, in SBX are set to be 15 and 1.0,
respectively. +e distribution index, ηm, and the
mutation probability, pm, in polynomial mutation
are set to be 20 and 1/32, respectively.
Note that the parameter p in PD is set to be 0.1,
suggested by Wang et al.

(7) Termination condition

+e maximum number of iterations is set to be 250.
In addition, when calculating the performance metrics,

all nondominated solutions are set to be 100.

5. Experimental Results

All algorithms are executed independently for 31 times.
+e results are developed from 3 aspects: Median

Attainment Surface, numerical statistics, and boxplot.
Draw the Median Attainment Surface that approximates
the Pareto optimal frontal surface obtained after running
all the comparison algorithms 31 times, as shown in
Figures 2 and 3. +e statistical results of the values with
respect to HV, IGD, GD, and PD metrics are listed in
Tables 2 to 5.

Note that, in each illustration, ANSGAIII represents
A-NSGA-III, PICEAg represents PICEA-g, EFRRR repre-
sents EFR-RR, and AW represents MOEA/D-AW.

5.1. Median Attainment Surface. We can see the following
from Figure 2:

(1) Referring to the discrete and convex WFG2, all al-
gorithms cannot converge to the true Pareto optimal
front. RVEAa is inferior to other algorithms in terms
of convergence, while all algorithms perform the
same in terms of diversity.

(2) Referring to the linear and convex WFG3, all al-
gorithms could converge to the true Pareto optimal
front to some extent, while PICEA-g has a certain
degree of volatility, and the convergence is slightly
worse. In terms of diversity performance, PICEA-g
and MOEA/D-AW are superior to other
algorithms.

(3) Referring to the multimodal, separable, and convex
WFG4, MOEA/D-AW is superior to other algo-
rithms in terms of both convergence and diversity.

(4) Referring to the deceptive, separable, and concave
WGF5, all algorithms could converge to the true
Pareto optimal front to some extent while PICEA-g
has a certain degree of volatility, and the convergence
is slightly worse. In terms of diversity performance,
PICEA-g and MOEA/D-AW are superior to other
algorithms.

We can see the following from Figure 3:

(1) Referring to the nonseparable, unimodal, and con-
caveWFG6, all algorithms could converge to the true
Pareto optimal front to some extent while PICEA-g
has a certain degree of volatility, and the convergence
is slightly worse. In terms of diversity performance,
PICEA-g and MOEA/D-AW are superior to other
algorithms.

(2) Referring to the separable, unimodal, and concave
WFG7, all algorithms cannot converge to the true
Pareto optimal front. In terms of diversity perfor-
mance, EFR-RR is superior to other algorithms.

(3) Referring to the nonseparable, unimodal, and con-
cave WFG8, all algorithms cannot converge to the
true Pareto optimal front. EFR-RR and RVEAa are
superior to other algorithms in terms of
convergence.

(4) Referring to the deceptive, multimodal, non-
separable, and concave WGF9, all algorithms could
converge to the true Pareto optimal front to some

6 Mathematical Problems in Engineering



extent while PICEA-g has a certain degree of vola-
tility, and the convergence is slightly worse. In terms
of diversity performance, PICEA-g and MOEA/D-
AW are superior to other algorithms.

In all, our proposed MOEA/D-AW and PICEA-g are
superior to other algorithms in terms of diversity in most
cases, while MOEA/D-AW is superior to PICEA-g in terms
of convergence in most cases.

5.2. Statistical Results. Since all algorithms are essentially
random search methods, it is difficult to determine whether
an algorithm is good or bad based on the results of a single
operation. +erefore, in this section, the average statistics of
the results of 31 independent operations are compared with
respect to different performance metrics. +e best per-
forming algorithms in each of these problems are given in
bold in Tables 2 to 5.

As shown in Table 2, PICEA-g is slightly superior to
other algorithms in terms of HV metric on most WFGs.
MOEA/D-AW performs well compared to other algorithms
in the 4-objective and 7-objective WFGs, except for being
slightly inferior to EFR-RR and PICEA-g.

