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Traffic flow data is the basis of traffic management, planning, control, and other forms of implementation. Once missing, it will
directly affect the monitoring and prediction of expressway traffic status. Regarding this, this paper proposes a repair method for
the traffic flow missing data of expressway, combined with the idea of coupled matrix-tensor factorizations (CMTF), to couple the
auxiliary traffic flow data into the main traffic flow data and to construct the coupling matrix-tensor expression of traffic flow data,
and the alternating direction multiplier algorithm is used to realize the repair of missing traffic flow data. Combined with the
measured data of expressway traffic flow, the experimental results show that, under different missing data types and missing rates,
the proposed method outperforms the methods lacking auxiliary traffic flow data and achieves a good repair effect, especially for

high miss data rates.

1. Introduction

The traffic management department requires traffic flow data
to be complete to realize accurate assessment and prediction
of the traffic status. Thus, the repair of the missing data is
crucial for effective management of the traffic flow.

In the past few decades, researchers have shown much
interest in the problem of repairing the missing traffic flow
data. The existing research on this area can be categorized
into three types of data composition: vector, matrix, and
tensor. Below, we elaborate on the existing studies to provide
an overview of the state of the art.

First of all, researchers used the traffic flow data in the
form of a one-dimensional vector to repair the missing parts
based on spatial or temporal correlation. Gold et al. classified
the reasons for the missing data based on the characteristics
of expressway traffic flow data and repaired the missing data
using nuclear regression, polynomial regression, and linear
interpolation [1]. Based on the hotspot analysis of the spatial
correlation of traffic data, Conklin et al. used the similarity of
the adjacent lanes to repair the missing data [2]. Smith et al.

utilized the temporal correlation of traffic data and repaired
the missing parts by using the average value of the historical
data at the corresponding time and the exponential
smoothing value of data at adjacent periods from several
days ago [3]. Based on the spatial and temporal correlation,
Jiang and Gang predicted the value of data in previous
periods and adjacent sections to repair the missing data [4].
Jin and Wang proposed a traffic flow parameter correction
method based on correlation analysis from the perspective of
statistical analysis of traffic flow data [5]. Gheyas and Smith
mainly focused on the measured traffic flow data and utilized
the methods of historical trend and exponential smoothing
to repair the missing parts. By comparison, these two
methods were proved to be more effective in dealing with
continuous abnormal data [6]. In consideration of the
spatial-temporal characteristics of the traffic flow data,
Wang et al. proposed a repair method based on the 3D shape
function and the spatial-temporal interpolation [7]. Chen
et al. proposed a long short-term memory (LSTM) method,
which was built on the normal time-series using the cal-
culation error of the Gaussian Bayesian model. Experimental
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results on three real datasets showed the advantages of this
method [8].

Then, the data is organized into a matrix to repair the
missing data. Kurucz et al. proposed a low-rank matrix
completion algorithm using the path norm minimization of
the matrix to replace the minimization of the rank function
[9]. Qu et al. performed (Bayesian) principal component
analysis to reconstruct the traffic flow data into a matrix. The
results showed the effectiveness of this method in data repair
for low missing rates [10]. Tang et al. made use of fuzzy
c-means clustering and genetic algorithm to repair the
missing data based on a matrix. The repair effect of data on
different time scales was quantified. The results revealed that
the fusion model had a significant repair effect [11]. Lu et al.
proposed a data repair model structured on an improved
multiscale principal component analysis. Based on the
spatial-temporal correlation characteristics of the traffic flow
data, they calculated the correlation coefficient of the
missing data to estimate its true value [12]. Similarly, Jiang
proposed a data repair algorithm using the fusion matrix
low-rank decomposition [13].

The data composition in the form of multidimensional
tensor expands the vector and matrix to higher dimen-
sions. In recent years, it has proliferated in machine
learning (clustering and dimensionality reduction) and
other fields [14]. This method can repair the missing data
by organizing the traffic flow data into tensors. Acar et al.
proposed an algorithm based on CP decomposition and
gradient optimization and then proved that the algorithm
had high flexibility [15]. Silva and Herrmann proposed a
tensor repair method based on the hierarchical Tucker
decomposition to repair the missing seismic data [16]. Tan
et al. proposed a traffic data repair method based on tensor
for the first time, which achieved good experimental re-
sults, especially in the case of high data missing rates.
Subsequently, Tan et al. proposed several other tensor-
based repair methods, which proved that the tensor-based
method was still useful, especially for the cases with high
missed data [17]. Liu et al. proposed a low-rank tensor
repair algorithm to solve the problem of image repair and
proved that their method was better than the tensor model
using CP decomposition [18]. Based on the tensor theory,
Xiang used the spatial-temporal characteristics of the
traffic data for modelling, which significantly improved
the accuracy of data repair [19]. Zhang focused on the
microwave data of the urban expressway and repaired the
data using a CP-ALS algorithm based on tensor decom-
position. The results proved that their method could ef-
fectively improve data quality [20]. Zhang et al. proposed
an iterative tensor decomposition (ITD) method to repair
the lost data in the ANPR system. They used the multi-
dimensional intrinsic correlation of the traffic flow data
for the detection of missed parts and their repair. The
results showed that this method could accurately detect
and repair the missing data under various missing rates
[21].

