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+e dynamics of the nanofluid flow between two plates that are placed parallel to each other is of huge interest due to its numerous
applications in different industries. Keeping in view the significance of such flow, investigation of the heat transfer in the Cu-H2O
nanofluid is conducted between parallel rotating plates. For more significant results of the study, the squeezing effects are
incorporated over the plates that are electrically conducting. +e nondimensional flow model is then treated analytically (VPM),
and the results are sketched against the preeminent flow parameters. +e remarkable heat transfer in the nanofluid is noticed
against the Eckert and Prandtl numbers, whereas the Lorentz forces oppose the fluid temperature. Furthermore, the shear stresses
at the walls drop and the local heat transfer rate rises due to increasing flow parameters. Finally, to validate the study, a comparison
is made with existing available science literature and noted that the presented results are aligned with them.

1. Introduction

+e heat transport investigation in the squeezed flow is
substantial for engineering and industrial view point. +ese
are in cooling, fog formation, lubrication system, food
processing, and hydrodynamical machines etc. In view of
significance of the squeezed flow, researchers and scientists
focused to analyze the flow behavior and thermal perfor-
mance under multiple flow conditions. Firstly, the squeezed
flow of lubricants was introduced in [1].

Mustafa et al. [2] pointed out the flow behavior in fluids
squeezed between two plates. +e influence of multiple
preeminent flow parameters on the fluid temperature and
mass transport is decorated via graphs and explained
comprehensively. Moreover, they found the local thermal

performance against ingrained flow parameters.+e analysis
of magnetized flow regimes by considering the suction/
blowing characteristics is imperative. It strengthens roots in
civil engineering and industries as well. +e analytical in-
vestigation of the fluid squeezed between parallel disks with
suction/blowing characteristics was perceived in [3]. Fur-
ther, they analyzed the flow characteristics under varying
multiple parameters. +e flow of H2O composed by the Cu
nanomaterial was presented by Khan et al. [4]. To enhance
the thermal performance in the fluid, they adopted thermal
conductance correlation based on multiple geometries of the
nanomaterial. +ey pointed out that thermal performance is
prompt for the platelet nanomaterial-based nanofluid.

+e thermal transport analysis in the colloidal mixture
between the opening/narrowing channel was detected in [5].
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+e walls of the channel are flexible and with source/sink
situated at the culmination of the wall. For novelty of the
colloidal model, they ingrained the impact of Lorentz forces
in the energy equation. +e enhanced thermal conductance
of the fluid by dispersing nanomaterial, nanotubes, and
various thermal conductance correlations was perceived in
[6–8]. In 2014, Goktepe et al. [9] performed comparative
inspection between single- and two-phase nanofluid models
with convection characteristics. +e thermal transport in-
spection in the unsteady colloidal mixture between parallel
plates was perceived in [10]. +ey conducted the analysis
between magnetized plates and decorated the results for the
flow regimes.+emost relevant investigation in the colloidal
mixtures composed by various types of nanomaterials
suspended in different host liquids was presented in [11–14].

Dogonchi et al. [15] inspected the temperature behavior
in the magnetized nanofluid with radiative heat flux effects.
+ey found that the temperature of the nanofluid enhanced
against stronger thermal radiative effects. Further, the en-
hanced local thermal performance rate was reported in the
work for the higher thermal radiation parameter. An ana-
lytical treatment of the nanofluid bounded by parallel plates
was carried out in [16]. +ey used the Brownian motion
effects, and to enhance the thermal performance in the used
colloidal mixture, KKL thermal conductance correlation was
ingrained in the energy equation. +ey pointed out that the
local heat transport rate rises against higher volume fraction
of the tiny material. Sheikholeslami et al. [17] perceived
Brownian motion and thermophoretic effects on the flow
characteristics. +ey revealed that the shear stresses at the
plate surface enhanced for higher Hartmann and viscosity
parameters. Also, they validated the analysis via comparative
analysis.