As shown in Table 3, PICEA-g is superior to other
algorithms in terms of IGD metric on most 4- and 7-
objective WFGs. +e average IGD metric index obtained
by MOEA/D-AW on WFG2-7 is superior to other algo-
rithms, and it performs poorly on other test problems.
Based on the comparison results in Table 2, the average
IGD metric indexes obtained by MOEA/D-AW on most
WFGs are mainly limited by its convergence, and it reveals
that MOEA/D-AW is superior to other algorithms in
terms of diversity.

As shown in Table 4, MOEA/D-AW is superior to
other algorithms on WFG3-4, WFG3-7, WFG4-4, WFG4-
7, WFG5-7, and WFG6-4, while RVEAa is superior to
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Figure 2: Median attainment surfaces of the 2-objective WFG2 to WFG5.
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Figure 3: Median attainment surfaces of the 2-objective WFG6 to WFG9.

Table 2: +e statistical results (mean) of the HV values obtained by 5 algorithms on WFG2 to WFG9.

Obj ANSGAIII RVEAa PICEAg EFRRR MOEA/D-AW

WFG2
2 0.568387 0.550097 0.573903 0.564387 0.570258
4 0.793419 0.764000 0.805484 0.819484 0.808258
7 0.874677 0.835290 0.884032 0.840258 0.899903

WFG3
2 0.571097 0.545677 0.599936 0.591290 0.586484
4 0.328194 0.203710 0.364419 0.329484 0.183065
7 0.089355 0.000000 0.249419 0.054839 0.000000

WFG4
2 0.374065 0.384000 0.403097 0.410258 0.401710
4 0.563903 0.619419 0.701194 0.718032 0.703032
7 0.819936 0.713194 0.667677 0.808936 0.823839

WFG5
2 0.358323 0.358161 0.380000 0.376032 0.368903
4 0.599968 0.577742 0.695419 0.697936 0.670677
7 0.790548 0.652871 0.736645 0.762677 0.782097
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other algorithms on the other WFGs. +e average PD
metric indexes obtained by MOEA/D-AW on the WFGs
that RVEAa performs best are not much different from
that of RVEAa and are in the same order of magnitude.
+e obtained results reveal that MOEA/D-AW is superior
to other outstanding algorithms in terms of diversity on
most problems that are linear, convex, multimodal,
separable, deceptive, and concave, which supports the
regularities revealed by the obtained results from Tables 2
and 3 and complies to the motivation of the proposed
algorithm.

As shown in Table 5, PICEA-g and RVEAa are superior
to other algorithms in terms of convergence on most WFGs,

while MOEA/D-AW is barely superior to other algorithms
on WFG2-4, WFG2-7, and WFG5-4. +e gap between the
average GD metric indexes obtained by MOEA/D-AW and
the best algorithm on other WFGs is not big. +e obtained
results reveal that the proposed MOEA/D is inferior to other
outstanding algorithms in terms of convergence in most
cases.

5.3. Further Discussion. In this section, we will discuss why
MOEA/D-AW performs badly compared with those out-
standing MOEAs in terms of convergence on many
occasions.

Table 3: +e statistical results (mean) of the IGD values obtained by 5 algorithms on WFG2 to WFG9.

Obj ANSGAIII RVEAa PICEAg EFRRR MOEA/D-AW

WFG2
2 0.027742 0.056307 0.024923 0.075312 0.027174
4 0.318926 0.319134 0.244438 0.397874 0.265584
7 2.478501 2.573738 3.055701 2.932787 2.236648

WFG3
2 0.022826 0.029178 0.020397 0.016903 0.028081
4 0.706847 0.618760 0.018508 0.226327 1.491903
7 0.793979 1.865569 0.008584 0.482924 3.875040

WFG4
2 0.011243 0.006770 0.010859 0.007660 0.011409
4 0.144125 0.207221 0.119248 0.126419 0.158724
7 0.968558 1.121720 0.552663 0.801419 1.055519

WFG5
2 0.068020 0.064636 0.064953 0.064900 0.068315
4 0.246305 0.211099 0.153042 0.156273 0.178305
7 0.991691 1.170598 0.727007 0.876354 1.117266

WFG6
2 0.078930 0.071754 0.075731 0.076946 0.077206
4 0.294787 0.269174 0.170637 0.164501 0.214040
7 0.911231 1.239905 0.596021 0.712028 1.083449

WFG7
2 0.096721 0.066667 0.096891 0.086643 0.088512
4 0.183409 0.185135 0.113988 0.145567 0.142149
7 0.900902 1.247910 0.576098 1.049238 0.963121

WFG8
2 0.228603 0.267558 0.239812 0.292829 0.244698
4 0.441809 0.634984 0.224257 0.593517 0.342018
7 1.103588 1.792134 0.572861 1.508154 1.435946

WFG9
2 0.155992 0.116460 0.124575 0.123171 0.126931
4 0.300874 0.270670 0.234286 0.246548 0.248221
7 1.370617 1.507547 1.093408 1.396443 1.326873

+e best results are given in bold.

