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%is paper investigates the qualitative property of third-order nonlinear neutral distributed-delay generalized difference
equations. By utilizing Philos-type technique and Riccati transformation, some oscillation criteria are presented to ensure that
every solution of this equation oscillates or converges to zero. To illustrate the significance of our main result, we provide a
suitable example.

1. Introduction

In several areas, such as electrical circuit analysis, finance
insurance, dynamic systems, computing, and physical field,
third-order difference equations appeared to scrutinize
discrete models, naturally occurring in discrete models
pertaining physical, biological, and chemical phenomena
(see, for example, [1–8]). In many engineering problems,
analyzing the existence of oscillatory solutions performs an
essential role. Notably, numerous monographs concern with
issues of the existence and multiplicity of solutions using

different methods, such as critical point theory, topological
degree theory, fixed-point index theory, and Lie theory. In
recent years, there has been a continual interest in getting
sufficient conditions for oscillatory behavior of different
classes of third-order difference equations with or without
deviating arguments (see [8–23] and the references cited
therein).

%e third-order nonlinear neutral distributed-delay
generalized differential equation is of the form

Δℓ a1(k) Δℓ a2(k) Δℓz(k) 
c1(  

c2(  + 
d

s�c

q(k, s)f(x(k + sℓ − σℓ)) � 0, (1)

where z(k) � x(k) + 
b
s�a p(k, s)x(k + sℓ − τℓ) and Δℓ is the

forward generalized difference operator well defined by
Δℓx(k) � x(k + ℓ) − x(k),
Nℓ(k0) � k0, k0 + ℓ, k0 + 2ℓ, . . . , , k0 ∈ [0,∞), ℓ ∈ (0,∞),
and a, b, c, d ∈ N(k0), which subject to the following
conditions:

c1: the sequence ai(k)  is positive real and

∞
k�k0

(1/a1/ci

i (k)) �∞, for i � 1, 2.

c2: p(k, s)  and q(k, s)  are nonnegative real se-
quences along with 0≤p(k) ≡ 

b
s�a p(k, s)≤p< 1.

c3: c1 and c2 are a quotient of odd positive integers with
c � c1c2.
c4: the function f: R⟶ R is continuous with
(f(x)/xc)≥ L> 0, where x≠ 0 and L is a constant.
c5: mi(k) � [(k − ki − j − ℓ)/ℓ], ki � ki + j, and
j � k − k0 − [(k − k0)/ℓ]ℓ.
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By a solution of equation (1), this means a real sequence
x(k){ }, satisfying equation (1) for all k ∈ Nℓ(k0): the solution
x(k){ } of equation (1) which satisfies sup |x(k)|: k≥K{ }> 0,
for K ∈ Nℓ(k0).

Section 2 provides some standard definitions and proves
some lemmas necessary for obtaining the main results.
Section 3 offers newest oscillation results for equation (1),
and finally, in Section 4, we provide a suitable example to
determine the major findings.

2. Preliminaries

We illustrate a few basic definitions and primary results in
this section that will be included in the forthcoming
discussions.

Definition 1 (see [16]). If x(k), k ∈ [0,∞) is a real or
complex valued function and ℓ ∈ (0,∞), at that point the
generalized difference operators Δℓ is predefined as

Δℓx(k) � x(k + ℓ) − x(k) ≡ y(k), (2)

and then, its inverse is defined by

x(k) � x k0 + j(  + 

m0(k)

r�0
y k0 + j + rℓ( , k ∈ Nℓ(j). (3)

Definition 2 (see [16]). For λ ∈ N(1), the generalized
polynomial factorial is defined by

k
(λ)
ℓ � k(k − ℓ)(k − 2ℓ), . . . , (k − (λ − 1)ℓ) � ℓk Γ(1 +(k/ℓ))

Γ((k/ℓ) − (λ − 1))
. (4)

Lemma 1 (see [16]). Let ℓ ∈ [0,∞). )en, Δℓ(n
(λ)
ℓ ) �

(λℓ)n(λ− 1)
ℓ .

Lemma 2 (see [16]). Let u(n) and v(n) be real-valued
functions. In addition,

Δℓ u(k)v(k){ }

� u(k + ℓ)Δℓv(k) + v(k)Δℓu(k)

� v(k + ℓ)Δℓu(k) + u(k)Δℓv(k).