To summarize, the one-dimensional vector was highly
dependent on the historical information, requiring stable
traffic flow data within a period or space. Thus, it could not
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use the information collected after the data missed. Besides, if
the data missed within a long period, the error in the repair
results turned to be high. On the other hand, although the
two-dimensional matrix made full use of the spatial-temporal
correlation characteristics of the traffic flow data, it was
limited to the 2D data. Furthermore, it could not simulta-
neously utilize the multimode correlation of the traffic flow
data, which resulted in low repair accuracy. In recent years,
the high-dimensional tensor model has attracted significant
attention in data repair, and some progress has been achieved,
especially for the repair of traffic flow missing data. However,
most of the existing efforts have focused on the model
construction of spatial and temporal correlation of the traffic
flow data.

In summary, it is necessary to introduce a data repair
method, which makes full, reasonable, and effective use of
multidimensional information between the traffic flow
data. To do so, this work for the first time proposes a
traffic flow missing data repair model based on the
coupled matrix-tensor factorizations. Compared with the
existing work, we make two contributions: (1) we aim to
obtain better multidimensional information of traffic
flow data, which is divided into main traffic flow data and
auxiliary traffic flow data, and coupled the auxiliary traffic
flow data into the main traffic flow data to construct the
coupling matrix-tensor expression of traffic flow data. (2)
In order to get better data repair effect, we used alter-
nating direction multiplier (ADMM) algorithm to de-
compose large global problems into many smaller and
easier local subproblems to solve the optimal solution. By
comparison with the prior method, we validate the ef-
fectiveness and feasibility of the proposed methodology
in data repair.

The rest of this paper is organized as follows. Firstly, the
tensor theory is explained in Section 2. Then, the traffic flow
data analysis is provided in Section 3. Section 4 presents the
missing data repair method based on CMTEF, where the
results and discussion on the findings are elaborated in
Section 5. Finally, Section 6 concludes the paper.

2. Tensor Theory

As an extension of vector and matrix to a high-dimensional
space, tensor is a mathematical representation of a multi-
dimensional data. The dimension of a tensor is also called the
modulus or the order [22, 23]. Hence, if we consider a vector
as a tensor of the first order and a matrix as a tensor of the
second order, it refers to an array of three or more di-
mensions as a tensor of a high order, tensor for short. The
third-order tensor y € R™/*X with dimensions I, J, and K
shown in Figure 1 is an example of this.

Tensors can be expressed in either a fibrous or a slice
form [24, 25]. Any two dimensions in the third-order tensor
are kept unchanged. In this case, the tensor can be expressed
by a column fiber line (x, ;), a fiber (x;, ;), and a pipe (x;;. ),
where the colon represents the dimension all of elements.
Alternatively, the tensor can be expressed in the form of a
horizontal slice (X,.), a side slice (X. ;. ), and a front slice

j
(X.. ;) when the other two dimensions are changed.
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2.1. Tensor Matrixing. Tensor matrixing is a process, in
which the elements of a tensor are rearranged into matrices.
To be specific, tensor operations are simplified by expanding
tensor y into the matrix X, in the n modulus.

The CP decomposition is one of the earliest and most in-
depth tensor decomposition methods. It can be interpreted
as decomposing a tensor into the form of a sum of rank-1
tensors. For y € RP*K| the CP decomposition can be
expressed in the following matrix form:

R
x~[[AB,Cl]=) a,0boc, = AeBoC, (1)

r=1

where A = [a,,a,,...,a,] is the vector a, corresponding to
rank-1 tensor. Similarly, B and C are the vectors b, and c,
corresponding to rank-1 tensor. Thus, A, B, and C are the
factor matrices decomposed by CP decomposition, where
A e R B e RR and C € R“*R. The slice of a tensor can
be represented as follows:

Xy = A(CoB),
Xy = B(CoA), (2)
X(3) = C(B@A)T,

where the symbol “©” can be specifically described as the
output value of 1 when two input variables are the same,
otherwise the output value is.