+e thermal and mass transport analysis in the colloidal
mixture between rotating plates was perceived in [18].
Further, they revealed that the heat transport is in direct
proportion for thermophoresis and Brownian motion pa-
rameters, while reverse behavior is pointed out for the
concentration field. Singh et al. [19] pointed out the heat and
mass transportation in the squeezed flow by imposing the
slip effects on the plates. Also, they incorporated the in-
fluence of Lorentz forces and explored the significant results.
+ey revealed that the heat and mass transport at the plate
surface reduced against high Lorentz forces and volume
fraction. Further, increment in the mass transport was de-
tected against Schmidt and squeeze numbers. A novel
thermal transport in GO-Molybdenum-disulfide/H2O-
C2H6O2 was reported in [20]. +ey conducted the analysis
between parallel rotating plates and found the significant
results for the thermal performance of the hybrid nano-
liquid. To improve the thermal performance rate, they in-
grained the Cattaneo–Christov model in the energy relation
and perceived significant changes in the heat transfer rate.
Further, significant heat transfer investigation in the
nanofluids was detected in [21, 22].

In 2019, Shah et al. [23] performed the analysis of heat
and mass transport in rotating geometry. For novel analysis,
they ingrained the radiative heat flux and Hall current in the
energy and momentum constitutive relations. +ey deco-
rated the results against the flow parameters and explained
comprehensively. Recently, Khan et al. [24] conducted the
thermal transportation over a sensor surface for c-nano-
fluids. For thermal enhancement of the fluid, they adopted
the effective Prandtl model and revealed significant changes
in the thermal and momentum transport. Recently, Gul et al.
[25] revealed the nanofluid thermal transport against the
upright channel through the permeable medium. +ey
highlighted the flow behavior for different parameters and
described comprehensively.

+e thermal transport analysis between parallel plates is
significant. From the literature visit, it is revealed that the
thermal performance in the nanofluids composed by mul-
tiple nanomaterials geometries is not conducted so far. Such
thermal analysis is imperative for industrial and engineering
view point. +erefore, the magnetized flow of H2O com-
posed by multiple nanomaterials (platelets, blades, and
cylinders) is organized. For the mathematical study, varia-
tion of parameters method (VPM) is adopted, and it suc-
cessfully tackled the colloidal model. +e results for thermal
performance, shear stresses, and local heat transfer rate
against multiple flow parameters are decorated and
explained comprehensively. A comparative investigation is
also conducted, which proved the reliability of the adopted
technique. Finally, core results of the analysis are ingrained
in the conclusion section.

2. Materials and Methods

2.1. Model Formulation

2.1.1. Model Description and Geometry. +e unsteady and
electrically conducting fluid is taken between two parallel
rotating plates in the Cartesian coordinate frame. A
thermal conductance correlation based on multiple
nanomaterial geometries is taken to improve the thermal
performance of the model. +e plates are apart from
z � ± l[1 − αt]1/2 � ± h(t), where α> 0 and t< 1/α. Fur-
ther, dissipation effects are plugged in the energy relation.
+e following restrictions are imposed on the colloidal flow
model.

+e flow is incompressible.
+e volumetric fraction of the nonmaterial and the

regular substance are thermally compatible.
+ere are no slip effects between them.
+ere is no chemical reaction occurring.
Figure 1 depicts the flow configuration of the Cu-H2O

nanofluid. In the view of aforementioned restrictions, the
colloidal model which governs the flow of Cu-H2O for
multiple geometries of the nanomaterial takes the following
form:
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And, supporting boundary conditions are

v �
zu

zy
�

zT

zy
� 0 aty � 0, (5)

v � vw �
dh

dt
, T � TH aty � h(t). (6)

Equation (1) is the conservation of mass, and the ve-
locities along the coordinate axes are represented by u and v,
respectively, p is the pressure, and T is the temperature. To
enhance the flow characteristics, following correlations are
adopted [26, 27]:

ρnf � (1 − ϕ)ρf + ϕρs, (7)

μnf �
μf

(1 − ϕ)
2.5, (8)

ρCp􏼐 􏼑
nf

� (1 − ϕ) ρCp􏼐 􏼑
f

+ ϕ ρCp􏼐 􏼑
s
, (9)

σnf � σf 1 +
3 σs/σf − 1􏼐 􏼑ϕ

σs/σf + 2􏼐 􏼑 − σs/σf − 1􏼐 􏼑ϕ
⎛⎝ ⎞⎠. (10)

For thermal improvement, the following model is used
[16]:

knf � kf

ks +(m − 1)kf − (m − 1) kf − ks􏼐 􏼑ϕ

ks +(m − 1)kf + kf − ks􏼐 􏼑ϕ
⎛⎝ ⎞⎠, (11)

where conductivity of the tiny particles, regular liquid, and
shape factor of the nanoparticles are denoted by ks, kf, and
m, respectively. +e shape factor of the tiny particles is
computed by 3/ψ.