(5)

Lemma 3. Let x(k) be a positive solution of equation (1).
)en, function z(k) has any one of the given properties:

(P1): z(k)> 0, Δℓz(k)> 0, Δℓ(a2(k)[Δℓz(k)]c1)> 0,
Δℓ(a1(k)[Δℓ(a2(k)[Δℓz(k)]c1)]c2)< 0
(P2): z(k)> 0, Δℓz(k)< 0, Δℓ(a2(k)[Δℓz(k)]c1)> 0,
Δℓ(a1(k)[Δℓ(a2(k)[Δℓz(k)]c1)]c2)< 0

In the above properties, k≥ k2 for sufficiently large
k2 ∈ Nℓ(k0).

Proof. Let x(k){ } be a positive solution of equation (1) for
every k≥ k0. By defining z(k), with z(k)≥x(k)> 0 for
k≥ k1 ∈ Nℓ(k0), and in addition to equation (1), we have

Δℓ a1(k) Δℓ a2(k) Δℓz(k) 
c1(  

c2(  � − 
d

s�c

q(k, s)f(x(k + sℓ − σℓ))< 0. (6)

We can know that a1(k)[Δℓ(a2(k)[Δℓz(k)]c1)]c2 is
clearly a decreasing function on [k1,∞) with positive or
negative finally. Furthermore, we must have to prove that
a1(k)[Δℓ(a2(k)[Δℓz(k)]c1)]c2 > 0 for k≥ k1 ≥ k0. Otherwise,
we have a constant M

c2
1 > 0 such that

Δℓ a2(k) Δℓz(k) 
c1( < −

M1

a
1/c2
1 (k)
< 0, for k≥ k1. (7)

Hence, by Definition 1,

a2(k) Δℓz(k) 
c1

≤ a2 k1  Δℓz k1  
c1

− M1 

m1(k)

r�0

1
a
1/c2
1 k1 + rℓ 

.
(8)

Letting k⟶∞ and then using condition (c1), we have
limn⟶∞a2(k)[Δℓz(k)]c1 � − ∞. Subsequently, there exists a
k2 ≥ k1 also a constant M

c1
2 > 0 so that

a2(k) Δℓz(k) 
c1 < − M

c1
2 , for k≥ k2. (9)

Dividing the above inequality by a2(k) and by applying
summation from k2 to k − ℓ, we obtain

z(k)< z k2  − M2 

m2(k)

t�0

1
a
1/c1
2 k2 + tℓ 

, (10)

Letting k⟶∞ and using condition (c1), we have
z(n)⟶ − ∞. %us, z(n)< 0 eventually which is contra-
dictory with z(n)> 0. Consequently, Δℓ(a2(k)[Δℓz(k)]c1) is
positive, that is, [Δℓ(a2(k)(Δℓz(k)]c1)]c2 > 0 holds.

It can be known from Δℓ(a2(k)[Δℓz(k)]c1)> 0, that is, a
monotonically increasing sign in the interval [k2,∞).
%erefore, Δℓz(k) is ultimately either positive or negative.
We have only property (P1) or (P2) for z(k){ }. Hence, the
proof is completed. □
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Lemma 4. Let x(k){ } be a positive solution of equation (1),
and z(k) has (P2) of Lemma 3. If



∞

t2�0

1
a
1/c1
2 k3 + t2ℓ 



m2(k)

t1�t2

1

a
1/c2( )

1 k2 + t1ℓ 


m1(k)

t�t1



d

s�c

q k1 + tℓ, s ⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/c2( )
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/c1( )

�∞, (11)

then x(k) of equation (1) converges to zero when k⟶∞.

