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When there are potential risks in the progress of the engineering project, regulators pay more attentions to losses rather than gains. In
this paper, we design a new class of risk statistics for engineering, named regulator-based risk statistics. Considering the properties of
regulator-based risk statistics, we are able to derive the dual representations for them. At last, the regulator-based version is investigated.

1. Introduction

Research on risk is a hot topic in both engineering and
theoretical research, and risk models have attracted con-
siderable attention.-e research of engineering risk involves
two problems: choosing an appropriate risk model and al-
locating the risk to individual production line.-is has led to
further research on risk statistics.

In the seminal paper, risk models were introduced by
axiomatic system, see Artzner et al. [1, 2], Föllmer and Schied
[3], and Frittelli and Rosazza Gianin [4]. However, as pointed
out by Cont et al. [5], these axioms fail to take into account
some key features encountered in the practice of risk man-
agement. In fact, sometimes, whenmeasuring the risk, it is only
relevant to consider the losses, not the gains. For this reason, we
are able to derive the risk based on losses, not gains.

Next, from the statistical point of view by Kou et al. [6],
the behavior of a random variable can be characterized by its
samples. At the same time, one can also incorporate scenario
analysis into this framework, see Antoĺın-Dı́az et al. [7].
-erefore, a natural question is how about the discuss of
regulator-based risk with scenario analysis.

It is worth mentioning that the issue of risk measures
with scenario analysis has already been studied by Delbaen
[8]. It has also been extensively studied in the last decade, for
example, see Kou et al. [6], Ahmed et al. [9], Assa and
Morales [10], Hassler et al. [11], Sun et al. [12], Tian and
Jiang [13], Tian and Suo [14], and the references therein.
However, as pointed out by Deng and Sun [7], people

sometimes only pay attention to the losses caused by the risk.
-us, it is of special sense to derive the risk statistics for such
risk, especially the engineering risk.

In the present paper, we are able to derive convex and
coherent regulator-based risk statistics in engineering, and
dual representations for them. Finally, the relationship
between regulator-based risk statistics and the convex risk
statistics introduced by Tian and Suo [14] also is given to
illustrate the regulator-based risk statistics.

-e remainder of this paper is organized as follows: in
Section 2, we briefly introduce some preliminaries.-emain
results of regulator-based risk statistics are stated in Section
3, and their proofs are postponed to Section 4. Finally, in
Section 5, we are able to derive the relationship between
regulator-based risk statistics and the convex risk statistics
introduced by Tian and Suo [14].

2. Preliminaries

In this section, we briefly introduce the preliminaries that are
used throughout this paper. Let N≥ 1 be a fixed positive
integer. DenoteX by a set of random losses, andXN by the
product space X1 × · · · × XN, where Xi � X for 1≤ i≤N.
Any element ofXN is said to be a portfolio of random losses.
In practice, the behavior of the N-dimensional random
vector M � (X1, . . . , XN) under different scenarios is rep-
resented by different sets of data observed or generated
under those scenarios because specifying accurate models
forM is usually very difficult. Some detailed notations can be
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found in Kou et al. [6]. Here, we suppose that there always
exist m scenarios. Specifically, suppose that the behavior of
M is represented by a collection of data M � (X1, . . . ,

XN) ∈ RN which can be a data set based on historical ob-
servations, hypothetical samples simulated according to a
model, or a mixture of observations and simulated samples.

For any M1 � (X1
1, . . . , X1

N), M2 � (X2
1, . . . , X2

N) ∈ RN,
M1 ≤M2 means X1

i ≤X2
i for any i � 1, 2, . . . , N. And for any

M � (X1, . . . , XN) ∈ RN, let M∧0: � (min X1, 0 , . . . ,

min XN, 0 ). Given a ∈ R, denote a1: � (a, . . . , a).

3. Regulator-Based Risk Statistics

In this section, we state the main result of regulator-based
risk statistics in engineering. Firstly, we derive the properties
related to regulator-based risk statistics.