+e appropriated dimensionless transforms are de-
scribed by the following formulas in which η is similarity
variables in which the fluid is squeezed for α> 0 and t< 1/α.
+e flow is squeezed between the plates until the time
reaches the limit 1/α. Further, u, v, and T describe the
velocities along horizontal, vertical, and the temperature,
respectively:

η �
y

l(1 − αt)
1/2, u �

αx

2(1 − αt)
F′(η), v � −

αl

2(1 − αt)
1/2 F(η), T � THθ(η). (12)
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Figure 1: Geometry of the flow.
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After using these variables in equations (1)–(4) and
plugging the partial differentiations and self-similar vari-
ables, the following nanofluid model is attained:

F″″(η) − SK1(1 − ϕ)
2.5 ηF″″

(η)
+ F′(η)F″

(η)
− F(η)F

‴
(η) + 3F″

(η)
􏼒 􏼓 −

MA1

(1 − ϕ)
− 2.5F″(η) � 0, (13)

θ″(η) +
PrSK2

K3
θ′(η)F(η) − ηθ′(η)( 􏼁 +

PrEc
K3(1 − ϕ)

2.5 F″
2
(η) + 4δ2F′2(η)􏼒 􏼓 � 0. (14)

+e reduced dimensionless conditions at the plates are
labeled in equations (15) and (16), respectively. It is note-
worthy to mention that η � 0 and η � 1 denote the condi-
tions at the lower and upper plates, respectively:

F(0) � 0, F″(0) � 0, F(1) � 1, F′(1) � 0, (15)

θ′(0) � 0, θ(1) � 1. (16)

In equations (13) and (14), squeeze, Prandtl, Eckert, and
Hartmann numbers are denoted by S � αl2/2]f,
Pr � μf(ρCp)f/ρfkf, Ec � ρf/(ρCp)f(αx/2(1 − αt))2, M �

lB0(
������
σf(1−

􏽱
αt)/μf ), and δ � l/x. +e quantities repre-

sented by K1, K2, K3, and A1 are equal to

K1 � (1 − ϕ) +
ϕρs

ρf

, (17)
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s
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f

, (18)

K3 �
ks +(m − 1)kf − (m − 1) kf − ks􏼐 􏼑ϕ

ks +(m − 1)kf + kf − ks􏼐 􏼑ϕ
⎛⎝ ⎞⎠, (19)

A1 �
σs + 2σf􏼐 􏼑 + 2 σs − σf􏼐 􏼑ϕ

σs + 2σf􏼐 􏼑 − σs − σf􏼐 􏼑ϕ
⎛⎝ ⎞⎠. (20)

+e dimensional formulas for the shear stresses and
Nusselt number are CF � μnf(zu/zy)y�h(t)/ρnfv2w andNu �

− lknf(zT/zy)y� h(t)/KTH.
After some calculations, these expressions become

CF � K1(1 − ϕ)
2.5

F″(1), (21)

Nu � − K3θ′(1). (22)

2.2. Mathematical Analysis. As under consideration, the
nanofluid model is highly nonlinear in nature, and a closed
form of the solution is very tedious or do not exist in general

for such models. +erefore, we then move to tackle the
model approximately. For the said purpose, the method
known as variation of parameters method [28] is used.
Primarily, the method is based on the Lagrange multiplier
which can be calculated according to the model. After that, a
recursive relation is written for the velocity and temperature
equations. +e initial conditions are used to calculate the
initial guess, and the boundary conditions are used to
compute the remaining constants appearing in the recursive
relation.+e detailed implementation of the method is given
below.

2.2.1. Working Rules for VPM

Step 1: the initial step in VPM [28] is to reduce the
nonlinear model in the following form:

L
􏽺􏽽􏽼􏽻

F
􏽺􏽽􏽼􏽻

(η) + R
􏽺􏽽􏽼􏽻
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F
􏽺􏽽􏽼􏽻

(η) + g
􏽺􏽽􏽼􏽻∗

(η) � 0,

(23)

where the highest order linear operator is L
􏽺􏽽􏽼􏽻

, R
􏽺􏽽􏽼􏽻

is
also the linear operator with order less than L

􏽺􏽽􏽼􏽻
, L

􏽺􏽽􏽼􏽻

presents the nonlinear operator, and g
􏽺􏽽􏽼􏽻∗ is the in-

homogeneous part of the model.
Step 2: it is the calculation of the Lagrange Multiplier.
For VPM, the Lagrange multiplier is calculated by
adopting the following formula:

