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Direct position determination (DPD) for augmented coprime arrays is investigated in this paper. Augmented coprime array
expands degree of freedom and array aperture and improves positioning accuracy. Because of poor stability and noise sensitivity
of the subspace data fusion (SDF) method, we propose two weighted subspace data fusion (W-SDF) algorithms for direct position
determination. Simulation results show that two W-SDF algorithms have a prominent promotion in positioning accuracy than
SDF, Capon, and propagator method (PM) algorithm for augmented coprime arrays. SDF based on optimal weighting (OW-SDF)
is slightly better than SDF based on SNR weighting (SW-SDF) in positioning accuracy. &e performance for DPD of the W-SDF
method with augmented coprime arrays is better than that of the W-SDF method with uniform arrays.

1. Introduction

Wireless location technology is a prominent research area in
present positioning. Two-step positioning is the most
commonly used in passive positioning. By utilizing the
arrival time, arrival angle, and arrival frequency difference,
two-step positioning constructs a mathematical model to
realize positioning [1, 2]. However, there are many short-
comings in traditional two-step positioning methods. In the
process of positioning, because two-step positioning expe-
rienced more intermediate processing steps, the corre-
sponding positioning accuracy is affected [3]. In order to
avoid the problem of intermediate processing steps in the
two-step positioning method, in recent years, many scholars
have proposed new positioning method—direct position
determination [4]. Weiss proposed direct position deter-
mination in 2004 firstly [5]. Direct position determination
(DPD) estimates the target position without any location
intermediate parameters [6]. Because of the direct use of the
original observation data, DPD makes use of the target

information and effectively avoids the steps of the location
intermediate parameters [7].

For reducing the computational complexity, Demmissie
proposed a subspace data fusion (SDF) with higher com-
putational efficiency in 2008 [8], which extends the ultrahigh
resolution multiple signal classification angle estimation
algorithm in the field of array signal processing to direct
positioning. Multiple arrays receive signals from multiple
different positions through fusing the received signals of
multiple arrays based on the spatial spectrum estimation
theory [9, 10]. &en, the SDF algorithm constructs the loss
function and obtains the position estimation of emitter.
Although the SDF algorithm also needs grid search, it only
needs one 2D or 3D grid search in the effective space to get
the position estimation of all emitters [11]. &e traditional
SDF algorithm based on the direct position determination
algorithm does not consider the heteroscedasticity of the
observation error [12–15]. So, the proposed weighted SDF
method for DPD makes most of the eigenvalues and ei-
genvectors of the covariance matrix eigenvalue
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decomposition and combines with the augmented coprime
array to obtain the asymptotic accuracy. &e optimal po-
sition estimation performance is achieved, and the source
resolution is improved [16–21].

For the problem of limited degree of freedom of uniform
array, there are many research studies in traditional coprime
array for direction of arrival (DOA) estimation
[3, 17, 22–25]. Compared with traditional coprime arrays,
augmented coprime array can use the same number of real
array elements to generate more virtual arrays in the same
range. And, it has a longer continuous virtual element part.
Based on the existing research foundation of array signal
processing introduced above, direct position determination
extends from uniform array to sparse array. Now, aug-
mented coprime array for DPD is worth studying. Single
augmented coprime array or multiple augmented coprime
arrays is constructed for the DPD model, and then a con-
tinuous virtual array model is constructed by spatially
smoothing [14, 26–28]. So, the location loss function is
constructed based on subspace data fusion for augmented
arrays.&is paper mainly studies the weighted subspace data
fusion method based on multiple augmented coprime
arrays.

We summarize the main contributions as follows:

(1) We propose two weighted subspace data fusion (W-
SDF) algorithms for direct position determination to
solve poor stability and noise sensitivity of the SDF
algorithm. We assign a weight to the projection
result at each observation position. We balance the
orthogonal projection to obtain small error and high
robustness loss function.

(2) We introduce multiple augmented coprime arrays
into the direct position determination model and
then combine with spatial smoothing subspace data
fusion. We use augmented coprime arrays to in-
crease spatial freedom and recognize more sources.

