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Spam filtering, which refers to detecting unsolicited, unwanted, and virus-infested emails, is a significant problem because spam
emails lead to unnecessary costs of Internet resources, waste of people’s time, and even loss of property. Support vector machine
(SVM) is the state-of-the-art method for high accuracy spam filtering. However, SVM incurs high time complexity because of the
high dimensionality of the emails. In this study, we propose a manifold learning-based approach for time-efficient spam filtering.
From the experiments that most of the features are not decisive, we can obtain the viewpoint that only a minor part of the spam
emails can be detected using the nondecisive features. Based on the insight, we propose to employ the Laplace feature map
algorithm to obtain the geometrical information from the email text datasets and extract the decisive features. )en, the extracted
features are used as the input of SVM to spam filtering. We conduct extensive experiments on three datasets, and the evaluation
results indicate the high accuracy time efficiency of our proposed algorithm.

1. Introduction

Email became a popular and widely adopted method in the
Internet era since the 1960s for communication, adver-
tisement, and account registration. Spam emails are defined
as unsolicited, unwanted, or virus-infested emails [1, 2].
Based on the statistics from Spamlaws, nearly 85% of all
emails are spam, in which the advertising, adult-related, and
unwanted emails make up 36%, 31.7%, and 26.5% of the
content, respectively [3]. Spam filtering, which refers to the
process of detecting spam emails, is critical because spam
emails are very cheap to send but have severe consequences
such as annoying the recipients, wasting the Internet re-
sources, and even leading to loss of property [4]. In spam
filtering, nonspam emails should never be classified as spam
because the misclassified emails can be critical for the users,
which bring significant challenges [5].

)e spam filtering methods can be divided into two
complementary categories, i.e., origin-based and content-
based [6]. In origin-based methods, the senders of the emails
are classified as trusted, unknown, and spammer based on
the IP addresses, email addresses, allowlists, and blocklists
[7]. Emails from trusted senders and spammers will be

directly classified as nonspam and spam, respectively. As for
emails from unknown senders, they will be further filtered
via content-based methods. )is study focuses on the
content-based approach in which the classification is purely
based on the email content, i.e., header and body.

In the early stage, content-based approaches are mainly
based on the statistics of words and phrases in spam and
nonspam emails [8]. For example, more than 99% of the
emails containing some words and phrases, such as “act
now,” “offer expires,” and “winning,” are spam [9]. A spam
filter incorporating such statistics is called a Bayesian filter,
which classifies the emails by going through the content
word by word and phrase by phrase. )e advantage of the
Bayesian filter is that the classification accuracy can be
improved when more data are collected from the users.
However, Bayesian filters fail to consider the relationship
among the words and phrases, resulting in limited accuracy.

Recently, machine learning becomes popular in content-
based spam filtering [10]. Support vector machine (SVM) is
one of the successful and cutting-edge techniques achieving
higher accuracy than Bayesian filters [11]. SVM embeds the
email content into a vector space and separates the emails
into two classes, i.e., spam and nonspam, using a hyperplane
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in the vector space. )e secret of SVM lies in the com-
prehensive embedding of the email content and separation
using a hyperplane. )e embedding of the email content
incorporates the complex relationship among the words and
phrases, which is a comprehensive content representation.
)e hyperplane separation maximizes the margin between
the email embeddings and the hyperplane, making the SVM
method robust in spam filtering.

However, embedding of the email content is nontrivial
[12–14]. If few features are embedded, the spam filter will
incur low classification accuracy; if too many features are
embedded, training and applying the spam filter will incur
high time overhead. A natural question comes as follows: is it
possible to select few features to guarantee high accuracy for
SVM-based spam filtering?

In this study, we propose a manifold learning-based
approach to select the distinctive features and feed the
features to the SVM model for time efficiency and accurate
spam filtering. In particular, we gain the insight through
experiments that most of the features used in traditional
SVM-based spam filtering approaches are not decisive, using
which only a minor part of the spam emails can be detected.
Based on the insight, we employ an adapted manifold
learning algorithm to select the decisive features. )en, the
features are fed into the classic SVM model for spam fil-
tering. In this way, our method only selects a small number
but decisive features for spam filtering, which provides both
high accuracy and time efficiency.

