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We suggested a new mathematical model for three prey-predator species, predator is considered to be divided into two
compartments, infected and susceptible predators, as well as the prey and susceptible population based on Holling-type II with
harvesting. We considered the model in Caputo fractional order derivative to have significant consequences in real life since the
population of prey create memory and learn from their experience of escaping and resisting any threat.$e existence, uniqueness,
and boundedness of the solution and the equilibrium points for the considered model are studied. Numerical simulations using
Euler’s method are discussed to interpret the applicability of the considered model.

1. Introduction

Competing species of mathematical models have recently
sparked a lot of attention and an important issue for
ecologists and researchers; in particular, predator-prey
systems have been identified as having stable and periodic
dynamics [1] utilizing one-order autonomous differential
equations that only depend on the dependent variables that
are assessed at the time. $e Lotka–Volterra model was the
first to study predator-prey interactions in 1927, and it was
followed by more mature and extended studies such as [2],
which divided prey populations into susceptible and infected
groups. In [3], Aljahdaly and Alqudah investigated the
analytical solutions of a modified predator-prey model using
a novel ecological interaction. Many researchers studied
models for two-prey-one-predator system with harvesting
and others two-predators-one-prey as in [4–6]; they in-
vestigated how mutual cooperation interspecific competi-
tion among species affected the equilibrium of the
ecosystem. However, the system included terms such as
harvesting, Holling-type I, and Holling-type II. In this paper,
we consider a new issue that we studied in [7] which focused
on a predator-prey model of Holling-type II with harvesting
and predator in disease.

In last few decades, it has been proved that fractional
order derivatives and integrals gave perfect tools for
mathematical modeling of ecological phenomenon as
compared with the integer order derivatives and integrals.

Fractional integrals and derivatives, on the other hand,
are more effective, realistic, and accurate than the classical
integer order structures in explaining memories and phe-
nomena [8–13]. Memory effects in the interaction between
the prey and the predator such as the population of prey
create memory and learn from their experience of escaping
and resisting any threat, which is why a fractional order
model is being considered in this article. Fractional deriv-
atives models have been proposed by a number of scholars,
including Riemann–Liouville and Caputo [14]. $e Caputo
fractional derivative is often chosen because it has an ad-
vantage over Riemann–Liouville, who determined that the
initial conditions must only include derivatives of the entire
order, not derivatives of the fractional order.

$e application of fractional calculus in most scientific
fields is currently receiving a lot of attention. As a result,
fractional calculus on dynamical systems was crucial and
thrilling, as many studies [15–22] had recently discovered.
According to studies, changes in the fractional derivative
order have an impact on stability but not on the presence of
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equilibrium solutions. Famous researchers have proposed
many concepts of fractional order derivative. Caputo’s
meanings, which were adopted as the most common, are the
most popular among these. $e Caputo fractional derivative
of order α of a function f defined by

c
D

α
t f(t) �

1
Γ(n − α)



t

c

(t − s)
n− α− 1

f
n
(s)ds, n − 1< α≤ n,

(1)

where f: [c,∞)⟶ R, α is the order of the fractional
derivative, n − 1< α≤ n for n ∈ N, f(n)(s) � ((dnf

(s))/dsn), Γ(.) is the gamma function, and c is the time
constant at which the system’s state is understood and
memory effects are present. $e value of the order derivative
α gives a weighting of how important the information is to
the long-term (continuous) memory to the model from the
past. Moreover, we look at the instance when α ∈ (0, 1], n �

1 and the memory effects are assumed to incorporate all
knowledge since the beginning of time in this study, i.e.,
c � 0. In this case, (1) becomes

D
α
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1
Γ(1 − α)
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− α

f′(s)ds, 0< α≤ 1. (2)

$is is how our paper is structured: we use the Caputo
fractional derivative (2) to introduce our model in [7] in
Section 2. Section 3 discusses existence and uniqueness.
Section 4 illustrates bounding and equilibrium points. In
Section 5, we give numerical simulations to demonstrate the
utility of our theoretical results. In Section 6, we present a
numerical representation of the fractional Euler’s scheme for
the model under consideration. Finally, in Section 7, the
conclusion and the future works are discussed.

2. The Model

We will study the predator-prey model of Holling-type II
with harvesting and predator in disease that was introduced
in [7],

dx

dt
� rx 1 −

x

k
  −

ayx

m + x
− azx − h1x,

dy

dt
� bxy + α1yz +

cyx

m + x
− h2y,

dz

dt
� bzx − α1yz − dz.