In practice, however, the column vectors in the factor
matrix are usually normalized: ||a,llz = b,lz = lc,llz = 1.
Thus, the CP decomposition can be expressed as

R
x~ LA BCl =) Aa,0b,oc, (3)

r=1

where A is the regularization parameter.

2.2. The Coupled Matrix-Tensor Factorizations. The joint
analysis of data is quite useful in understanding the un-
derlying structure of complex datasets. Here, the coupled
matrix-tensor factorizations (CMTF) can capture the po-
tential structural characteristics of heterogeneous data by
coupling the matrix data into the high-order tensor model.

To explain this coupling model in detail, we assume that
a third-order tensor y € R*K and a matrix U € R*M are
derived from different datasets, and U is coupled to a di-
mension of y. The schematic diagram of the CMTF is shown
in Figure 2.

The underlying structure of the dataset can be extracted
by the CMTF, where the R-component of a tensor y and a
matrix U is defined as

fABCV) =~ [ABCIE +JU - V[, (&)

where A, B, C are the factor matrices of the tensor y extracted
by CP decomposition, where A € R™R, Be Rk and
C e R,

i=1,2,

=127 ¥

F1GURE 1: The third-order tensor y € RP/*K,

IxM IxJxK
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FIGURE 2: The CMTF model.

The factor matrices A € RM®Rand V e R are
extracted from matrix U, which can be represented as

U=AVT, (5)

where A is the common mode factor matrix of the tensor y
and the matrix U on a certain dimension (modulus).

To ensure that the datasets are codecomposed and share
the same potential space, the matrix U should have the same
underlying low-rank structure as the tensor y on at least one
dimension.

3. Analysis of the Traffic Flow Data

3.1. Traffic Flow Missing Data: Causes and Types. The
complete traffic flow data is key for the traffic management
department to assess the traffic status. However, due to the
influence/restriction of traffic conditions, meteorological
environment, and many other factors, the traffic system has
formed a complex operating environment. There are four
main reasons of the missing data: detection equipment
failure, power failure, communication network failure, and
environmental factors.

The missing data types can be summarized as follows:

(1) Missing Completely at Random (MCAR). It refers to
the type where the missing traffic flow data are
completely random and independent of each other;
that is, the probability of the missing data is not
affected by other factors. The missing data location is
represented as a random discrete distribution.

(2) Missing at Random (MAR). It refers to the type where
the missing traffic flow data is not completely ran-
dom. The missing data is not correlated with itself



but with other adjacent data points. The missing data
location is a random continuous distribution.

(3) Missing at Nonrandom (MANR). It refers to the type
where there is a certain correlation between the
missing data and its characteristics, which also de-
pends on other missing data. This loss is generally
caused by the system itself.

One of the earlier studies in the field [26, 27] assumed
that the MANR data was found and then deleted, where
subsequent studies mainly used the MCAR and MAR. To
comprehensively reflect the real traffic flow under the
condition that the complexity of the data is missing, the
follow-up work will be according to the three following case
studies:

(1) The missing data type 100% are missing completely
at random (MCAR)

(2) Lack of missing at random (MAR) data type 100%

(3) Lack of missing completely at random data type and
random loss, 50% each, namely, lack of hybrid (MIX-
M)

3.2. Analysis of the Traffic Flow Data. In analysis of traffic
flow data variation, the traffic flow data is divided into main
traffic flow data and auxiliary traffic flow data according to
whether it can directly reflect the actual traffic status of the
road.

3.2.1. Analysis of the Main Traffic Flow Data. This paper
defines the main traffic flow data as the data that can directly
reflect the state change of the system. Specifically, it is de-
scribed as the index value that can represent the state of the
traffic flow through the data, such as flow, speed, and oc-
cupancy, which plays a leading role in the repair of the
missing data.

The phenomena of the main traffic flow data changes
with time and space are called the spatial and temporal
distribution of traffic flow, which has the characteristics of
temporal and spatial correlation. The time correlation
analysis of the traffic flow data describes the change char-
acteristics in the time domain. The travellers determine the
time regularity of the traffic flow. According to the traffic
data of different times of a month, week, and day, the
similarity of the different degrees is reflected. Considering
the different time organization modes of traffic flow data, the
time correlation analysis will be performed according to the
correlation analysis of different weeks of a month, days of a
week, and periods of a day. Some studies have revealed that
the traffic flow data has strong daily and weekly correlations
[3-5, 7, 16, 18, 28-31].