Proof. Let x(k){ } be a positive solution of equation (1). Since
z(k) satisfies the property (P2) of Lemma 3, thereby there
exist β≥ 0 such that

lim
k⟶∞

z(k) � β≥ 0. (12)

Now, we shall prove that β � 0. Let β> 0; then, we have
β + ε> z(k)> β for every ϵ> 0, and k is enough large.
Choosing 0< ε< ((1 − p)/p)β, from z(k), we have

x(k) � z(k) − 
b

s�a

p(k, s)x(k + sℓ − τℓ)

> β − 
b

s�a

p(k, s)x(k + sℓ − τℓ)> β − p(β + ε) �
β − p(β + ε)

β + ε
(β + ε)>M3z(k),

(13)

where M3 � ((β − p(β + ε))/(β + ε))> 0. %us, from equa-
tion (1) and (c4), we have

Δℓ a1(k) Δℓ a2(k) Δℓz(k) 
c1(  

c2(  � − 

d

s�c

q(k, s)f(x(k + sℓ − σℓ))≤ − 
d

s�c

q(k, s)Lx
c
(k + sℓ − σℓ). (14)

Now, using (13), we obtain

Δℓ a1(k) Δℓ a2(k) Δℓz(k) 
c1(  

c2( ≤ − M
c
3L 

d

s�c

q(k, s)z
c
(k + sℓ − σℓ). (15)

Summing the abovementioned inequality from k1 to k −

ℓ and from Definition 1, we obtain

− a1 k1  Δℓ a2 k1  Δℓz k1  
c1

  
c2 ≤ − M

c
3L 

m1(k)

t�0


d

s�c

q k1 + tℓ, s z
c

k1 + tℓ + sℓ − σℓ . (16)

%e above equation can also be rewritten as

Δℓ a2 k1  Δℓz k1  
c1

 ≥
M3β( 

c/c2( )L
1/c2

a
1/c2
1 k1 



m1(k)

t�0


d

s�c

q k1 + tℓ, s ⎛⎝ ⎞⎠

1/c2( )

. (17)
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Summing again from k2 ≥ k1 to k − ℓ, we obtain

− Δℓz k2 ≥
M3β( L

1/c

a
1/c1
2 k2 



m2(k)

t1�0

1
a
1/c2
1 k2 + t1ℓ 



m1(k)

t�t1



d

s�c

q k1 + tℓ, s ⎛⎝ ⎞⎠

1/c2( )
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/c1( )

. (18)

Summing the last inequality with the limit from k3 to∞,
we obtain

z k3 ≥ M3β( L
1/c



∞

t2�0

1
a
1/c1
2 k3 + t2ℓ 



m2(k)

t1�t2

1
a
1/c2
1 k2 + t1ℓ 



m1(k)

t�t1



d

s�c

q k1 + tℓ, s ⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/c2( )
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/c1( )

. (19)

%is contradicts to condition (11). %us, β � 0. Fur-
thermore, the inequality 0< x(k)< z(k) implies that
limn⟶∞x(n) � 0. Now, the proof is complete. □

Lemma 5. Let x(k) be a positive solution of (1), and z(k) has
the property (P1). )en,

a1(k + ℓ) Δℓ a2(k + ℓ) Δℓz(k + ℓ) 
c1(  

c2 
1/c

R(k)≤Δℓz(k),

(20)

where R(k) � (1/a1/c1
2 (k))(

m1(k)
r�0 (1/(a

1/c2
1 (k1 + rℓ))))1/c1 .

Proof. Let x(k) be a positive solution of (1). Since z(k) has
the property (P1), we know

Δℓ a1(k) Δℓ a2(k) Δℓz(k) 
c1(  

c2( < 0, (21)

from the Definition 1 and for all k1 ≥ k0, we have

a2(k) Δℓz(k) 
c1 � a2 k1  Δℓz k1  

c1
+ 

m1(k)

r�0
Δℓ a2 k1 + rℓ  Δℓz k1 + rℓ  

c1
 

≥ 

m1(k)

r�0

a1 k1 + rℓ  Δℓ a2 k1 + rℓ  Δℓz k1 + rℓ  
c1

  
c2

 
1/c2

a
1/c2
1 k1 + rℓ 

≥ a1(k + ℓ) Δℓ a2(k + ℓ) Δℓz(k + ℓ) 
c1(  

c2 
1/c2



m1(k)

r�0

1
a
1/c2
1 k1 + rℓ 

.

(22)

Hence, we obtain

Δℓz(k)≥ a1(k + ℓ) Δℓ a2(k + ℓ) Δℓz(k + ℓ) 
c1(  

c2 
1/c

R(k).