(3)

Here, x, y, and z are the prey, infected predator, and
susceptible predator, respectively, and
r, k, a, b, c, α1, h1, h2, d are assumed to be positive constants
and are defined in Table 1. From the biological point of view,
we are only interested in the dynamics of system (3) in the
nonnegative octant R3

+ � (x, y, z): 0≤ x, y, z<∞ . $us,
we consider the initial conditions are x(0) � x0 ≥
0, y(0) � y0 ≥ 0, z(0) � z0 ≥ 0.

After reducing the number of parameters as shown in
[7], and through the definition of the Caputo fractional
derivative of order α, where 0< α≤ 1, system (3) becomes

D
α
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3. Existence and Uniqueness

We must show that the mapping
G(M) � (G1(M), G2(M), G3(M)) meets the Lipschitz
condition in the region [0,∞) ×Φ with respect to M �

(X, Y, Z) to demonstrate that the solution for system (4)
exists and is unique, where

Φ � (X, Y, Z) ∈ R3
: max |X|, |Y|, |Z|{ }≤ μ . (6)

We denote M � (X, Y, Z); for any M, M ∈ Φ, it follows
that

Table 1: Definition of parameters in the model.

Parameter Definition

r
In the absence of predators, the prey’s logistic growth

rate
k $e environmental carrying capacity
a, b $e capture rates with (a> b)

α1 $e interaction between y and z

h1, h2 $e rates of harvesting where (h1 > h2)

c $e interaction rate of infected predator species
d $e natural death rate in the absence of prey
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(7)

By applying the triangle inequality, and noticing that
max |X|, |Y|, |Z|{ }≤ μ and |(1/((1 + βX)(1 + βX)))|≤ 1, we
can show that

‖G(M) − G(M)‖≤ 1 − δ1 + 2μ( |X − X| + m|ZX − ZX| + μ2β(1 + n) + δ2 |Y − Y|

+(1 + n + 2c)|XY − XY| + 2e|YZ − YZ| + w|z − z|

≤ 1 − δ1 + μ(3 + m + n + 2c)( |X − X| + μ2β(1 + n) + δ2 + μ(2c + 2e + 1 + n)|Y − Y|

+ w + μ(m + 2e)|z − z|

≤K‖M − M‖,

(8)

where K � max 1 − δ1 + μ(3 + m + n + 2c), μ2β(1 + n) +

δ2 + μ(2c + 2e + 1 + n), w + μ(m + 2e)}. As a result, G(M)

meets the Lipschitz condition. $e fractional order system
(4) has a unique solution M(t) � (X(t), Y(t), Z(t)) ∈ Φ
with initial values M0 � (X0, Y0, Z0). As a result, we can
establish the following theorem of existence and uniqueness
of system (4).

Theorem 1. $e fractional order predator-prey model of
Holling-type II with harvesting and predator in disease subject
to any nonnegative initial value (X0, Y0, Z0) has a unique
solution (X(t), Y(t), Z(t)) ∈ Φ for all t> 0.

4. Boundedness and Equilibrium Points

Theorem 2. To be meaningful from a biological viewpoint,
all solutions that begin in R3

+ of system (4) are uniformly
bounded and remain positive [7].

System (4) shares the same equilibrium points as the
integer order system in [7]:

(i) $e trivial equilibrium E0(0, 0, 0)

(ii) $e predator free equilibrium E1(1 − δ1, 0, 0)

(iii) $e infected predator free equilibrium
E2(X2, 0, Z2), where X2 � w/c and
Z2 � (c(1 − δ1) − w)/m if (c(1 − δ1))/w> 1.

(iv) $e susceptible predator free equilibrium
E3(X3, Y3, 0); from system (4), we get cβX2 + ((c +

n) − δ2β)X − δ2 � 0 and we have one positive real
root given by X3 � (− ((c + n) − δ2β) +��������������������

((c + n) − δ2β)2 + 4cβδ2


)/2cβ, therefore
Y3 � ((1 − δ1) − X3)(1 + βX3) if (1 − δ1)>X3 hold.

(v) $e interior equilibrium E∗(X∗, Y∗, Z∗) given by

1 − X
∗

−
Y
∗

1 + βX
∗ − mZ

∗
� δ1,

cX
∗

+ eZ
∗

+
nX
∗

1 + βX
∗ � δ2,

cX
∗

− eY
∗

� w.

(9)

From (9), we get X∗ � (w + eY∗/c), Z∗ � ((1 + βX∗)

(δ2 − cX∗) − nX∗)/(e(1 + βX∗)), if (X∗ < δ2/c).
$erefore,
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We have one positive root for equation (10) given by

Y
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D
2
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2D1
. (12)

If the following conditions hold, D1 > 0⇔mc> e,
D3 > 0⇔βδ2 > 1, βc(1 − δ1)> 1, and ec(1 − δ1)< 1.