)e main contributions of this study are as follows:

(i) We propose an adapted manifold learning approach
to extract the decisive features for spam filtering.
)e features can not only be used in SVM but also
other machine learning-based spam filtering
algorithms.

(ii) We propose a time-efficient SVM-based approach
that takes the decisive features as input and filters
spam emails

(iii) We extensively evaluate the proposed spam filtering
algorithms, and the experimental results indicate
the high accuracy and time efficiency of the pro-
posed method.

)e rest of the study is organized as follows. Section 2
presents the related work. Section 3 introduces the proposed
method for spam filtering using manifold learning and SVM.
Section 4 illustrates the time complexity analysis and
demonstrates extensive experimental results. Finally, Section
5 concludes the study with future directions.

2. Related Work

)is section presents the related work on machine learning-
based spam filtering in Subsection 2.1 and manifold learning
in Subsection 2.2.

2.1. SpamFilteringAlgorithm. Currently, in the field of spam
filtering, the traditional machine learning sorting algorithms
include decision-making trees [15], SVM [16], and Bayesian

classifiers. A decision-making tree is a learning algorithm for
sorting out datasets based on a tree-like structure. )e tree
structure includes root nodes and child nodes, representing
different attributes of datasets. To form a tree structure is
meant to determine the position of different attributes in the
decision-making tree, which serves as the learning assign-
ment for the algorithm. Carreras et al. [17] use the decision-
making tree model to sort out spam emails, a practice not
widely applied to spam filtering for the fact that the attri-
butes of spam emails are hard to be defined. SVM classifiers,
however, have pretty wide applications to spam filtering. Its
main goal is to learn a linear hyperplane for linear divisible
sample point sets and make the sample sets under a given
category placed on the one side of the hyperplane while
different categories of sample points on the other sides. In
training an SVM classifier, only several sample points closest
to the linear hyperplane are relevant to model training, and
the remaining sample point sets will not work during the
training process. )erefore, those several vector-represented
sample points that lie closest to the hyperplane are called
support vectors. Sculley et al. [18] integrate SVM with the
online learning model to filter the spam email. Renuka et al.
[19] add latent semantic information in the text message to
classification and sort out spam emails using the SVM
model.

Undeniably, there are other machine learning classifiers
applied to email sorting research, such as ensemble learning
algorithm [17], naive Bayesian classifier [20, 21], and rein-
forcement learning [22, 23]. For small email corpora, some
conventional classifier algorithms work effectively in spam
filtering. As for massive text corpora, typical machine
learning methods are incapable of handling a large amount
of text data. Such a backdrop has allowed deep learning
techniques to be extensively applied to spam filtering. )e
deep learning techniques treat an email as a piece of text data
from which keywords are extracted for spam identification.
Tzortzis et al. [24] initiated a deep learning model for spam
filtering, and an autoencoder is employed to detect
spams [25].

Although deep learning is emerging and can be applied
in spam filtering, deep learning models are not widely ac-
cepted by academia and industries for the following two
reasons. First, deep learning models are rarely explainable.
In spam filtering, nonspam emails should never be classified
as spam because the misclassified emails can be critical for
the users. Deep learning models can hardly explain the
misclassification and are generally not adopted for spam
filtering [26]. Second, the training and inference of deep
learning models demand a large number of resources
(power).)e email service providers want to reduce the cost,
and deep learning models are not employed [27].

2.2. Manifold Learning. In terms of text classification, such
as spam filtering, representation or embedding of the text
data is essential to enhance the classification performance.
Text representation converts the text data into vector rep-
resentations that contain necessary information without
redundancy and noise. As a result, before training a
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classifier, we need to preprocess the text dataset and extract
the features for text representation. Such a preprocessing
procedure is called feature extraction. Manifold learning is
an efficient approach for feature extraction.