(23)

%is completes the proof. □

3. Main Results

%is section establishes criteria on oscillation and conver-
gent solutions to (1) with the help of generalized Riccati
transformation and Philos-type technique. Let us define
functions h, H: Nℓ × Nℓ⟶ R such that
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(1 )H(k, k) � 0 with k≥ k0 ≥ 0.
(2) H(k, s)> 0 with k> s≥ k0.
(3) Δℓ(s)H(k, s) � H(k, s + ℓ) − H(k, s)≤ 0 for

k> s≥ k0, and there exists a positive real sequence
ρ(k)  such that

Δℓ(s)H(k, s) +
Δℓρ(s)

ρ(s + ℓ)
H(k, s) � − h(k, s)

������
H(k, s)


. (24)

Theorem 1. Assume that z(k){ } holds and there exists ρ(k) 

a positive real-valued sequence in such a way that

lim
k⟶∞



m1(k)

r�0
C k1 + rℓ  −

c
c
B
1+c

k1 + rℓ 

(1 + c)
1+c

A
c

k1 + rℓ 
⎛⎝ ⎞⎠ �∞,

(25)

where

A(k) �
cρ(k)R(k)

ρ((c+1)/c)
(k + ℓ)

,

B(k) �
Δℓρ(k)

ρ(k + ℓ)
,

C(k) � ρ(k)q1(k),

(26)

q1(k) � L(1 − p)
c



d

s�c

q(k, s), (27)

and then, each solution of equation (1) is either x(k)⟶ 0 as
k⟶∞ or oscillatory.

Proof. Suppose that x(k){ } is a nonoscillatory solution of
equation (1). By assuming x(k)> 0 and x(k + sℓ − τℓ)> 0 for
k≥ k1 ≥ k0 ∈ Nℓ and z(n){ } satisfies two properties of Lemma
3, we have

x(k)≥ z(k) − 
b

s�a

p(k, s)z(k + sℓ − τℓ)≥ 1 − 
b

s�a

p(k, s) z(k)≥ (1 − p)z(k). (28)

Using condition (c3) in equation (1), we obtain

Δℓ a1(k) Δℓ a2(k) Δℓz(k) 
c1(  

c2( ≤ − 
d

s�c

q(k, s)Lx
c
(k + sℓ − σℓ). (29)

By applying equation (28) in the aforementioned in-
equality, we obtain

Δℓ a1(k) Δℓ a2(k) Δℓz(k) 
c1(  

c2( ≤ − L(1 − p)
c



d

s�c

q(k, s)z
c
(k + sℓ − σℓ)

≤ − q1(k)z
c
(k + cℓ − σℓ).

(30)

Define

w(k) � ρ(k)
a1(k) Δℓ a2(k) Δℓz(k) 

c1(  
c2

z
c
(k)

, k≥ k1.

(31)

%en, w(k)> 0, for every k≥ k1, and from equations (20)
and (30), we have

Δℓw(k)≤ − ρ(k)q1(k) +
Δℓρ(k)

ρ(k + ℓ)
w(k + ℓ) −

cρ(k)R(k)

ρ((c+1)/c)
(k + ℓ)

w
((c+1)/c)

(k + ℓ). (32)

%e above equation is also expressed as
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Δℓw(k)≤ − C(k) + B(k)w(k + ℓ) − A(k)w
((c+1)/c)

(k + ℓ),
(33)

where

A(k) �
cρ(k)R(k)

ρ((c+1)/c)
(k + ℓ)

,

B(k) �
Δℓρ(k)

ρ(k + ℓ)
,

C(k) � ρ(k)q1(k).

(34)

Using the inequality,

Au − Bu
((1+β)/β) ≤

ββ

(1 + β)
1+β ×

A
1+β

B
β . (35)

Now, using the above inequality, it is possible to write
equation (33) as

C(k) −
c

c

(1 + c)
1+c

×
B
1+c

A
c ≤ − Δℓw(k). (36)

By applying summation in the last inequality with the
limits from k1 to k − ℓ, we have



m1(k)

r�0
C k1 + rℓ  −

c
c
B
1+c

k1 + rℓ 

(1 + c)
1+c

A
c

k1 + rℓ 
⎛⎝ ⎞⎠≤w k1  − w(k)≤w k1 , (37)

from w(k)> 0, which contradicts (25) as k⟶∞, and then,
the solution x(k) of (1) is oscillatory. When z(k) has
property (P2), from (11), we know limk⟶∞x(k) � 0 by
Lemma 4. %e proof is complete. □

Theorem 2. Suppose that (1) holds. If there exists ρ(k)  a
positive real sequence such that

limsup
k⟶∞

1
H k, k2( 



m2(k)

r�0
H k, k2 + rℓ C k2 + rℓ  −

c
c

(1 + c)
1+c

− h k, k2 + rℓ  
1+c

A
c

k2 + rℓ H
((c− 1)/2)

k, k2 + rℓ 

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �∞. (38)

Subsequently, all solutions of equation (1) is either
x(k)⟶ 0 as k⟶∞ or oscillatory.