The spatial correlation analysis of the traffic flow data
includes two main parts: (i) the data correlation analysis
of a lane and its transverse adjacent lanes and (ii) the data
correlation analysis of a lane and its longitudinal up-
stream and downstream sections of the same lane. Some
studies have proved that the flow data of an urban ex-
pressway has a strong correlation with its horizontal and
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vertical spaces. In theory, the spatial and temporal cor-
relation of the traffic flow data can be used to effectively
repair the missing data.

3.2.2. Analysis of the Auxiliary Traffic Flow Data. The core of
data repair is to establish a relationship between the known
and missing data. The more information related to missing
data is contained in the data repair model, the better the
effect of data repair will be. The auxiliary traffic flow data
refers to the fact that the traffic flow data itself does not have
a direct response state of the quantitative indicators.
However, in the process of data repair, it can provide certain
information about road conditions and environmental
characteristics. Thus, the acquisition and use of auxiliary
data will greatly help to restore the missing data.

The importance of auxiliary traffic flow data in data
repair is explained as follows: Firstly, different weather
conditions may affect the operational behaviours of vehicles,
for example, in rainy weather, due to the slippery road
surface, which will directly affect the speed of vehicles, thus
leading to similar running state of vehicles in similar weather
conditions. Secondly, the analysis of the running speed of
vehicles in different lanes of the same section shows that the
vehicles using the middle lane will travel at different speeds
compared to the ones in the edge lanes [32, 33]. The dif-
ference in the information added for the traffic flow data
repair helps to improve the restoration precision of the
traffic flow data.

4. The Missing Data Repair Method
Based on CMTF

The joint analysis of multisource data improves the un-
derstanding of the underlying structure of complex
datasets. In the existing research, the repair of traffic flow
missing data is mostly based on spatiotemporal infor-
mation, while the importance of auxiliary information in
data repair is neglected. Furthermore, due to the het-
erogeneity of the latter, there are different quantitative
standards in practical application. Therefore, a method is
required to integrate the auxiliary information about
traffic flow with the spatial-temporal information to repair
the missing data.

The CMTF model can fit the matrix data into the tensor
model through the coupling and capture the underlying
structural characteristics of the heterogeneous data, realizing
the joint analysis. Thus, combining with the CMTF model,
this paper proposes a missing data repair method based on
multisource information.

4.1. The CMTF Representation of the Traffic Flow Data.
The schematic diagram of the CMTF model is shown in
Figure 3. There are three datasets in the figure: the tensor
with missing traffic flow data, the feature matrix of weather
feature data, and the lane feature data matrix.

The third-order tensor y € R”/*K is constructed from
the perspective of the spatiotemporal correlation of the
main traffic flow data, where I represents the longitudinal
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FIGURE 3: The CMTF model of the missing traffic flow data.

time-series data of the same day in I consecutive weeks, |
represents the ] lanes of the same detection section,
and K represents the K transverse time-series data of a
day.

According to the auxiliary traffic flow data, also con-
sidering that the third-order tensor contains the same un-
derlying low-rank structure with the construction of the
third-order tensor, the two following feature matrices are
constructed:

(1) Weather Feature Matrix. Different weather condi-
tions, for example, rain, will affect the operational
behaviours of vehicles. The wet roads and low vis-
ibility will directly affect the speed of vehicles,
resulting in a similar running state for all vehicles.
The weather data matrix Q € R™M is in the com-
position of feature dimension, where I represents the
longitudinal time-series data of the same day in I
consecutive weeks, and M represents the M trans-
verse time-series data of a day. Here, the sunny,
cloudy (foggy), and rainy/snowy days are assigned
the values of 1, 2, and 3, respectively. Thus, the el-
ement x;,, in the matrix is an integer varying from 1
to 3.

(2) Lane Feature Matrix. The running state of the ve-
hicles traveling towards the same direction in the
different lanes of the same section will have typical
differences. For example, near the separator, the
operating characteristics of the vehicle lane edge will
be different, which will be considered in the traffic
flow data repair. For the lane feature matrix
D e RN where | represents the J lanes of the same
detection section and N represents the lane attribute
values. Starting from the median, lane of attribute
assignment is, respectively, 1, 2, 2, and 3. Thus, the
elements in matrix y ;, are integers varying between 1
and 3.

The tensor containing missing data is constructed for the
traffic flow spatiotemporal data, where the lane and weather
feature matrices are coupled in lane and date dimensions,
respectively. In this way, the data fusion problem is

transformed into the CMTF decomposition problem. Thus,
the missing data in the original tensor can be repaired by
decomposing the tensor and matrix into multiple datasets
and then reconstructing the tensor.