(3) We use the weighted subspace data fusion method
for DPD. &e proposed algorithm does not need
estimation steps of intermediate parameters and
avoids second loss of information.

&e structure of this paper is as follows. In Section 2, we
introduce some basic concepts of augmented coprime array
and scene of direct position determination. Section 3 depicts
the proposed W-SDF method. Section 4 depicts perfor-
mance analysis about W-SDF algorithms with augmented
coprime array for DPD. In Section 5, we simulate the
proposed W-SDF algorithms for multiple coprime arrays
and compare it with other algorithms under different arrays
and different elements. And, Section 6 summarizes this
paper.

Notations. (·)∗ represents the conjugate, (·)T represents the
transposition, and (·)H represents the conjugate transpose.
&e symbol vec(·) represents the received covariance matrix
virtualization, and symbol ⊗ represents the Kronecker
product. In represents an n × n identity matrix, and E(·)

represents the mathematical expectation.

2. Preliminaries

In this chapter, we introduce some basic concepts of aug-
mented coprime array and scene of direct position
determination.

2.1. Array Model. In order to use virtual array for direct
position determination, augmented coprime linear array is
introduced. Figure 1 shows augmented coprime linear array
and the number of elements of two subarrays is 2M and N.
&e augmented coprime array element spacing is N d and
M d, M and N are coprime, and M<N.

2.2.MultipleArrays CombinationPositioningModel. We use
the positioning scene in Figure 2. Assume that there are Q
uncorrelated far-field narrow-band sources in the known
two-dimensional X-Y plane.&ere are L observation stations
with L augmented coprime arrays placed along the X-axis.
&e target sources are pq � [xq, yq]T(q � 1, 2, . . . , Q). &ere
are L observation stations expressed as
ul � [xul, yul]

T(l � 1, 2, . . . , L). &ere are D(D � 2M + N −

1) array elements on every observation station.
Assume that all the Q emitter signals are far-field nar-

row-band signals with wavelength of λ. In practice,
according to the free space propagation loss model, when the
signals from the same source are incident on the array at
different positions, the received signal strength of the array is
often different. Assuming that the power of all emitter
signals is Wq and the power of the signal from the qth
emitter received at the observation position
ul � [xul, yul]

T(l � 1, 2, . . . , L) is Wl,q, the path propagation
loss coefficient can be expressed as follows:

bl,q �

����
Wl,q

Wq

􏽳

, (1)

sl,q(k) is recorded as the qth radiation source, and the array
output signal of the l th observation station at the kth(k �

1, 2, 3, . . . , K) fast beat time is obtained as follows [7]:

rl(k) � 􏽘

Q

q�1
bl,qal pq􏼐 􏼑sl,q(k) + nl(k), (2)

where nl(k) denotes the noise vector of the l th observation
station and al(pq) is the direction vector, which is deter-
mined by the angle of arrival θl(pq) [7] as follows:

θl pq􏼐 􏼑 � arctan
xul(1) − pq(1)

yul(2) − pq(2)
. (3)

Equation (2) can be expressed as

rl(k) � Al(p)sl(k) + nl(k), (4)

where
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Al(p) � a1 p1( 􏼁, a2 p2( 􏼁, . . . , a2 pQ􏼐 􏼑􏽨 􏽩
T
,

Al pq􏼐 􏼑 � aT
l,1 pq􏼐 􏼑, aT

l,2 pq􏼐 􏼑􏽨 􏽩
T
,

al,1 pq􏼐 􏼑 � 1, e
− j2πN d sin θl pq( 􏼁

, . . . , e
− j2π(2M− 1)N d sin θl pq( 􏼁

􏼔 􏼕
T

,

al,2 pq􏼐 􏼑 � 1, e
− j2πM d sin θl pq( 􏼁

, . . . , e
− j2π(N− 1)M d sin θl pq( 􏼁

􏼔 􏼕
T

,

sl(k) � sl,1(k), sl,2(k), . . . , sl,Q(k)􏽨 􏽩
T
,

p � pT
1 , pT

2 , . . . , pT
Q􏽨 􏽩

T
,

nl(k) � nl,1(k),nl,2(k), . . . ,nl,D(k)􏽨 􏽩
T
.