Proof. Suppose that x(k){ } is a nonoscillatory solution of
equation (1). Proceeding as the proof of %eorem 1, we got

equation (33). Now, multiplying inequality (33) by H(k, s)

and then summing the aforementioned inequality from k2 to
k − ℓ, for all k≥ k2 ≥ k0, we have



m2(k)

r�0
H k, k2 + rℓ C k2 + rℓ ≤ − 

m2(k)

r�0
H k, k2 + rℓ Δℓw k2 + rℓ 

+ 

m2(k)

r�0
B k2 + rℓ w k2 + rℓ + ℓ  − A k2 + rℓ w

((c+1)/c)
k2 + rℓ + ℓ  H k, k2 + rℓ .

(39)

By summation by parts, we obtain



m2(k)

r�0
H k, k2 + rℓ C k2 + rℓ ≤H k, k2 w k2 

+ 

m2(k)

r�0
Δℓ k2( 

H k, k2  + B k2 + rℓ H k, k2 + rℓ  w k2 + rℓ + ℓ 

− 

m2(k)

r�0
A k2 + rℓ H k, k2 + rℓ w

((c+1)/c)
k2 + rℓ + ℓ .

(40)
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Using inequality (35), we have



m2(k)

r�0
H k, k2 + rℓ C k2 + rℓ ≤H k, k2 w k2 

+ 

m2(k)

r�0

c
c

(1 + c)
1+c

Δℓ k2( 
H k, k2  + B k2 + rℓ H k, k2 + rℓ  

1+c

A k2 + rℓ H k, k2 + rℓ  
c ,

· 

m2(k)

r�0
H k, k2 + rℓ C k2 + rℓ  −

c
c

(1 + c)
1+c

− h k, k2 + rℓ  
1+c

A
c

k2 + rℓ H
((c− 1)/2)

k, k2 + rℓ 

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦≤H k, k2 w k2 ,

(41)

where

Δℓ k2( 
H k, k2  +

Δℓρ k2 + rℓ 

ρ k2 + rℓ + ℓ 
H k, k2 + rℓ  � − h k, k2 + rℓ 

�����������

H k, k2 + rℓ 



,

·
1

H k, k2 


m2(k)

r�0
H k, k2 + rℓ C k2 + rℓ 

−
c

c

(1 + c)
1+c

− h k, k2 + rℓ  
1+c

A
c

k2 + rℓ H
((c− 1)/2)

k, k2 + rℓ 

⎤⎥⎥⎥⎦≤w k2 ,

(42)

which is a contradiction to inequality (29). If z(k) has
satisfied the property (ii) of Lemma 3, then, by condition
(11), we have x(k)⟶ 0 as k⟶ 0. Hence, the theorem is
proved. □

Corollary 1. If H(k, s) � (k − s)
(m)
ℓ for all k≥ s≥ 0,

ρ(k) � 1, and

limsup
k⟶∞

1
k

(m)
ℓ



((k− s− ℓ)/ℓ)

r�0
(k − s − rℓ)(m)

ℓ q1(s + rℓ) −
(1 + c)

− (1+c)
− mℓ(k − s − rℓ)((m/2)− 1)

ℓ 
1+c

R
c
(s + rℓ) (k − s − rℓ)(m)

ℓ 
((c− 1)/2)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ �∞, (43)

for every m≥ 1, then each and every solution of equation (1) is
oscillatory.