Manifold learning is first proposed by Tenenbaum et al.
in the Science Magazine in 2000 as a concept of machine
learning. Building on the manifold geometric construction,
manifold learning is a nonlinear dimensionality reduction
technique to reduce high-dimensional samples to nonlinear
structure distribution. )is kind of algorithm is assumed to
place high-dimensional sample point sets on a low-di-
mensional manifold, which has a highly complicated non-
linear structure and cannot obtain the manifold features as a
whole. )erefore, the idea of localization emerges in man-
ifold learning. Essentially, manifold learning is a process of
extracting features from high-dimensional datasets, reject-
ing noise features of no use to a learning assignment, and
retaining those useful ones. )erefore, manifold learning is
mainly applied to preprocessing datasets, simplifying data
representations and reducing time for a learning assignment.
At present, there are two types of manifold learning algo-
rithms, i.e., the global structure-preserving dimensionality
reduction algorithm, e.g., Isomap [28] containing the geo-
desic distance between all sample points and local structure-
preserving dimensionality reduction algorithms, as shown in
locally linear embedding (LLE) [29], Laplacian eigenmaps
(LEP) [30], local tangent space alignment (LTSA) [31], and
locality preserving projections (LPP) [32].

Text datasets are typically characterized by a highly
complex structure in the feature space, and manifold
learning can be applied to obtaining the neighboring local
structure and the complicated overall structure of datasets.
In this way, datasets in the form of text can be processed
effectively.

3. Our Proposed Algorithm

)is study explores operating the manifold learning algo-
rithm on email text datasets to extract useful features and
train the classifier with the SVM algorithm for email clas-
sification. )is section introduces the manifold learning
algorithm and then elaborates on the steps for the men-
tioned algorithms.

3.1. Laplacian Eigenmaps. )e idea of localization is first
proposed in manifold learning. )at means the critical step
to manifold learning is to divide the neighborhood of
datasets and then excavate the geometrical characteristics of
each neighborhood. In this study, we use the Laplacian
eigenmap (LEP) algorithm [30] to extract the useful features
of datasets. As a local structure-preserving algorithm, the
LEP is time-efficient and features a flexible internal mech-
anism under which regular terms and other structural in-
formation can be added. For the sake of presentation, we
suppose the input sample set is expressed as x1, x2, . . . , xN􏼈 􏼉,
and after dimensionality reduction, we have the output
sample set expressed as y1, y2, . . . , yN􏼈 􏼉. )e steps in detail
for the LEP algorithm go as follows:

(i) Step I: calculate the k-neighborhood of all input
sample points with the k-nearest neighbor algo-
rithm, and the corresponding neighborhood for xi

is expressed as Ui.
(ii) Step II: construct the adjacent map on the input

sample set and establish the edge structure only
between any two points within the sample neigh-
borhood. Each edge is endowed with the weight wij

as

wij �
exp− xi− xj

����
����
2
/2σ2􏼐 􏼑

, if xj ∈ Ui,

0, if xj ∉ Ui,

⎧⎪⎨

⎪⎩
(1)

where exp− (‖xi− xj‖2/2σ2) denotes a Gaussian function,
and σ is the parameter of the Gaussian function.

(iii) Step III: reconstruct a group of sample point sets in
the low-dimensional space, so that between the low-
dimensional field points, this weight structure can
still be satisfied, so the low-dimensional space ex-
pression sets can be obtained by optimizing the
following function:

min􏽘
ij

yi − yj

�����

�����
2
wij. (2)

Let Y � [y1, y2, . . . , yN] and [W]i j � wij; the above
objective function can be written in the form of matrix
representation:

min trace YLYT
􏼐 􏼑 s.t.YDYT

� I, (3)

where matrix D is a diagonal matrix, Dii � 􏽐
N
i�1 wij, and

matrix L � D − W is called the Laplacian matrix.