Definition 1. A function ρ: RN⟶ [0, +∞) is said to be a
convex regulator-based risk statistic if it satisfies the fol-
lowing properties:

(A.1) Normalization: for any a≥ 0, ρ(− (a1)) � a

(A.2) Monotonicity: for any M1, M2 ∈ RN, M1 ≤M2
implies ρ(M1)≥ ρ(M2)

(A.3) Loss-dependence: for any M ∈ RN, ρ(M) � ρ(M

∧0)

(A.4) Convexity: for any M1, M2 ∈ RN and 0< λ< 1,
ρ(λM1 + (1 − λ)M2)≤ λρ(M1) + (1 − λ)ρ(M2)

Moreover, a convex regulator-based risk statistic ρ
is said to be a coherent regulator-based risk sta-
tistic if it still satisfies

(A.5) Positive homogeneity: for any α≥ 0 and M ∈ RN,
ρ(αM) � αρ(M)

Remark 1. -emain objective of this section is to derive the
macromodels for measuring the engineering risk by the
properties introduced above. In fact, the properties in
Definition 1 can also be called the axioms related to risk
statistics. And among all the current research on risk models
through axioms, the dual representation is most widely used.

Next, we derive the dual representations of regulator-
based risk statistics, and the proofs were given in the next
section.

Theorem 1. ρ: RN⟶ [0, +∞) is a convex regulator-based
risk statistic in the case of that there exists a convex function
α: RN⟶ [0, +∞], which is satisfied

min
Q∈RN,minQi ≥ 1− ϵ

α(Q) � 0, for any ϵ ∈ (0, 1), (1)

such that

ρ(M) � max
Q∈RN

− 
N

i�1
Qi Xi∧0(  − α(Q)

⎧⎨

⎩

⎫⎬

⎭. (2)

1e function α for which (2) holds can be choosen as
αmin(Q): � supM∈RN − 

N
i�1 Qi(Xi) − ρ(M)  for any

Q ∈ RN. Moreover, αmin is the minimal penalty function in

the sense that for any penalty function α representing ρ
satisfies α(Q1, . . . , QN)≥ αmin(Q1, . . . , QN) for all (Q1, . . . ,

QN) ∈ RN.

Theorem 2. ρ: RN⟶ [0, +∞) is a coherent regulator-
based risk statistic in the case of that for any M ∈ RN,

ρ(M) � max
Q∈RN

− 

N

i�1
Qi Xi∧0( 

⎧⎨

⎩

⎫⎬

⎭. (3)

Remark 2. -e dual representation result in -eorem 1
depends only on the negative part of M due to the loss-
dependence property (A.3). In -eorem 2, let N � 1, then
representation result is reduced to the one-dimensional case
which coincides with the representation results of Cont et al.
[5].

4. Proofs of Main Results

In this section, we are able to derive the proof of main results
in Section 3.

Proof of 1eorem 1. Let f(X) � ρ(− X), then f is an in-
creasing convex function. According to Cheridto and Li [15],
we have

f(M) � max
M∗∈RN

M
∗
(M) − f

∗
M
∗

(  , (4)

where

f
∗

M
∗

(  � sup
M∈RN

M
∗
(− M) − ρ(M) . (5)

Hence

ρ(M) � f(− M) � max
M∗∈RN

M
∗
(− M) − f

∗
M
∗

(  . (6)

Hence

ρ(M) � max
Q∈RN

− 
N

i�1
Qi Xi(  − f

∗
(Q)

⎧⎨

⎩

⎫⎬

⎭, (7)

where

f
∗
(Q) � sup

Q∈RN

− 
N

i�1
Qi Xi(  − ρ(M)

⎧⎨

⎩

⎫⎬

⎭. (8)

Define αmin: RN⟶ [0, +∞] by

αmin(Q) ≔ sup
Q∈RN

− 
N

i�1
Qi Xi(  − ρ(M)

⎧⎨

⎩

⎫⎬

⎭, (9)

and using loss-dependence property of ρ, we have

ρ(M) � max
Q∈RN

− 
N

i�1
Qi Xi∧0(  − αmin(Q)

⎧⎨

⎩

⎫⎬

⎭. (10)

Now, let α be any penalty function for ρ. -en, for any
(Q1, . . . , QN) ∈ RN and M � (X1, . . . , XN),
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ρ(M)≥ − 
N

i�1
Qi Xi(  − α Q1, . . . , QN( . (11)

Hence,

α Q1, . . . , QN( ≥ − 
N

i�1
Qi Xi(  − ρ(M). (12)

Taking supremum over RN for M � (X1, . . . , XN) in
gives rise to

α(Q)≥ sup
X1 ,...,XN( )∈RN

− 
N

i�1
Qi Xi(  − ρ(M)

⎧⎨

⎩

⎫⎬

⎭ � αmin(Q).