Corollary 2. If H(k, s) � (log((k + ℓ)/(s + ℓ)))m, for all
k≥ s≥ 0, ρ(k) � 1, and

limsup
k⟶∞

1
(log((k + ℓ)/ℓ))m 

((k− s− ℓ)/ℓ)

r�0
log

k + ℓ
s + rℓ + ℓ

 

m

q1(s + rℓ) −
(1 + c)

− (1+c)
(log((k + ℓ)/(s + rℓ + ℓ)))(m− 2)(1+c)

R
c
(s + rℓ)(log((k + ℓ)/(s + rℓ + ℓ)))((m(c− 1))/2)

⎡⎣ ⎤⎦ �∞,

(44)
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for every m≥ 1, then each and every solution of equation (1) is
oscillatory.

Theorem 3. Suppose that condition (11) holds. Also, let

0< inf
s≥k0

liminf
k⟶∞

H(k, s)

H k, k0( 
 ≤∞ (45)

limsup
k⟶∞

1
H k, k0( 



m2(k)

r�0

h
2

k, k2 + rℓ 

A k2 + rℓ w
((1− c)/c)

k2 + rℓ 
<∞

(46)

holds. If there is a sequence Φ(n){ } such that



m2(k)

r�0
A k2 + rℓ Φ2+ k2 + rℓ + ℓ  �∞ (47)

limsup
k⟶∞

1
H k, k2( 



m2(k)

r�0
H k, k2 + rℓ C k2 + rℓ  −

h
2

k, k2 + rℓ  
1+c

4A k2 + rℓ( w
((1− c)/c)

k, k2 + rℓ + ℓ 

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦≥Φ(s), (48)

where

Φ+ k2 + rℓ + ℓ(  � max Φ k2 + rℓ + ℓ( , 0 , (49)

where A(k), B(k), C(k), and h(k, s) are defined in (26) and
(24), respectively, then each and every solution of equation (1)
is either oscillatory or converges to zero.

Proof. Let x(k) be a nonoscillatory solution of (1), and
proceeding as in the proof of %eorem 2, when z(k) has a
property (P1), from (40), and rearranging, we obtain

w k2 ≥ limsup
k⟶∞

1
H k, k2 



m2(k)

r�0
H k, k2 + rℓ C k2 + rℓ  −

h
2

k, k2 + rℓ  
1+c

4A k2 + rℓ( w
((1− c)/c)

k, k2 + rℓ + ℓ 

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+ liminf
k⟶∞

1
H k, k2 



m2(k)

r�0

�������������������������������������

H k, k2 + rℓ A k2 + rℓ w
((c+1)/c)

k2 + rℓ + ℓ 


⎡⎣

+
h k, k2 + rℓ 

2
����������������������������
A k2 + rℓ w((1− c)/c) k, k2 + rℓ + ℓ 


⎤⎥⎥⎥⎥⎥⎥⎥⎦

2

,

(50)

for k≥ k2. It is derived from (48) that

w k2 ≥Φ k2  + liminf
k⟶∞

1
H k, k2 



m2(k)

r�0

�������������������������������������

H k, k2 + rℓ A k2 + rℓ w
((c+1)/c)

k2 + rℓ + ℓ 


⎡⎣

+
h k, k2 + rℓ 

����������������������������
A k2 + rℓ w((1− c)/c) k, k2 + rℓ + ℓ 


⎤⎥⎥⎥⎥⎥⎥⎥⎦

2

,

(51)
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which means that

w k2 ≥Φ k2 , (52)

and then,

liminf
k⟶∞

1
H k, k2 



m2(k)

r�0

�������������������������������������

H k, k2 + rℓ A k2 + rℓ w
((c+1)/c)

k2 + rℓ + ℓ 


⎡⎣

+
h k, k2 + rℓ 

����������������������������
A k2 + rℓ w((1− c)/c) k, k2 + rℓ + ℓ 


⎤⎥⎥⎥⎥⎥⎥⎥⎦

2

<∞.

(53)

%erefore,

liminf
k⟶∞

1
H k, k2 

⎡⎢⎣ 

m2(k)

r�0
H k, k2 + rℓ A k2 + rℓ w

((c+1)/c)
k2 + rℓ + ℓ 

+
1

H k, k2 


m2(k)

r�0
h k, k2 + rℓ 

�����������

H k, k2 + rℓ 



w k2 + rℓ + ℓ 

+
1

4H k, k2 


m2(k)

r�0

h
2

k, k2 + rℓ 

A k2 + rℓ w
((1− c)/c)

k2 + rℓ + ℓ 

⎤⎥⎥⎦<∞.