(5)

3. The Proposed Algorithm

3.1. SDF Direct Position Determination Algorithm Based on
Augmented Coprime Array. We can obtain the covariance
matrix of array output signal from equation (4).

Rl � E rl(k)rH
l (k)􏽨 􏽩. (6)

We vectorize Rl as follows:

􏽥z � vec Rl( 􏼁 � Hl(p)μ + σ2nIn, (7)

where Hl(p) � A∗ ⊙A � [a(p1)⊗ a(p2), a(p2)⊗ a(p2),
. . . , a(p2)⊗ a(pq)] is the direction matrix of the virtual
array, μ � [σ21, σ22, . . . , σ2q]T is a single snapshot signal vector,
and In � vec(I), in which I is the identity matrix. In order to
facilitate processing, we need use 􏽥z to sort by phase and the
remove redundancy and then get the vector z; vector z is the
receiving signal of the augmented matrix virtual array.

Because the spatial smoothing algorithm needs the
continuity of the array elements, therefore, the vector z1 can
be obtained by intercepting the continuous virtual elements
of z.

&e intercepted virtual array is a virtual array in range
[− (MN + M − 1), MN + M − 1] and long uniform linear
array with element spacing of d. &e number of array ele-
ments is 2MN + 2M − 1.

&e basic idea of the spatial smoothing algorithm is to
divide the equidistant linear array into several overlapping
subarrays. If the subarrays have the same structure, their
covariance matrices are added to replace the original co-
variance matrix.

As shown in Figure 3, we divide the intercepted virtual
array into MN + M overlapping subarrays. Each subarray

contains MN + M elements. &e element position of the i th
subarray is

(i + 1 + n)d, n � 0, 1, . . . , MN + M − 1{ }. (8)

&e received signal matrix is from line MN + M + 1 − i

to line 2MN + 2M + 1 − i of z1, which is denoted as zhi, and
the covariance matrix is constructed [27].

Ri � zhiz
H
hi . (9)

&e covariance matrix of all MN + M submatrices is
summed, and the mean value is calculated to obtain the
spatial smooth covariance matrix:

Rl �
1

MN + M
􏽘

MN+M

i�1
Ri. (10)

Because signal and noise are independent of each other,
matrix Rl eigenvalue decomposition can be divided into
signal space and noise subspace as follows:

Rl � Us
l Un

l􏼂 􏼃􏽘
l

Us
l Un

l􏼂 􏼃
H

. (11)

According to the orthogonal property of signal subspace
and noise subspace, the projection of steering vector to noise
subspace is zero only when the steering vector of array al(p)

is composed of real emitter position parameters pq. Using
this property, the noise subspace projection results of the
steering vector to the Lth observation positions are added to
construct the following loss function:

fSDF(p) � 􏽘
L

l�1
aH

l (p)Un
l Un

l( 􏼁
Hal(p). (12)

Obviously, the loss function processes the projection
results at all observation positions equally. When one of the
L spectral functions has poor performance, the loss function
is vulnerable to interference; that is, the performance of the
traditional SDF based on the direct localization algorithm is
affected by the heteroscedasticity of orthogonal projection
errors from different observation positions.

For another, SDF only uses the noise subspace
resulting in vulnerable to the external factor, such as few
snapshots and low SNR. Because of these factors, posi-
tioning performance is restricted. Aiming at the problem
of poor stability and noise sensitivity of the SDF method,
this chapter considers to obtain the loss function with
small error and high robustness by balancing the or-
thogonal projection error. &e W-SDF method makes
most of all the data to improve the positioning accuracy.
So, we assign a weight to the projection result at each
observation position, and we construct the following loss
function:

fW− SDF(p) � 􏽘
L

l�1
wla

H
l (p)Un

l Un
l( 􏼁

Hal(p), (13)

where wl is the weight of the l th observation position.
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Subarray 1

Subarray 2

Figure 1: Augmented coprime array model.
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3.2. Direct Position Determination Based on SNR Weighted
SDF. According to the principle of power allocation based
on water injection principle, we allocate more power into the
channel with good quality and we allocate less power into the
channel with poor quality. So, we can obtain the maximum
channel capacity. Similarly, in order to reduce the total
projection error, we need to design a weight that makes it
increase when error decreases. Because high SNR leads to
small positioning error and low SNR results in large posi-
tioning error. So, in this section, we propose SNR weighted
subspace data fusion (SW-SDF) for DPD.