3.2. Feature Extraction-Based Email Classification Algorithm.
Generally speaking, the email datasets we deal with are text
datasets. As a result, to fulfill the learning assignment, we
need to convert these text datasets into digital ones that
algorithms can process. )erefore, the algorithm as a whole
has three steps. First, preprocess text datasets; second, use
the manifold learning algorithm to extract the features of
datasets; finally, operate the SVM algorithm on low-di-
mensional datasets for classification training. Emails are
datasets in the form of text, so we use the doc2vec technique
[33] to convert them into datasets in the form of a vector,
ensuring machine learning algorithms can process them.
Note that doc2vec is a natural language processing tool for
representing documents as a vector and is a generalization of
the word2vec method [34, 35].

As for a manifold learning algorithm, there are three
choices, i.e., Isomap, LLE, and LEP.)e Isomap algorithm is
inefficient in processing massive ultrahigh-dimensional
datasets due to its high time complexity. )e LLE algorithm
assumes that the local neighborhood of datasets is linear
space and acquires the linear correlation representation of
the neighborhood. Compared with Isomap and LLE, the LEP
algorithm has quite flexible design methods. It works by
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constructing the adjacent map of datasets and obtaining the
weight on the edge of the map. We can provide additional
feature information during this weight acquisition process,
like the context structure information of the text and deep
layer nonlinear structure information distributed in the text
datasets. )erefore, to address the complexity of text
datasets, we employ the LEP algorithm to extract text
features.

)e specific steps for this algorithm are shown in Fig-
ure 1 as follows:

(i) Step I: build an email dictionary. Using the doc2vec
technique, we convert the text information of each
email into the form of vector representation. After
the doc2vec conversion, the initial vector dimen-
sionality can be quite different. To this end, we use
the principal component analysis (PCA) [36] to
adjust the vector dimensionality and ensure all
vector dimensions in good conformity.

(ii) Step II: reduce, with the LEP algorithm, the di-
mensionality of the datasets obtained in step I, with
specific algorithm steps shown in Subsection 3.1.
Moreover, we can obtain the context structure in-
formation of the email and apply it to the weight
calculation process as regular items. Based on the
successive order of sentences and paragraphs in the
text, we provide their context weights. Two
neighboring sentences boast higher weights than
others, and sentences within the same paragraph
bear higher weights than those in different para-
graphs. Applying this weight information as regular
items to the Gaussian function, we can calculate the
weight on the adjacent map.

(iii) Step III: use SVM to classify the datasets of low-
dimensional feature representation obtained

(iv) Step IV: predict the email classification accuracy.
We use the method mentioned in Step I to process
test emails and convert them into training datasets
of the same dimensionality.

4. Analysis and Experiments

)e section introduces several types of common datasets in
email classification, based on which we compare the accu-
racy of our new algorithm with conventional classification
algorithms to demonstrate the strengths of this new
algorithm.

4.1. Time Complexity Analysis. )e SVM classifier features
the training and testing complexities to be O(m2N2) and
O(m2N), respectively, in which N stands for sample point
number and m represents the sample feature dimension,
following the traditional SVM classifiers [37]. )e time
complexity of the LEP algorithm involves two parts. On the
one hand, k-neighborhood set division takes O(N2(m + k))

time. On the other hand, graph embedding calculation takes
O(dN2) time, where d stands for low-dimensional repre-
sentation of dimensionality. )erefore, we can use the LEP

algorithm and the SVM algorithm to obtain a new algorithm
with time complexity: O(N2(m + k + d + d2)). If the input
sample set dimension m is very high, the new algorithm’s
time complexity will be approximate O(N2m). Compared
with the SVM algorithm, the time complexity is much lower.

4.2. Spam Datasets. We found there are six representative
spam datasets, i.e., EnronSpam, PU1, PU2, PU3, PUA, and
GenSpam, as described in Table 1. In particular, EnronSpam
[38] is currently a common spam dataset. EnronSpam in-
cludes 33, 702 emails altogether, including 16, 764 regular
emails and 16, 938 junk emails, accounting for around 50%
of the total. With largely the same format comprising subject
and text, these emails were mainly from 150 users. )ese
datasets are preprocessed, with each email represented by
one text and each text numbered chronologically. )is ex-
periment is designed to conduct a contrastive analysis of the
algorithm accuracy for these datasets. In terms of PU1, PU2,
PU3, and PUA, their content distributions are similar. In
this study, we only consider PU1, which is a representative
dataset out of the four. To summarize, the performance of
our proposed method is compared with the state-of-the-art
solutions on three datasets, i.e., EnronSpam, PU1, and
GenSpam. We divide each dataset into 70% as the training
data and 30% as the test data randomly as usual.