(54)

%en,

liminf
k⟶∞

1
H k, k2 

⎡⎢⎣ 

m2(k)

r�0
H k, k2 + rℓ A k2 + rℓ w

((c+1)/c)
k2 + rℓ + ℓ 

+
1

H k, k2 


m2(k)

r�0
h k, k2 + rℓ 

�����������

H k, k2 + rℓ 



w k2 + rℓ + ℓ ⎤⎥⎦<∞.

(55)

%e abovementioned inequality can also be expressed as

liminf
k⟶∞

[U(k) + V(k)]<∞, for k≥ k2, (56)

where

U(k) �
1

H k, k2 


m2(k)

r�0
H k, k2 + rℓ A k2 + rℓ w

((c+1)/c)
k2 + rℓ + ℓ 

V(k) �
1

H k, k2 


m2(k)

r�0
h k, k2 + rℓ 

�����������

H k, k2 + rℓ 



w k2 + rℓ + ℓ .

(57)

Here, we assert



m2(k)

r�0
A k2 + rℓ w

((c+1)/c)
k2 + rℓ + ℓ <∞. (58)

Conversely, suppose that



m2(k)

r�0
A k2 + rℓ w

((c+1)/c)
k2 + rℓ + ℓ  �∞. (59)

From equation (45), we have

inf
s≥k0

liminf
k⟶∞

H(k, s)

H k, k0( 
 > μ, (60)

for μ> 0; then, (H(k, s)/H(k, k0))> μ for k≥ k2 ≥ k1. %ere
exists a positive constant M4 > 0 such that



m2(k)

r�0
A k2 + rℓ w

((c+1)/c)
k2 + rℓ + ℓ ≥

M4

μ
. (61)

%us, for k≥ k3 and using equation (74), we have
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U(k) �
1

H k, k2 


m2(k)

r�0
H k, k2 + rℓ Δℓ 

r− k2− ℓ( /ℓ( 

r1�0
A k2 + r1ℓ w

((c+1)/c)
k2 + r1ℓ + ℓ 

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

+ A k2 + rℓ w
((c+1)/c)

k2 + rℓ + ℓ 

� −
1

H k, k2 


k− k3− ℓ( /ℓ( 

r�0


r− k2− ℓ( /ℓ( 

r1�0
A k2 + r1ℓ w

((c+1)/c)
k2 + r1ℓ + ℓ 

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠Δℓ k2( 
H k, k3 + rℓ 

−
A k2 w

((c+1)/c)
k2 + ℓ 

H k, k2 


k− k3− ℓ( /ℓ( 

r�0
H k, k3 + rℓ A k2 + rℓ w

((c+1)/c)
k2 + rℓ + ℓ 

≥
1

H k, k2 


k− k3− ℓ( /ℓ( 

r�0


r− k2− ℓ( /ℓ( 

r1�0
A k2 + r1ℓ w

((c+1)/c)
k2 + r1ℓ + ℓ 

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ − Δℓ k2( 
H k, k3 + rℓ  

≥
M4

μH k, k2 


k− k3− ℓ( /ℓ( 

r�0
− Δℓ k2( 

H k, k3 + rℓ  

≥
M4H k, k3 

μH k, k2 
≥M4.

(62)

Since M4 is an arbitrary constant,

lim
k⟶∞

U(k) �∞. (63)

Furthermore, consider a sequence kn⟶∞ such that

lim
n⟶∞

U kn(  + V kn(   � liminf
k⟶∞

[U(k) + V(k)]. (64)

From (56), there exists a number M5 such that

U kn(  + V kn( ≤M5, for n � 0, 1, 2, . (65)

Resulting from (64), we conclude that

lim
n⟶∞

V kn(  � − ∞. (66)

By (65), for a large value of n, we have

1 +
V kn( 

U kn( 
≤

M5

U kn( 
<
1
2
. (67)

From (66), we obtain

lim
n⟶∞

V
2

kn( 

U kn( 
�∞. (68)