4.2. Objective Function Construction. The factor matrices A,,
B, and C are obtained by the CP decomposition of tensor y,
where A, € RPR, B, € R/R and C € R®R, Decomposition
of matrices Q and D, respectively, gives the factor matrices
A,,V, By, and W, where A, € R"M v ¢ RPM B, € RV,
and W € RN, Thus, the objective function of CMTF de-
composition can be expressed as

1 1
f(ABCYV) = §||X ~[[An B Cl| + g"Q - AzVT||2

1
+5ID- B
(6)

The missing data in tensor y can be repaired by coupling
it with a known matrix.

Next, denote by F,, the set of the squared errors between
the original tensor and the factor matrices A;, B,, and C,
where the reconstruction tensor is obtained by CP de-
composition. The smaller F is, the better the repair effect of
missing data in the original tensor will be. R is the rank of the
tensor, and A is the regularization parameter. ||A; |l 1Bz
and ||C||; are the norms corresponding to each factor matrix.
Thus, the tensor y is decomposed and expanded according to
one module CP as

1 2 A
Fy =% - 4 B 00) |, + 2 (Al +IB [ +101; ).
(7)

where X (;, is the matrix representation of the tensor on one
modulus. The sets F, and F, represent the squared error
between the original matrix and the matrix reconstructed
from the factor matrix, which are obtained by matrix de-
composition as
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According to the analysis of the CMTF model, the matrix
should have the same underlying low-rank structure as the
tensor in at least one dimension. Therefore, the matrix and
the tensor should have a common modulus factor matrix.
The assumption is that A; and A,are equal; and B; and B,
are equal. Therefore, two global optimal variables A and B
are introduced to satisfy the application premise of the
CMTF model:

A -A=0,
A, - A=0,
_ 9)
B,-B=0,
B,-B=0

Thus, the optimization problem of the objective function
is described as

L,(¥.0},07,0}, 0}, 4,8) = F + Y (u([6)] (A, - A)) + 24, - A} ) + Y (w([0}] (B
i=1

where @) A @114 , @11g , @)113 are the Lagrangian multipliers
[31], p is the penalty coefficient (>0), and tr is the trace of
the matrix, that is, the sum of the diagonal elements in the
matrix. The iterative calculation formula of (9) is

¥ argmint, (¥, (04, (64, (64),.(03 ) A By)
—k+1

2B Cargmin L, (¥, (1), (€2),, (01),, (62),, & B)
AB

0, =0, +p(A-A) i=12,

@ =05 +p(B;—-B) i=1,2.
(12)

Concerning L,, the partial derivative of each factor
matrix can be obtained as

%=—[X(1)—

A A, (CoB,)'|(CoB,)

(13)
+ (A, +p)A, + O - pA.
By setting (0L,/0A,;) =0,

A, =[X()(CoB,) +pA-04][C"C*BIB, + (A, + p)I]|
(14)

Similarly,
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A-A=
s.t. _
B,-B=
where ¥  represents the factor matrix set:
¥ ={A,B,,C,A,,V,B,,W}. Therefore, the problem of

missing data repair is transformed into the problem of
solving the optimal value of the objective function F.

0 , (10)
andi=1,2,
0

4.3. Optimization Solution. For optimization, the alternating
least square (ALS) and gradient descent method are com-
monly used in the literature [34-40]. Since both the matrix
and the tensor decomposition are a nonconvex problem, the
commonly used methods cannot achieve the global opti-
mum. To resolve this issue, the alternating direction mul-
tiplier algorithm (ADMM) is suggested [41]. In this method,
large global problems are decomposed into many smaller
and easier local subproblems, obtaining large global optimal
solutions.

Thus, when F is finding the optimal solution, it can be
interpreted by solving the local F,, F,, and Fp, optimal
solution problems. The objective function of this problem
can be given as

-B)+Lm-3;). v

i=1

B, =X (COA,) +pB-0L][CTCx ATA, + (A, +p)Ie]

(15)
C=[X@ (B oA)][BTB « ATA+ L, 1], (16)
A, =[QV+pA-0;][VIV+(), +p)IR]_1,
(17)
B, = [DW +pB - @] [W'W + (A + p)I] .
(18)
=(Q"A)[AT A, + 1,0, (19)
W =(D"B,)[BIB, + ;1]
(20)
Similarly, it can be inferred further that
5. (05+04) (4 +4)
2p 2
(21)

_ (®113 + ®§3) + (B, +B,)
2p 2
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TaBLE 1: The main steps of CMTF.