Under the assumption that the noises are uncorrelated
and the signals and noises are independent each other, the
form of the covariance matrix can be rewritten by
substituting equation (4) into (11):

􏽢Rl �
1
K

􏽘

K

k�1
􏽘

Q

q�1
b
2
l,qWqal(p)aH

l (p) + σ2nIV×V
⎛⎝ ⎞⎠, (14)

where IV×V is identity matrix of V × V, in which
V � MN + M. &e same array receives different power of
different radiation sources. And, different arrays receive
different power from the same array.&ese all depend on the
signal power Wq and unknown parameters bl,q. We assumed
that the noise power is constant in the whole observation
process, so the SNR of different observation positions is
proportional to b2l,qWq, that is, Wl,q; this value is unknown in
practical application.

&e received signal covariance matrix can be decom-
posed into two parts:

􏽢Rl � Rs + Rn � Al(p)diag Wl,1, . . . , Wl,Q􏽨 􏽩􏼐 􏼑AH
l (p) + σ2nIV×V.

(15)

Under the same assumption, the eigenvalue can be
expressed as

λl,i �
σ2yi

+ σ2n, 1≤ i≤Q,

σ2n, Q + 1≤ i≤V,

⎧⎪⎨

⎪⎩
(16)

is large nonzero eigenvalues of Rs, σ2yi
denotes the power

Wl,q of the received signal. It is assumed that the noise
power is constant in the observation process, and its specific
value is unknown in practice. According to equation (16),
the estimated value of noise power can be calculated by V −

Q smaller eigenvalue as follows:

􏽢σ2nl �
1

V − Q
􏽘

V

i�Q+1
λl,i. (17)

Due to the small deviation between the estimated value
and the real value, the estimated values of the noise power at
different observation positions are approximately equal.
According to the estimated value of the noise power, the l th
observation station can obtain the power as follows:

􏽢Wl � 􏽘

Q

i�1
λl,i − 􏽢σ2nl􏼐 􏼑. (18)

According to the previous analysis, the position with
large SNR of the received signal will produce smaller error.
So, we give larger weight to the position, that is, the SNR of

Targets

Pq 

Δx

D

O X

Y

Observation
stations 

D

ul

u2

u1

(pq)

u3

Δyθl

Figure 2: Multiple arrays combination positioning scene.
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Figure 3: Spatial smoothing diagram.
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the received signal for this position. &erefore, the loss
function of the direct position determination algorithm
based on SNR weighting can be constructed as follows:

fSW− SDF(p) � 􏽘
L

l�1

Wl

􏽢σ2nl

Un
l( 􏼁

Hal(p)
�����

�����
2
. (19)

By searching the front Q minimum values of equation
(19), the high precision emitter position estimation results
can be obtained.

3.3. Direct Position Determination Based on Optimal
Weighting. In the previous chapter, we introduce the SW-
SDF algorithm for DPD that can effectively reduce the total
projection error of L observation positions, but the SW-SDF
algorithm does not achieve the minimum of the total
projection error. So, it is not optimal. In this section, the
optimal weighted subspace data fusion (OW-SDF) algo-
rithm for DPD is proposed.&e projection error between the
steering vector and the noise subspace obtained from the
first observation position is defined as

ξl � Un
l( 􏼁

Hal(p). (20)

&en, the optimal weighted direct position determina-
tion problem can be expressed as finding an optimal weight
T∗ and emitter position estimation 􏽢p to minimize the total
projection error, that is, the optimal weighted direct position
determination problem:

􏽢p, T
∗

� argmin
p,W

T
1/2ξ

����
����
2
, (21)

where ξ � [ξH
1 , ξH

2 , . . . , ξH
L ]H is projection error of all ob-

servation positions.
According to reference [15], the projection error vector

ξl is a variable of zero mean Gaussian distribution, and its
covariance matrix has the following form:

E ξiξ
H
j􏼐 􏼑 � aH

l (p)Λlal(p)δi,jI(V− Q)×(V− Q),

E ξiξ
T
j􏼐 􏼑 � 0(V− Q)×(V− Q), for∀i, j,

(22)

where I(V− Q)×(V− Q) and I(V− Q)×(V− Q) are V × V identity
matrix and (V − Q) × (V − Q) zero matrix, δi,j is an impulse
variable, if and only if i � j, δi,j � 1, the other cases δi,j are
zero, and the matrix Λl has the following form:

Λl �
1
K
Us

ldiag
λl,1

σ2n
+
σ2n
λl,1

− 2, . . . ,
λl,Q

σ2n
+

σ2n
λl,Q

− 2􏼢 􏼣􏼠 􏼡 Us
l( 􏼁

H
.

(23)

It can be seen from equation (22) that the subvectors ξl

of the error vector ξ are independent of each other, so we can
get that the covariance matrix of the error vector ξ is a (V −

Q)L × (V − Q)L matrix, and each matrix
E(ξlξ

H
l ), l � 1, 2, . . . , L is expressed as

cov(ξ) � E ξξH
􏼐 􏼑 � diagblk E ξ1ξ

H
1􏼐 􏼑, . . . , E ξLξ

H
L􏼐 􏼑􏽨 􏽩􏼐 􏼑.

(24)

By substituting equations (22) and (23) into equation
(24), the solution of the optimal weight can be obtained

T
∗

� diag t
∗
1 , . . . , t

∗
L􏼂 􏼃( 􏼁⊗ I(V− Q)×(V− Q), (25)

where

t
∗
l (p) �

1

􏽐
Q
q�1 gl,q Us

l( 􏼁
Hal(p)

�����

�����
2, (26)

where gl,q is the weight of the signal from the radiation
source Q in the received signal of l th array and gl,q is related
to SNR and can be expressed as

gl,q � ρl,q +
1
ρl,q

− 2􏼠 􏼡

− 1

, (27)

where ρl,q � 1 + SNRl,q � λl,q/σ2n. According to equation
(27), the optimal weight not only considers the difference
between the received signal SNR but also considers the noise
subspace and search grid points.

According to equation (25), the loss function of the
direct position determination algorithm based on optimal
weight can be constructed as follows:

fOW− SDF(p) � 􏽘
L

l�1

Un
l( 􏼁

Hal(p)
�����

�����
2

diag g
1/2
l,1 , . . . , g

1/2
l,Q􏽨 􏽩􏼐 􏼑 Us

l( 􏼁
Hal(p)

�����

�����
2.

(28)

By searching the front Q minimum values of equation
(28), the high precision emitter position estimation results
can be obtained.

3.4.>eProcedure of theProposedAlgorithm. We summarize
several steps about W-SDF algorithms as follows:

Step 1. Construct the sources model and augmented
coprime array positioning model for DPD.
Step 2. Adopt the vector and spatial smoothing method
for receiving signals.
Step 3. Calculate the covariance matrix to get noise
subspace Un

l . Assign a weight to the projection result at
each observation position.
Step 4. Construct the cost function fW− SDF(p). &e
coordinate corresponding to the peak value is the
position estimation value (􏽢xq, 􏽢yq).

4. Performance Analysis

4.1. Achievable DOFs. In this paper, we use augmented
coprime array which increases spatial degree of freedom
than uniform linear array. &e DOFs of the augmented
coprime array are 2MN + 2M − 1, and the DOFs of the
uniform linear array are 2M + N − 1. It can be obviously
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seen that the degree of freedom of augmented coprime array
is higher than freedom of uniform linear array.