Table 2: Continued.

Obj ANSGAIII RVEAa PICEAg EFRRR MOEA/D-AW

WFG6
2 0.352774 0.351419 0.377226 0.372161 0.370839
4 0.613484 0.601355 0.692323 0.693065 0.664129
7 0.794323 0.694419 0.866516 0.799742 0.786710

WFG7
2 0.327968 0.334581 0.345548 0.349742 0.343419
4 0.606581 0.615129 0.744097 0.706194 0.716194
7 0.845871 0.718581 0.820613 0.766000 0.872710

WFG8
2 0.263581 0.245129 0.254903 0.265387 0.274645
4 0.510323 0.459290 0.591032 0.550452 0.570258
7 0.733419 0.607516 0.773774 0.653710 0.706839

WFG9
2 0.356129 0.368161 0.361839 0.371710 0.365677
4 0.571419 0.582323 0.599936 0.594645 0.608484
7 0.680774 0.657742 0.699677 0.653581 0.703258

+e best results are given in bold.
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Table 5: +e statistical results (mean) of the GD values obtained by 5 algorithms on WFG2 to WFG9.

Obj ANSGAIII RVEAa PICEAg EFRRR MOEA/D-AW

WFG2
2 0.002806 0.006392 0.002599 0.010613 0.002742
4 0.033624 0.032956 0.025543 0.056684 0.021916
7 0.183074 0.189915 0.230406 0.331688 0.161590

WFG3
2 0.002307 0.002955 0.002062 0.001708 0.002825
4 0.089108 0.062784 0.002019 0.033096 0.126013
7 0.066543 0.138259 0.000780 0.056480 0.261087

WFG4
2 0.001170 0.000721 0.001142 0.000805 0.001196
4 0.013677 0.019292 0.011413 0.014473 0.012318
7 0.070404 0.082590 0.043364 0.089228 0.070061

WFG5
2 0.006819 0.006484 0.006526 0.006517 0.006854
4 0.022822 0.019645 0.014288 0.017428 0.013727
7 0.070445 0.084546 0.053274 0.094565 0.073117

WFG6
2 0.007920 0.007206 0.007612 0.007738 0.007751
4 0.027430 0.024996 0.015878 0.018369 0.016379
7 0.065424 0.089358 0.044954 0.078487 0.071123

WFG7
2 0.014487 0.012465 0.015652 0.014600 0.014396
4 0.017162 0.017502 0.011000 0.017954 0.011135
7 0.065801 0.090326 0.045114 0.116701 0.064698

WFG8
2 0.031439 0.037681 0.034324 0.035284 0.031517
4 0.054451 0.064436 0.027970 0.077218 0.031472
7 0.080463 0.128387 0.044472 0.170342 0.095627

WFG9
2 0.016028 0.012483 0.013274 0.013520 0.013388
4 0.027862 0.025002 0.021662 0.027273 0.018952
7 0.096764 0.106072 0.078735 0.150570 0.085949

+e best results are given in bold.

Table 4: +e statistical results (mean) of the PD values obtained by 5 algorithms on WFG2 TO WFG9.

Obj ANSGAIII RVEAa PICEAg EFRRR MOEA/D-AW

WFG2
2 2.59E− 01 9.97E− 01 9.93E− 03 1.14E + 00 2.41E− 01
4 1.53E + 04 1.38E+ 04 5.36E+ 02 2.86E+ 03 5.70E+ 03
7 1.03E+ 06 2.84E+ 06 2.84E+ 04 7.31E+ 05 1.54E+ 06

WFG3
2 3.11E+ 00 5.96E+ 00 9.31E− 02 8.16E + 00 3.72E+ 00
4 1.25E+ 03 1.18E+ 04 2.14E+ 01 2.54E+ 01 2.12E+ 04
7 2.30E+ 05 6.21E+ 06 2.18E+ 02 6.22E+ 04 9.84E+ 06