4.3. Experimental Results. )is experiment design involves
two parts. First, we train classifiers with datasets. )en, we
use the trained classifiers to conduct spam email sorting
prediction for the test sample sets before calculating their
corresponding prediction accuracy. In this experiment, we
do the contrastive analysis of the performance of our new
algorithm from two aspects, i.e., accuracy prediction and the
time taken by the algorithm. Note that the misclassification
ratios of the proposed algorithms and the benchmarks are
zero through fine calibration. As a result, the misclassifi-
cation ratio is not included in the comparison results.
Specifically, we operate two types of SVM classification
algorithms as displayed in [18, 19] on the datasets of PU1
and GenSpam, respectively. )eir corresponding accuracy
results are given in Table 2. )e table provides that the
classification accuracy of our SVM+LEP algorithm is not
considerably different from that of the other algorithms.
With the LEP algorithm applied to the email text’s structural

Input text datasets Output categories of 
emails

Pre-process data
–doc2vec conversion

Feature extraction
–LEP algorithm

Feature classification
–SVM algorithm

Classification accuracy 
prediction

Figure 1: Algorithm flow schematic diagram.
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information, their corresponding classification accuracy
improves remarkably.

Now, we analyze the time consumption of different
algorithms. We still contrast the two algorithms with our
algorithm, whose results are presented in Table 3. )e table
provides that the time consumption of our new algorithm is
significantly lower than that of the other two algorithms. We
can use the manifold learning algorithm to extract the
features of datasets and effectively reduce the time it takes to
train and test these classifiers. Manifold learning also works
to remove data noise; so to some extent, it rejects invalid
information from the datasets.

4.4. Discussion of Manifold Learning Algorithms. )e ex-
periment above helps compare the LEP algorithm-based
email classification method with conventional classification
methods. Since 2000, manifold learning has given rise to a
series of classic algorithms with distinct advantages. In this
section, we contrast several types of manifold learning al-
gorithms with the LEP algorithm to show the latter’s ad-
vantages in email feature extraction. )e selected algorithms

are Isomap, LLE, and LPP. In designing the experiment, we
have contrastive analysis from two aspects: classification
accuracy and time consumption.

We still use three groups of datasets for experimen-
tation on classification accuracy: EnronSpam, PU1, and
GenSpam. First, we use different manifold learning algo-
rithms to reduce the dimensionality of the text datasets
down to the same low dimension. We then implement the
SVM algorithm to fulfill the classification assignment, and
the ultimate classification results are presented in Table 4.
)is table provides that the LEP algorithm with no
structural information added sees its dimensionality re-
duction results similar to those of the other three algo-
rithms. With the structural information added, however,
classification accuracy improves significantly. )erefore, in
contrast with other manifold learning algorithms, the LEP
algorithm has more flexibility in design. It invites addi-
tional structural information, while the LPP algorithm
learns linear dimension reduction mapping and thus is not
as flexible as the LEP algorithm.

In terms of time consumption, we compare different
algorithms’ time consumption for dimensionality reduction,

Table 1: Several types of spam email corpora.

Corpora Email Spam email Regular email Spamming rate Time
EnronSpam [38] 33702 16938 16764 50% 2006
PU1 [39] 1099 484 615 40% 2000
PU2 [39] 721 144 577 20% 2003
PU3 [39] 4139 1821 2318 44% 2003
PUA [39] 1142 570 572 50% 2000
GenSpam [38] 41404 32295 9109 78% 2005

Table 2: Different algorithms’ classification accuracy.

Datasets SVM [19] SVM [18] SVM+LEP SVM+LEP+ Struc
EnronSpam 92.1% 93.5% 93.9% 94.7%
PU1 95.8% 96.1% 95.6% 96.9%
GenSpam 93.7% 94.6% 93.9% 95.1%

Table 3: Time consumption for different algorithms.