4.2. Computational Complexity. &e computational com-
plexity of the proposed two weighted direct position de-
termination algorithms is compared with SDF direct
position determination for augmented coprime array, which
only considers the number of complex multiplication. &e
computational complexity of W-SDF and SDF algorithms is
related to the following parameters: L denotes the number of
observation positions, Q denotes the number of targets, D

denotes the number of array elements, and K denotes the
number of snapshots; we divide X direction into Lx equal
parts in global search and divide Y direction into Ly equal
parts.

For the direct position determination algorithm SW-
SDF and OW-SDF, the complexity of the algorithm includes
the following aspects: the calculation of the covariance
matrix of dimension receiving signal O(KD2), the de-
composition of eigenvalue of the covariance matrix of the
dimension receiving signal O(V3), and the calculation of
spectral peak value of each searching grid point
O(V2(V − Q) + V2 + V). In addition, the weight calculation
in the SW-SDF algorithm does not need to increase the
additional computational complexity. &e OW-SDF algo-
rithm computational complexity is O(LKD2+ LV3+

LLxLy(V2(V − Q) + 2V2 + 2V)). In summary, the compu-
tational complexity of the three direct positioning algo-
rithms is shown in Table 1.

Figure 4 shows the comparison of the complexity of
several algorithms with the number of search points in
X(orY) direction under specific parameters. &e simulation
parameters are set as follows: the number of observation
positions L � 5, the number of radiation sources Q � 3, two
subarrays are M � 3 andN � 5, the number of augmented
array elements D � 10, the number of snapshots K � 100,
the number of array elements after smoothing is V � 18, and
the number of search points along X and Y directions, with
the range of 100 to 1000. &e computational complexity of
the PM algorithm is slightly lower than that of SDF and SW-
SDF algorithms. &e computational complexity of the Ca-
pon algorithm is higher than that of other algorithms.
Compared with the SDF method, SW-SDF can improve the
positioning performance without increasing the complexity.
&e complexity of the OW-SDF algorithm is slightly higher
than that of the SW-SDF algorithm, but the positioning
performance is greatly improved. We will explain this in
detail in the subsequent simulation analysis.

4.3. Advantage. Based on the above research, we make a list
of advantages about W-SDF algorithms for coprime array:

(1) &e proposed W-SDF algorithms do not need any
parameter estimation step, avoid the secondary loss
of information, and effectively improve the posi-
tioning accuracy.

(2) &e proposed W-SDF algorithms use augmented
coprime array characteristics. Compared with the

algorithm of uniform array, there is a significant
improvement in DOF. &e spatial freedom of the
array can be expanded, and the number of identified
sources is increased.

(3) We assign a weight to the projection result at each
observation position and construct the loss function.
Aiming at the problem of poor stability and noise
sensitivity of the SDFmethod, this paper considers to
obtain the loss function with small error and high
robustness by balancing the orthogonal projection
error and makes most of the data to improve the
positioning accuracy.

5. Simulation Results

5.1. SimulationsResults versus ProposedAlgorithm. &ere are
5 augmented coprime arrays located at 5 observation sta-
tions. Each station has an augmented coprime array. &e
locations of observations are U1 � [− 1000m, − 500m],
U1 � [− 500m, − 500m], U3 � [0m, − 500m], U4 � [500m,

− 500m], and U5 � [1000m, − 500m]. Multiple targets are
P1 � [100m, 100m], P2 � [300m, 300m], and P3 � [700m,

700m], and Figure 5 denotes direct position determina-
tion cost function with the SNR weighting algorithm.
Figure 6 denotes the direct position determination scatter
diagram with the SNR weighting algorithm. Figure 7
denotes direct position determination with the optimal
weighting algorithm. Figure 8 denotes the direct position
determination scatter diagram with the optimal weighting
algorithm.

In these simulation experiments, the performance of the
proposed W-SDF method is analyzed by calculating the root
mean square error (RMSE), and it can be expressed as

RMSE �
1
Q

��������������������

1
MC

􏽘

MC

mc�1
􏽘

Q

q�1
pq − 􏽢pq,mc

�����

�����
2

􏽶
􏽴

, (29)

where MC is the number of the Monte Carlo (MC) simu-
lation test, Q is the number of target sources, 􏽢pq,mc denotes
the mc th Monte Carlo estimated value of the location of the
qth target, and pq is the real value of the qth target.