WFG4
2 3.04E+ 00 6.17E+ 00 2.98E− 02 3.22E+ 00 3.09E+ 00
4 1.14E+ 04 4.37E+ 04 1.27E+ 03 6.25E+ 03 4.55E+ 04
7 4.73E+ 06 1.35E+ 07 1.59E+ 03 4.45E+ 06 1.41E+ 07

WFG5
2 3.61E+ 00 5.60E+ 00 3.25E− 02 3.79E+ 00 3.30E+ 00
4 3.47E+ 04 4.45E+ 04 1.23E+ 03 1.16E+ 04 3.94E+ 04
7 9.21E+ 06 1.52E+ 07 1.92E+ 04 6.22E+ 06 1.53E+ 07

WFG6
2 3.21E+ 00 4.92E+ 00 4.68E− -02 3.75E+ 00 2.49E+ 00
4 3.23E+ 04 4.37E+ 04 7.15E+ 02 2.28E+ 03 4.43E+04
7 8.07E+ 06 1.32E+07 2.87E+ 04 1.78E+ 06 1.23E+ 07

WFG7
2 2.75E+ 00 8.02E+ 00 2.16E− 02 4.16E+ 00 2.20E+ 00
4 6.31E+ 03 5.33E+ 04 7.31E+ 02 3.39E+ 03 4.46E+ 04
7 1.14E+ 06 2.09E+ 07 3.30E+ 04 5.70E+ 06 9.43E+ 06

WFG8
2 3.82E− 01 2.56E+ 00 3.05E− 02 1.70E+ 00 7.31E− 01
4 4.91E+ 03 5.51E+ 04 4.64E+ 02 5.49E+ 03 3.99E+ 04
7 1.25E+ 06 2.06E+ 07 3.49E+ 04 4.41E+ 06 1.72E+ 07

WFG9
2 2.50E+ 00 5.78E+ 00 2.17E− 02 3.48E+ 00 3.02E+ 00
4 4.97E+ 04 5.98E+ 04 1.01E+ 03 5.65E+ 03 4.45E+ 04
7 7.87E+ 06 2.28E+ 07 9.12E+ 04 5.56E+ 06 1.35E+ 07

+e best results are given in bold.
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One major reason is about setting the crossover and
mutation operators in the algorithm. It can be seen from the
obtained results that the SBX operator could generate con-
verged offspring in terms of 2-objective WFGs in the de-
composition-based framework, MOEA/D while degenerating
in terms of high dimension occasions (WFG4s and WFG7s).
+e competitors involved in the experiment essentially
generate the offspring under the dominance-based frame-
work, which could perform well in terms of convergence in
most cases while degenerating in terms of diversity. +e DE
operator, which is superior in terms of convergence, has been
adopted to solve complex problems and is validated to be
efficient [30]. In this paper, for the sake of fairness, all al-
gorithms adopt the simulated binary crossover (SBX) and
polynomial mutation to generate offspring.

6. Conclusion

In this paper, MOEA/D-AW is proposed to enhance the
diversity of decomposition-based MOEAs. +e basic idea is
to devise a coevolved adaptive weight vector generation
mechanism to adjust the evolution during the iteration.+e
weight vector is updated based on the sparsity of the
mapping of the current population in the objective space,
deletion of crowed weight vectors, and addition of sparse
weight vectors are conducted. Moreover, the mechanism
makes full use of the convergence information of the
current population, the current utopian point, to generate
optimal weight vectors to update the evolution direction.

In the experimental studies, MOEA/D-AW is compared
to 4 state-of-the-art MOEAs which are proven to effectively
enhance diversity. 8 test instances with up to 7 objectives
from WFG2 to WFG9 test suits are introduced for com-
parison. +e results indicate that MOEA/D-AW is superior
to other competitor MOEAs in terms of diversity on most
test problems while shows a slight disadvantage over other
competitors MOEAs in terms of convergence on many
objective test problems.

In further studies, many efforts would be carried to
devise a more efficient mechanism that would adaptively
select different operators based on the spread of the mapping
of current solutions in the objective space during the iter-
ation. Also, it has been proven that different operators show
different performances in exploration and exploitation in
EAs [48].
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