(13)

Next, we check that ρ represented in (2) is a convex
regulator-based risk statistic. Obviously, ρ is a convex
function and satisfies (A.3). Hence, we need only to show
that ρ satisfies (A.1) and (A.2). To this end, for any a≥ 0 and
1< ϵ< 1,

a � ρ(− a1) � max
Q∈RN

a 
N

i�1
Qi − αmin(Q)

⎧⎨

⎩

⎫⎬

⎭

≤max

max
Q∈RN,max

1≤i≤N
Qi < 1− ε

a 
N

i�1
Qi − αmin(Q)

⎧⎨

⎩

⎫⎬

⎭, max
Q∈RN,min

1≤i≤N
Qi ≥ 1− ε

a 
N

i�1
Qi − αmin(Q)

⎧⎨

⎩

⎫⎬

⎭

max
Q∈RN,min

1≤i≤N
Qi ≤ 1− ε,max

1≤i≤N
Qi ≥ 1− ε

a 
N

i�1
Qi − αmin(Q)

⎧⎨

⎩

⎫⎬

⎭

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

≤max Na(1 − ε), max
Q∈RN,min

1≤i≤N
Qi ≥ 1− ε

a 
N

i�1
Qi − αmin(Q)

⎧⎨

⎩

⎫⎬

⎭, max
Q∈RN,min

1≤i≤N
Qi ≤ 1− ε,max

1≤i≤N
Qi ≥ 1− ε

a 
N

i�1
Qi − αmin(Q)

⎧⎨

⎩

⎫⎬

⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤max

Na(1 − ε), a − min
Q∈RN,min

1≤i≤N
Qi ≥ 1− ε

αmin(Q), card i ∈ i: Qi(1)< 1 − ε ( a(1 − ε)

+card i ∈ i: Qi(1)≥ 1 − ε ( a − min
Q∈RN,min

1≤i≤N
Qi < 1− ε,max

1≤i≤N
Qi > 1− ε

αmin(Q)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

(14)

which implies αmin satisfies (1). Now, let M1: � (X1
1, . . . ,

X1
N), M2: � (X2

1, . . . , X2
N). -en, the relation M1 ≤M2

implies X1
i ∧0≤X2

i ∧0 for any 1≤ i≤N. Hence for any
Q: � (Q1, . . . , QN) ∈ RN, we have



N

i�1
Qi X

1
i ∧0 ≤ 

N

i�1
Qi X

2
i ∧0 , (15)

which implies ρ(M1)≤ ρ(M2). -is completes the proof of
-eorem 1. □

Proof of 1eorem 2. If ρ is a coherent regulator-based risk
statistic, then from the proof of -eorem 1and the positive
homogeneity of ρ, for any Q ∈ RN and λ> 0, we have

αmin(Q) � sup
M∈RN

− 
N

i�1
Qi − Xi(  − ρ(M)

⎧⎨

⎩

⎫⎬

⎭

� sup
M∈RN

− 
N

i�1
Qi − λXi(  − ρ(λM)

⎧⎨

⎩

⎫⎬

⎭

� λ sup
M∈RN

− 
N

i�1
Qi − Xi(  − ρ(M)

⎧⎨

⎩

⎫⎬

⎭ � λαmin(Q).

(16)

Hence, αmin can take only the values 0 and +∞. -is
completes the proof of -eorem 2. □

5. Regulator-Based Version of Convex
Risk Statistics

In this section, we derive a new version of regulator-based
risk statistics in engineering. It is worth noting that this
version can be related to convex risk statistics introduced by
Tian and Suo [14],.