5.2. RMSE Results versus Comparison of W-SDF Algorithms
withOtherAlgorithms. &is paper simulates the comparison
of different algorithms with augmented coprime array. &e
number of augmented coprime array elements is
(M, N) � (3, 5), and there are multiple targets
P1 � [100m, 100m], P2 � [300m, 300m], and P3 � [700m,

700m]. &e snapshot number is 100. Each station has an
augmented coprime array. Figure 9 shows that the perfor-
mance for DPD of the W-SDF algorithm is better than that
of the SDF and PM algorithm for augmented coprime array.
OW-SDF is slightly better than SW-SDF in positioning
accuracy. CRB for augmented coprime array is simulated in
Figure 9.
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5.3. RMSE Results versus Comparison of W-SDF Algorithms
under Different Snapshot Numbers for Augmented Coprime
Array. &is paper simulates the comparison of different al-
gorithms with different snapshot numbers for augmented
coprime array. &e number of augmented coprime array ele-
ments is (M, N) � (3, 5), and there are multiple targets
P1 � [100m, 100m], P2 � [300m, 300m], and P3 � [700m,

700m]. Each station has an augmented coprime array. Figure 10
shows that as the number of snapshots increases, the
performance for DPD with augmented coprime array of
W-SDF algorithms is better than that of SDF, Capon, and
PM algorithms.

5.4. RMSE Results versus Comparison of W-SDF Algorithms
under Different Arrays. &is paper simulates the com-
parison of different algorithms with augmented coprime
array and uniform array. &e number of augmented
coprime array elements is (M, N) � (3, 5), and there are
multiple targets P1 � [100m, 100m], P2 � [300m, 300m],
and P3 � [700m, 700m]. Each station has an augmented
coprime array. &e snapshot number is 100. Figure 11
shows that as SNR increases, the performance of W-SDF
algorithms for DPD with augmented coprime array is
better than that of W-SDF and SDF algorithms with
uniform array.

Table 1: Computational complexity of different algorithms.

Algorithms Computational complexity Running time (s)
SDF O(LKD2 + LV3 + LLxLy(V2(V − Q) + V2 + V)) 32.867873
SW-SDF O(LKD2 + LV3 + LLxLy(V2(V − Q) + V2 + V)) 32.180425
OW-SDF O(LKD2 + LV3 + LLxLy(V2(V − Q) + 2V2 + 2V)) 36.953023
Capon O(LKD2 + LLxLy(V3 + V2 + V)) 101.878995
PM O(LKD2 + L(2Q2V + QV(V − Q) + Q3) + LLxLy(V2(V − Q) + V2 + V)) 23.165267
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5.5. RMSE Results versus Comparison of W-SDF Algorithms
under Different Elements. &is paper simulates the com-
parison of different algorithms with different elements.
&ere are multiple targets P1 � [100m, 100m],
P2 � [300m, 300m], and P3 � [700m, 700m]. Each station
has an augmented coprime array. Set the number of ele-
ments (M1, N1) � (3, 5), (M2, N2) � (3, 7), and
(M3, N3) � (5, 7). &e snapshot number is 100. In Fig-
ure 12, simulation results show that performance of the
proposed W-SDF algorithms is better with increment of
elements.
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1

0.8

0.6

O
W

-S
D

F 
co

st 
fu

nc
tio

n

0.4

0.2

0
1000

800
600

400x/m
y/m

200
0 1000

800
600

400
200

0

Figure 7: OW-SDF direct position determination.
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6. Conclusion

We introduce multiple augmented coprime arrays into the
direct position determination model, which increases spatial
freedom and position accuracy. We assign a weight to the
projection result at each observation position to obtain
better positioning accuracy. Simulation results show that
two W-SDF algorithms have a prominent promotion in
positioning accuracy than SDF, Capon, and PM algorithms
for augmented coprime arrays. OW-SDF is slightly better
than SW-SDF in positioning accuracy. &e performance for

DPD of the W-SDF method with augmented coprime arrays
is better than that of the W-SDF method with uniform
arrays.
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