Datasets SVM [19] SVM [18] SVM+LEP SVM+LEP+ Struc
EnronSpam 3523 s 2582 s 983 s 1312 s
PU1 743 s 642 s 236 s 285 s
GenSpam 2452 s 1834 s 634 s 715 s

Table 4: Different manifold learning algorithms’ classification accuracy.

Datasets Isomap + SVM LLE+ SVM LPP+ SVM SVM+LEP SVM+LEP+ Struc
EnronSpam 92.4% 93.3% 92.8% 93.9% 94.7%
PU1 94.7% 95.8% 95.1% 95.6% 96.9%
GenSpam 92.9% 93.7% 93.5% 93.9% 95.1%

Table 5: Different manifold learning algorithms’ time consumption.

Datasets Isomap + SVM LLE+ SVM LPP+ SVM SVM+LEP SVM+LEP+ Struc
EnronSpam 6468 s 894 s 965 s 983 s 1312 s
PU1 1683 s 247 s 229 s 236 s 285 s
GenSpam 5478 s 608 s 615 s 634 s 715 s
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and the corresponding experiment contrast results are listed
in Table 5. )ese results show that Isomap has high time
complexity, rendering it inefficient in processing massive
datasets. Like the LLE and LPP algorithms, the LEP algo-
rithm represents a local dimensionality reduction technique,
meaning their time consumption varies barely.

5. Conclusion and Future Directions

Spam filtering has been a critical concern across sectors and
industries. If we regard it as a scientific problem, addressing
this issue could be a classification issue. However, this
classification assignment involves how to have data repre-
sentation of text and data preprocessing and improve the
accuracy of sorting algorithms.

For the top priority of text processing, feature extraction
plays a vital role in the follow-up learning assignment. In
terms of feature extraction, the typical principal component
analysis (PCA) method has some limitations and works only
to process the datasets showing the linear structure in data
distribution. )e standard text datasets themselves have
highly complex spatial structures and show high-degree
nonlinearity in spatial distribution.With that, it is ineffective
to adopt the PCA method for dimensionality reduction. )e
manifold learning algorithm should be introduced to pro-
cess the complex structure of text datasets, clean out noise
information, and merge redundant features. )e objective is
to obtain minimum decisive features, reduce data size, and
improve learning efficiency.

Manifold learning can obtain the spatial geometric
construction of datasets as it bases the geometrical char-
acteristics of datasets on algorithm construction. As for
email text datasets, each text comprises a group of sentences,
and currently, the mainstream algorithms are learning the
feature vector representation of sentences, with few capable
of obtaining the spatial structure between sentences. In-
cluding manifold assumptions into the algorithm for text
analysis, we can increase the structural information of text
datasets. Such an advantage is vital to natural language
processing, or perhaps to a certain degree, provide some
breakthroughs for developing natural language processing-
related algorithms. )is study is a preliminary attempt to
address spam filtering concerns, and in the future, text
processing in other fields can also be merged with manifold
learning. As long as the complex distributed architecture of
datasets is involved, we can always try to bring in the
manifold hypothesis to address this problem.

)is study introduced some machine learning algo-
rithms in spam sorting. On this basis, we proposed a new
learning algorithm, which, together with the manifold
learning algorithm, works to preprocess datasets and ef-
fectively reduce the algorithm’s time complexity. In the
Experimentation section, we carried out a contrastive
analysis of different algorithms’ classification accuracy and
time consumption.

In the future, we expect that more machine learning
algorithms can be applied to ensuring cybersecurity. Take
spam filtering as an example. For the corpora of text, we can
introduce the embedding idea in deep learning and use the

embedding method to have a vector representation of the
email text. )en, for this type of vector dataset, we can
choose some appropriate machine learning algorithms for
classification. Unquestionably, the classification results are
affected by the embedding performance to add the semantic
and structural information of the text to the embedding
process. In this way, we may obtain much better classifi-
cation results.
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