λ(s, η) �
(− 1)

n∗
(η − s)

n∗ − 1

n
∗

− 1( 􏼁!
. (24)

In equation (24), n∗ signifies the highest order deriv-
ative in the model.
Step 3: it is the calculation of initial approximation for the
model.+e initial approximation is calculated bymeans of
initial conditions by adopting the following formula:

F0(η) � 􏽘

k

i�0

ηi
F

i
(0)

i!
. (25)

Step 4: it is the construction of the iterative scheme for
VPM. +e scheme is constructed by the following way:
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Fn+1(η) � F0(η) + 􏽚
η

0
λ(s, η) − RF(s) − ℵF(s) − g

∗
(s)( 􏼁ds, n≥ 0. (26)

By plugging the initial approximation and Lagrange
multiplier, higher order approximations can be computed by
running the recursive iterated scheme given in equation
(26).

2.3. Implementation of the Proposed Technique. In VPM,
equations (13) and (14) take the following form of recurrence
relation:
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After plugging the conditions in equations (27) and (28),
the following relations are obtained:
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where �Ci for i � 1, . . . , 4 are constants and computed by
plugging the remaining flow conditions. Table 1 presents the
comparative computation between VPM solutions and
numerical computations.

3. Results and Discussion

3.1.JeVelocity Field. +e analysis of the imposed magnetic
field on the flow of nanofluids is significant as it is used in
many industrial products to purify the products. +erefore,
the nanofluid motion against the Hartmann number is
presented in Figures 2(a) and 2(b) for F(η) and F′(η),
respectively. It is noticed that the fluid velocity F(η) reduces
by strengthening the magnetic field. Physically, the applied
magnetic field opposes the fluid movement due to which the
fluid motion declines. On the contrary, dual behavior of the
fluid motion is observed for the velocity component F′(η).
Further, from the plotted results, it is obvious that the fluid
motion declines and rises almost inconsequentially against
the imposed magnetic field.

Figures 2 and 3 elaborate the fluid velocities F(η) and
F′(η) for increasing values of volumetric fraction of Cu
nanoparticles and squeezing parameter. From Figure 3, it is
observed that the velocity components alter almost

inconsequentially due to varying ϕ. Physically, by increasing
the volume fraction of Cu nanoparticles, the resultant col-
loidal fluid becomes more denser which leads to slow
movement of the fluid. +e effects of the squeezing pa-
rameter on the velocities are demonstrated in Figure 4. It is
noticed that the variations in the fluid motion are not
prominent due to increasing squeezing effects. +e values of
thermophysical parameters are described in Table 2.

3.2. Temperature Field. +e behavior of fluid temperature
against multiple values of ϕ and Pr is plotted in Figure 5.
+ese results are plotted for different nanoparticle shapes,
namely, platelets, cylinder, and bricks. From the critical
analysis of the plotted results, the temperature declines
against higher ϕ. +e physical reason behind the decrement
in the temperature is that due to higher volume fraction, the
colloidal fluid becomes more denser, and the collision be-
tween the fluid particles reduces which leads to decrement in
the temperature. +e results for temperature against higher
Prandtl number values are shown in Figure 5(b) over the
domain of interest. +e temperature field β(η) significantly
rises for multiple values of Prandtl number. At the lower end
(η � 0), the temperature significantly increases. +e
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increment in the temperature of nanofluids gradually slows
down from lower to upper end of the channel. Further, the
increment in β(η) prevailed for the brick-shaped nano-
material in comparison with platelets and cylinder-shaped
nanomaterial, respectively.

+e temperature of Cu-H2O for increasing S and M is
plotted in Figures 6(a) and 6(b), respectively. It is worthy to
mention that the plates move apart for S> 0. +e fluid

temperature declines for higher values of S. Physically, when
the upper plate moves apart from the lower once, then the
flowing area increases, which reduces the collisions between
the fluid particles, and consequently, the temperature β(η)

drops. +e temperature in Cu-H2O containing platelet-
shaped Cu declines abruptly than those cylinder- and brick-
shaped nanofluids. +is behavior of the temperature is due
to the thermophysical parameters of the Cu nanoparticles.

Table 1: +e results for F(η) and θ(η).