Nevertheless, by Schwarz’s inequality, we have

V
2

kn(  �
1

H kn, k2 


kn− k2− ℓ( /ℓ( 

r�0
h kn, k2 + rℓ 

������������

H kn, k2 + rℓ 



w k2 + rℓ + ℓ 
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

2

≤
1

H kn, k2 


kn− k2− ℓ( /ℓ( 

r�0
H kn, k2 + rℓ A k2 + rℓ w

((c+1)/c)
k2 + rℓ + ℓ ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

·
1

H kn, k2 


kn− k2− ℓ( /ℓ( 

r�0

h
2

kn, k2 + rℓ 

A k2 + rℓ w
((1− c)/c)

k2 + rℓ + ℓ 

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

≤U kn( 
1

H kn, k2 


kn− k2− ℓ( /ℓ( 

r�0

h
2

kn, k2 + rℓ 

A k2 + rℓ w
((1− c)/c)

k2 + rℓ + ℓ 

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠.

(69)
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Consequently,

V
2

kn( 

U kn( 
≤

1
H kn, k2 



kn− k2− ℓ( /ℓ( 

r�0

h
2

kn, k2 + rℓ 

A k2 + rℓ w
((1− c)/c)

k2 + rℓ + ℓ 

≤
1

μH kn, k0( 


kn− k2− ℓ( /ℓ( 

r�0

h
2

kn, k2 + rℓ 

A k2 + rℓ w
((1− c)/c)

k2 + rℓ + ℓ 
.

(70)

It follows from (68) that

lim
n⟶∞

1
H kn, k0( 



kn− k2− ℓ( )/ℓ( )

r�0

h
2

kn, k2 + rℓ( 

A k2 + rℓ( w
((1− c)/c)

k2 + rℓ + ℓ 
�∞, (71)

which is a contradiction to inequality (46). Hence, by (52),
equation (72) holds:



m2(k)

r�0
A k2 + rℓ Φ2+ k2 + rℓ + ℓ ≤ 

m2(k)

r�0
A k2 + rℓ w

2
k2 + rℓ + ℓ <∞, (72)

which is a contradiction to inequality (47) and concludes the
proof. If z(k) fulfills the property (P2) of Lemma 3, then, by
equation (11), we have obtained x(k)⟶ 0 as k⟶∞.
Hence, the proof is complete. □

Theorem 4. Suppose that all conditions of )eorem 3 are
satisfied excluding condition (46). Also, let

liminf
k⟶∞

1
H k, k0( 



k− k2− ℓ( )/ℓ( )

r�0
H(k, s + rℓ)C(s + rℓ)<∞

(73)

and

liminf
k⟶∞

1
H(k, s)



((k− s− ℓ)/ℓ)

r�0
H(k, s + rℓ)C(s + rℓ) −

h
2
(k, s + rℓ)

4A(s + rℓ)
 ≥Φ(s). (74)

Furthermore, each and every solution of equation (1) is
either x(k)⟶ 0 as k⟶∞ or oscillatory.

Proof. %e proof is approximately the same as %eorem 3,
and in consequence, the details are excluded. □

Example 1. %e third-order neutral generalized difference
equation with distributed delay is given as

Δℓ Δℓ Δℓ x(k) + 
3

s�2

1
s

x(k + sℓ − ℓ)⎛⎝ ⎞⎠⎛⎝ ⎞⎠

3

⎛⎝ ⎞⎠

(1/3)

+ 
3

s�1

27/3

s
x(k + sℓ − ℓ) � 0. (75)

Here, a1(k) � a2(k) � 1, c1 � 3, c2 � (1/3),
p(k, s) � (1/s), q(k, s) � 27/3((k/2) + (1/s)), τ � 1, σ � 1,

and ρ(k) � 1. %en, R(k) � ((k − k1)/ℓ) and
q1(k) � (21/3L/9)(6k + 11) which imply
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lim
k⟶∞



m1(k)

r�0

21/3L
9

6k1 + 6rℓ + 11(  �∞. (76)

Henceforth, by %eorem 1, each and every solution of
equation (75) is oscillatory. Moreover, x(n){ } � (− 1)[n/ℓ]

 

is one such oscillatory solution of equation (75).

4. Conclusion

In this paper, we present the qualitative properties such as
convergence and oscillatory behaviors of third-order non-
linear neutral distributed-delay generalized difference
equation.%e results we obtained in this paper for difference
equation involving generalized difference operator Δℓ with
distributed delay are rare and new in the literature. Also, the
technique adopted is different from that which already
exists. %e significance of the results is also well established
by an example presented in this paper.
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