5. Numerical Simulations

We used fractional Euler’s approach to approximate the
values of X(ti), Y(ti) in this article, which is a reliable,
explicit, simple, and straightforward way to present

numerical results using MATLAB software. $e following is
a description of the iterative numerical scheme:

X ti+1(  � X ti(  +
h
α

Γ(α + 1)
∗f1 ti, X ti( , Y ti( , Z ti( ( ,

Y ti+1(  � Y ti(  +
h
α

Γ(α + 1)
∗f2 ti, X ti( , Y ti( , Z ti( ( ,

Z ti+1(  � Z ti(  +
h
α

Γ(α + 1)
∗f3 ti, X ti( , Y ti( , Z ti( ( ,

(13)

where the functions f1,2,3(X(ti), Y(ti), Z(ti)) are given by

f1 ti, X ti( , Y ti( , Z ti( (  � X ti(  1 − X ti( (  −
Y ti( X ti( 

1 + βX ti( 
− mZ ti( X ti(  − δ1X ti( ,

f2 ti, X ti( , Y ti( , Z ti( (  � cX ti( Y ti(  + eY ti( Z ti(  +
nY ti( X ti( 

1 + βX ti( 
− δ2Y ti( ,

f3 ti, X ti( , Y ti( , Z ti( (  � cX ti( Z ti(  − eY ti( Z ti(  − wZ ti( ,

(14)

and 0≤ i≤N, ti+1 � ti + h, and h is the step size.
For this scheme, a set of points (ti, X(ti), Y(ti), Z(ti))

are produced for different values of fractional order deriv-
ative α, as shown in the figures.

6. Numerical Interpretation

$e numerical interpretation of fractional Euler’s technique
is presented in this section; we consider the following es-
timated parameter values to be biologically feasible for the
introduced model (4): r � 1.1, k � 2.9, a � 0.02, b �

0.01, α � 1.2, h1 � 0.25, h2 � 0.125, c � 0.0003, and d �

0.25. $e initial values are X(0) � 0.2368, Y(0) � 0.40166,
and Z(0) � 0.4166. $e parameter’s numerical values are
chosen in a biologically feasible manner. In this case, we
assumed that the number of initial preys is half of the
population of both predators. A comparative numerical
analysis has been done of all the classes for the fractional
orders 0.7, 0.8, and 0.9 with the classical case of order 1 for
the fractional order model (4) and we have observed that the

numerical results are of the similar behavior for the frac-
tional orders as already studied for the classical case. $is
shows the accuracy and applicability of the fractional Euler’s
scheme we have developed.

Figure 1 represents the simulation of the prey population
along the time t ∈ [0, 100] for different values of α and it
predicts that the prey population increased rapidly within
the period t ∈ [0, 10] and decreased within the period
t ∈ [10, 20] and finally will be stable and constant within the
period t ∈ [20, 100].

Figure 2 represents the simulation of the susceptible
predator population along the time t ∈ [0, 100] for different
values of α and it predicts that the susceptible predator
population increased within the period t ∈ [0, 20] and will be
stable and constant within the period t ∈ [20, 100].

Figure 3 represents the simulation of the infected
predator population along the time t ∈ [0, 100] for dif-
ferent values of α and it predicts that the infected
predator population declined to zero within the period
t ∈ [0, 100].
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7. Conclusion and Future Works

We developed some adequate conditions for the existence
and uniqueness of equilibrium solutions to the Holling-type
II predator-prey model with harvesting and predator in
disease with fractional order derivative in this paper. $e
corresponding derivative has been taken in the Caputo
sense. With the help of MATLAB, we have also presented
numerical simulations to the approximate solutions. We
concluded through simulation that fractional order systems
display deeper dynamics than integer order systems. As a
result, we may claim that fractional order dynamical systems

provide temporal responses with super-fast passage and
super-slow evolution towards the steady-state, which are
phenomena that are difficult to achieve with classical order
models. In the future, we will modify the model (4) using the
definition of the Caputo–Fabrizio derivative which is based
on nonsingular kernel, then study the existence and
uniqueness by using fixed point theory, and finally compute
the approximate solution using Laplace transform as in [23]
and then compare the results.
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[21] A. Kilbas, H. M. S. Anatolĭı, and J. J. Trujillo, “$eory and
applications of fractional differential equations,” Elsevier,
vol. 204, 2006.

[22] R. L. Magin, “Fractional calculus in bioengineering, part 1,”
Critical Reviews in Biomedical Engineering, vol. 32, no. 1, 2004.

[23] M. A. Alqudah, T. Abdeljawad, K. Shah, F. Jarad, and Q. Al-
Mdallal, “Existence theory and approximate solution to
prey–predator coupled system involving nonsingular kernel
type derivative,” Advances in Difference Equations, vol. 2020,
no. 1, pp. 1–10, 2020.

6 Mathematical Problems in Engineering