Input: the tensor y € R>*K with missing traffic flow data, matrices Q € R™M and D € RN, tensor rank R, initial iteration number iter,

maximum iteration number MaxlIter
Output: completed tensor y € RP/K

(1) Initialize p, A;,A,,A3R, A}, B;,CA,,V, B,,W (0}, 0%, 0, 03) = 0, iter = 0

(2) Calculate A using (22), and B using (23)
(3) If iter < MaxlIter, repeat Step 4 ~ Step 8
(4) Using (14)-(16), calculate and update A,, B;, C, respectively

(5) Using (17)-(20), calculate and update A,,V, B,, W, respectively

(6) Using (22), calculate and update A. Similarly, calculate and update B using (23)

(7) Using (12), calculate and update 0! l,@zz, G};],@gz

(8) Set iter + 1 = iter. If the algorithm reaches the convergence standard, the loop is broken. Otherwise, return to Step 3

(9) Return to y = A; 0B, o C

If set (©)),=0,i=12 then Y (0=
0,k=1,2,...,1,,. and it can be inferred further that
Z — (Al + AZ)) (22)
2
B- @. (23)

Based on the above-given analysis, the main steps of the
CMTF-based traffic flow missing data repair method are
shown in Table 1.

5. Results and Discussion
5.1. Data Source and Analysis

5.1.1. Data Sources. The main section of an urban ex-
pressway is selected as the area to be analysed. The section
includes five detection sections (in the east and west) with
four lanes in each section and a total of 40 coil detectors. The
data that will be collected by the detectors is shown in
Table 2, where “TY” indicates the code of the detection
section, “D” refers to the east, and “10 (2)” means Lane 2 of
the detection section #10. The data is sampled from August
27, 2018, to September 29, 2018, with a sampling interval of
5min. There are 161280 groups of data.

5.1.2. Judgment Criteria for Data Repair. The existence and
reparability of the missing flow data have to be judged before
starting a repair process. To determine whether anything is
missing, the traffic flow data can be used. For example, if the
flow data is displayed as “0,” it might be due to no vehicle
passing through the detector or might be due to some missed
data.

Under normal traffic conditions, the missing traffic flow
data can be repaired according to the changing trend in the
traffic flow. However, under abnormal conditions, such as
traffic accidents conditions, once the data is “0,” it is im-
possible to judge the existence and (if exists) the reparability
of the data.

Following the continuous progress in detection
technology, the detectors have become more capable of

TaBLE 2: Data types.

Detector Attribute Detection time Flow Speed Occupancy
number

TYD10(2) Valid 2018-8-27 0:05 32 0 4
TYX10(1) Invalid 2018-8-270:05 0 0 13
TYDI12(1) Lost ~ 2018-8-27 0:10 0 0 0

realizing the preliminary discrimination of data anoma-
lies. For example, the location detector can classify the
data as valid, invalid, and/or lost. For repair judgment,
this paper only considers the invalid data with the value of
“0,” which is denoted as the missed data that will be
repaired.

5.2. Experimental Scheme Design.

(1) Data Representation. Let us construct the tensor
x € R¥®88 for the target data, where “5” repre-
sents “Day-mode,” which means the longitudinal
time-series data of five consecutive Mondays, “4”
represents “Lane-mode,” which means the trans-
verse spatial sequence data of four lanes in the
same detection section, and “288” represents
“Time-mode,” which means the 288 transverse
time-series data obtained in one day. The weather
feature matrix is Q € R¥?% where “5” refers to
five longitudinal time-series data of Monday, and
“288” represents the 288 transverse time-series
data obtained in one day. The lane feature matrix is
D € R*3, where “4” refers to the data of four lanes
of the same detection section, and “3” represents
the lane attribute values.

(2) The evaluation index of the missing data repair
effect. The root mean square error (RMSE) and
mean absolute percentage error (MAPE) are used
as evaluation indexes [14]. It should be noted that
the smaller the difference between the repaired
and actual data is, the smaller the RMSE and
MAPE will be. These errors are calculated as
follows:



8
n ~ '2
RMSE = |2z 01 = 21)°
n
(24)
MAPE = Zi:ll(yi - )’i/)’i)l % 100%,
n

where y; is the actual data, ¥, is the repaired data, and
n is the number of repaired pieces of data.