For any convex risk statistic ρ onRN defined in Tian and
Suo [14], we can define a new risk statistic ρ by ρ(M): �

ρ(M∧0) for anyM ∈ RN. Obviously, ρ is a convex regulator-
based risk statistic defined in Section 3. We call ρ the reg-
ulator-based version of ρ.

We can prove that a convex regulator-based risk
statistic ρ is a regulator-based version of some convex risk
statistic.

Project-loss additivity: for any M ∈ RN and a ∈ R where
M≤ 0, a≥ 0,

ρ(M − a1) � ρ(M) + a. (17)

On the one hand, if ρ(M) � ρ(M∧0) for certain convex
risk statistic ρ onRN, then for any M ∈ RN, M≤ 0 and a≥ 0:

ρ(M − a1) � ρ(M − a1) � ρ(M) + a � ρ(M) + a, (18)

where the second equality is due to the project-additivity
property of ρ.
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Let us now suppose that a convex regulator-based risk
statistic ρ satisfies the project-loss additivity property. Define

ρ(M) � ρ M − aM1(  − aM, (19)

for any M: � (X1, . . . , XN) ∈ RN where aM is any upper
bound of each Xi. Using the project-loss additivity property
for ρ, we know that ρ is well defined. Next, we need to claim
that ρ is a convex risk statistic where ρ(M) � ρ(M∧0). To
this end, for any M: � (X1, . . . , XN) ∈ RN and a ∈ R,

ρ(M − a1) � ρ M − a1 − aM1 − a1( (  − aM − a( ,

� ρ M − aM1(  − aM + a � ρ(M) + a.
(20)

Next, let M1: � (X1
1, . . . , X1

N), M2: � (X2
1, . . . , X2

N)

∈ RN where M1 ≤M2. Taking aM1
, aM2

to be the upper
bound of each X1

i and X2
i . -en,

ρ M1(  � ρ M1 − aM2
1  − aM2

≥ ρ M2 − aM2
1  − aM2

� ρ M2( ,
(21)

which yields ρ monotonous. Finally, for any M1, M2 ∈ RN

and 0≤ t≤ 1,

ρ tM1 +(1 − t)M2(  � ρ tM1 +(1 − t)M2 − taM1
1 − (1 − t)aM2

1  − taM1
− (1 − t)aM2

,

� ρ t M1 − aM1
1  +(1 − t) M2 − aM2

1   − taM1
− (1 − t)aM2

≤ tρ M1 − aM1
1  +(1 − t)ρ M2 − aM2

1  − taM1
− (1 − t)aM2

,

� tρ M1(  +(1 − t)ρ M2( ,

(22)

which implies ρ convex.

6. Conclusions

In fact, risks in engineering are not the same as financial risk.
In the study of financial risk, people are concerned with not
only the loss caused by the risk, but more importantly, the
high return hidden behind the risk. As for engineering risk,
however, people only pay attention to the loss it brings.-us,
we derive a new class of risk statistics for engineering, named
regulator-based risk statistics. Yet, we do not conduct the-
oretical analysis on engineering risk like Hassler et al. [11].
Our results provide the macromodels for project managers
who deal with the measurement of regulator-based risk in
engineering project.
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[3] H. Föllmer and A. Schied, “Convex measures of risk and
trading constraints,” Finance and Stochastics, vol. 6, no. 4,
pp. 429–447, 2002.

[4] M. Frittelli and E. Rosazza Gianin, “Putting order in risk
measures,” Journal of Banking & Finance, vol. 26, no. 7,
pp. 1473–1486, 2002.

[5] R. Cont, R. Deguest, and X. D. He, “Loss-based risk statistics,”
Statistics & Risk Modeling, vol. 30, pp. 133–167, 2013.

[6] S. Kou, X. Peng, and C. C. Heyde, “External risk measures and
basel accords,” Mathematics of Operations Research, vol. 38,
no. 3, pp. 393–417, 2013.

[7] X. Deng and F. Sun, “Regulator-based risk statistics for
portfolios,” Discrete Dynamics in Nature and Society,
vol. 2020, Article ID 7015267, 2020.

[8] F. Delbaen, “Coherent risk statistics on general probability
spaces,” in Advances in Finance and StochasticsSpringer, New
York, NY, USA, 2002.
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