(3) Missing Data Type Design. To illustrate the data
repair performance of the CMTF, three types of
missing data were manually set up: MCAR, MAR,
and MIX-M. Then, the data missing rates of each
type are set to 10%, 20%, . . ., 90%. In order to avoid
the influence of the randomly set data missing po-
sition on the repair result, ten settings were made for
different data missing types, and the average value of
the 10 repair effects (RMSE and MAPE) corre-
sponding to each method was selected as the final
repair result.

5.3. Analysis of the Experimental Results. The experiment
environment is designed using Matlab-R2014a software,
where the data repair based on the CMTF algorithm is re-
alized by the CMTF_Toolbox_v1_1toolbox [15]. The relevant
parameters of the model are obtained by cross-validation.

The TYD12(2) detector with relatively complete flow
data on August 27, 2018, was selected for tests, which were
loaded with three missing data types (MCAR, MAR, and
MIX-M) and nine missing rates (10% to 90%).

Three methods, namely, matrix repair method [13]
(Method 1), tensor repair algorithm (Method 2) [20], and
the optimization algorithm of CMTF based on alternating
least square (Method 3), are compared with the algorithm
proposed in this paper (Method 4). The specific analysis of
the data repair effect is as follows.

5.3.1. Repair Effect Evaluation of the MACR. For the MACR,
the repair results are shown in Tables 3 and 4.

The results show that the RMSE and MAPE of all methods
are relatively small and close to each other for low data missing
rates. However, with the gradual increase of the missing rate,
the RMSE and MAPE for all methods also increase gradually.
For high missing rates, the RMSE of Method 3 and Method 4
remains around 15, which is significantly lower than that of the
other two methods. This indicates that the multidimensional
flow data has a significant effect on the repair of the missing
data. The RMSE and MAPE of Method 4 are generally lower
than the corresponding values of Method 3, indicating that the
local optimization solution based on ADMM is better than the
one based on ALS.

5.3.2. Repair Effect Evaluation of the MAR. For the MAR,
the repair results are shown in Tables 5 and 6.

The results show that the RMSE and MAPE of all
methods are relatively small for low missing rates similar to
MACR. However, with the gradual increase of the miss rate,
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TaBLE 3: The RMSE of the methods under the MACR.

Missi RMSE
MACR , at;SSSl(I;/f) Method Method Method Method
1 2 3 4

1 10 3.47 2.32 1.566 1.336
2 20 5.39 2.98 1.991 1.791
3 30 8.04 6.15 5.89 5174
4 40 10.71 7.99 7.87 7.337
5 50 12.11 11.46 10.767 9.767
6 60 13.35 12.75 11.252 10.902
7 70 15.033 14.233 13.354 12.654
8 80 17.61 17.62 13.96 13.236
9 90 20.95 18.47 15.19 14.422

the RMSE and MAPE values also increase gradually, where
Method 4 has the slowest growth rate. For high missing
rates, the RMSE of Method 3 and Method 4 is still lower than
16.5%, which is significantly lower than the other two
methods. This indicates that the multisource flow data has a
more significant effect on the repair.

The repair effect of Method 4 is lower than that of
Method 3, indicating that the local optimization solution
based on ADMM is better than the one based on ALS.
Compared to the MACR, the RMSE and MAPE of all
methods under the MAR are relatively larger. This is because
the missing data is continuous, which will affect the repair
effect to some extent.

5.3.3. Repair Effect Evaluation of the MIX-M. For the MIX-
M, the repair results are shown in Tables 7 and 8.

The overall trend is similar to that of MACR and MAR,
but the RMSE and MAPE of all methods are in the middle.
This is because the missing data in MIX-M includes both the
discrete missing data of MACR and the continuous missing
data of MAR. Thus, the existence of continuous missing data
will affect the repair process.

The MIX-M can reflect the lack of traffic flow data. From
Figure 4, for the missing rate of 50%, the MAPE of all
methods is lower than 21%. When the missing rate exceeds
60%, the MAPE difference between the methods becomes
larger. Here, Method 4 still has the best repair effect for high
data missing rates.

Under the three types of data missing, all methods can
repair the missing data at certain levels, where the repair
effect of the MACR is the best, and the MAR is the worst.

In comparison, the repair effect of Method 2 is better
than that of Method 1. This indicates that the tensor al-
gorithm based on multidimensional data can improve the
repair effect.

The repair effect of Method 3 and Method 4 is better than
the other two, indicating that the addition of auxiliary data is
useful in data repair.

The repair effect of Method 4 is better than that of
Method 3; that is, the optimal solution of ADMM is better
than the traditional solution that ALS offers.

Our proposed method has a best repair effect, which has
the lowest RMSE and MAPE among all methods. Even for
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TaBLE 4: The MAPE of the methods under the MACR.

MACR Missing rate (%) MAPE
Method 1 (%) Method 2 (%) Method 3 (%) Method 4 (%)
1 10 5.10 2.90 2.50 1.80
2 20 7.28 3.98 3.70 2.98
3 30 9.63 8.97 8.20 6.25
4 40 14.18 13.78 12.80 10.80
5 50 19.45 17.44 14.11 12.31
6 60 21.61 19.12 15.47 13.33
7 70 25.70 19.98 15.95 14.75
8 80 27.80 21.26 16.21 15.10
9 90 32.43 25.67 17.45 15.97
TaBLE 5: The RMSE of the methods under the MAR.
RMSE
MAR Missing rates (%)
Method 1 Method 2 Method 3 Method 4
1 10 4.71 3.2 2.73 2.331
2 20 7.09 412 3.78 3.054
3 30 10.42 9.43 7.97 6.28
4 40 114 11.72 10.21 9.631
5 50 15.27 14.98 14.05 11.536
6 60 17.07 16.27 14.28 13.417
7 70 20.33 18.56 15.59 14.89
8 80 23.61 19.37 16.01 15.733
9 90 30.86 21.3 16.46 16.193
TaBLE 6: The MAPE of the methods under the MAR.
MAR Missing rates (%) MAPE
Method 1 (%) Method 2 (%) Method 3 (%) Method 4 (%)
1 10 6.88 3.77 3.26 2.26
2 20 8.77 4.81 4.83 418
3 30 10.97 9.09 9.55 7.99
4 40 15.88 14.26 13.77 11.89
5 50 21.99 19.87 17.27 14.56
6 60 24.85 20.33 18.63 15.71
7 70 28.37 22.31 19.37 16.45
8 80 30.55 24.69 19.93 17.97
9 90 34.69 30.71 20.11 19.54
TaBLE 7: The RMSE of the methods under the MIX-M.
RMSE
MIX-M Missing rates (%)
Method 1 Method 2 Method 3 Method 4
1 10 4.05 2.63 2.05 1.412
2 20 6.05 3.41 2.92 2.141
3 30 9.55 8.73 7.88 5.976
4 40 11.38 10.5 9.51 8.3
5 50 14.6 14.3 13 10.324
6 60 16.04 15.78 13.92 12.875
7 70 19.4 16.46 14.36 13.684
8 80 22.5 18.75 15.51 14.2
9 90 27.42 20.31 15.98 14.996
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TaBLE 8: The MAPE of the methods under the MIX-M.
o MAPE
MIX-M Missing rates (%)
Method 1 (%) Method 2 (%) Method 3 (%) Method 4 (%)
1 10 6.90 3.42 291 1.94
2 20 8.23 4.76 3.89 3.28
3 30 9.97 8.88 8.65 7.47
4 40 13.88 14.11 13.14 11.76
5 50 21.00 18.56 16.72 12.99
6 60 23.55 19.76 17.43 14.81
7 70 26.57 20.12 18.97 15.95
8 80 29.65 22.25 19.00 16.77
9 90 35.07 27.81 19.99 17.04
coupling of multiple matrices based on the multidimen-
40 sional tensor. While doing that, we will also consider the
35 q total time cost of the running model.
30
g% Data Availability
220 |
g 15 The data used to support the findings of this study are
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FIGURE 4: The MAPE versus missing rate for all methods under the
MIX-M.

the MAR with a miss rate of more than 80%, the RMSE and
MAPE of our method are still around 16.5 and 20%, re-
spectively. This shows that the accuracy of traffic flow missing
data repair can be effectively improved by adding auxiliary
data based on sufficient and reasonable use of the spatial and
temporal correlation between the traffic flow data.

6. Conclusions

To improve the repair effect of traffic flow missing data,
this paper proposes a CMTF-based repair method. Dif-
ferent from the existing methods, the proposed method
can make full and reasonable use of the spatial and
temporal data of traffic flow to further increase the
auxiliary traffic flow data and use the ADMM algorithm
for optimization solution. The results showed that the
proposed algorithm outperformed the other three com-
parison methods; that is, it has a better repair effect under
three data deletion modes and nine data deletion rates. It
can also achieve the best repair accuracy under high data
deletion rates. The acquisition of complete traffic flow data
realized by the proposed method will be highly beneficial
in traffic management and control.

Since this paper only considered the coupling of a 3D
tensor and a 2D matrix, future research will focus on the
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