η ↓ F(η) θ(η)

VPM Numerical Error VPM Numerical Error
0.0 0.000 0.000 0.000 1.031 1.031 1.749 × 10− 7

0.1 0.140 0.140 4.178 × 10− 9 1.031 1.031 1.749 × 10− 7

0.2 0.279 0.279 3.535 × 10− 9 1.031 1.031 1.775 × 10− 7

0.3 0.413 0.413 1.804 × 10− 9 1.030 1.030 1.761 × 10− 7

0.4 0.541 0.541 2.077 × 10− 9 1.030 1.030 1.766 × 10− 7

0.5 0.661 0.661 2.763 × 10− 9 1.029 1.029 1.771 × 10− 7

0.6 0.769 0.769 2.745 × 10− 9 1.028 1.028 1.761 × 10− 7

0.7 0.861 0.861 2.208 × 10− 9 1.025 1.025 1.703 × 10− 7

0.8 0.934 0.934 1.634 × 10− 9 1.020 1.020 1.495 × 10− 7

0.9 0.982 0.982 8.843 × 10− 9 1.013 1.013 9.747 × 10− 7

1.0 1.000 1.000 0.000 0.999 1.000 3.000 × 10− 10

M = 20, 25, 30, 35

ϕ = 0.2, S = 0.5, δ = 0.5, Ec = 0.5
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Figure 2: +e velocity against M. (a) F(η). (b) F′(η).
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Figure 3: +e velocity against ϕ. (a) F(η). (b) F′(η).
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+e temperature field β(η) for the applied magnetic field is
presented in Figure 6(b). +e motion of the nanofluids
reduces due to the imposed magnetic field; as a result, the
fluid temperature reduces. Physically, due to perpendicularly
imposed magnetic field strength, collisions between the
particles reduce; consequently, the temperature drops. In the
vicinity of the plates, the temperature declines very rapidly
due to stronger magnetic field effects there.

+e effects of viscous dissipation on β(η) are demon-
strated in Figure 7(a) over the desired domain. It is examined
that the temperature significantly rises due to stronger
dissipation effects. +e physical reason is that the internal
energy of the fluid particles rises due to dissipation; as a
result, the temperature rises significantly. For the nanofluid
composed by brick-shaped Cu, more rapid increment in the

temperature is examined. +e effects are prominent near the
lower plate. +e temperature β(η) variations against δ are
plotted in Figure 7(b). It is noticed that the temperature
promptly rises by increasing δ. +e dominating behavior of
the temperature is observed for the nanofluid containing
brick-shaped Cu nanoparticles.

+e impact of ϕ, magnetic parameter, and S on the shear
stresses is plotted in Figures 8and 9, respectively. From the
analysis, it is examined that the shear stresses drop against
high volume fraction and stronger magnetic field effects. It is
also observed that when the upper plate accelerates apart
from the lower once, then the shear stresses decline.

Figure 10 presents the local heat transfer rate for multiple
ϕ values and Eckert number. From Figure 10(a), it is no-
ticeable that the local heat transfer rate rises against high
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Figure 4: +e velocity against S. (a) F(η). (b) F′(η).

Table 2: Attributes of tiny particles and regular liquid [26].

ρ(kg/m3) Cp(J/kgK) k(W/mk) σ(Ωm)

Pure water 997.1 4179 0.613 0.05
Copper (Cu) 8933 385 401 596 × 107
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Figure 5: +ermal behavior θ(η) against (a) ϕ and (b) Pr.
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volume fraction. Physically, the volume fraction enhances
the thermal conductance, which significantly plays the role
in the local heat transfer rate. Due to high thermal con-
ductance of bricks nanomaterial, the local heat transfer rate
prevailed in comparison with platelets and cylinder nano-
material-based nanofluids. Figure 10(b) describes the local
heat transfer for increasing Ec. It is pertinent that due to high
dissipation, internal energy in the nanofluid rises due to
which the local thermal performance rate rises. +e local
heat transfer rate is slow for platelets’ nanomaterial-based

nanofluids, while larger amount of heat transfer is noticed
against bricks’ nanomaterial-based nanofluids. Similarly,
Figure 11 shows the increasing behavior of the local heat
transfer against Prandtl variations.

Table 3 presents the comparative analysis between the
present and existing science literature. From the compari-
son, it is revealed that the presented results are aligned with
existing results which proves the reliability of the imple-
mented technique and shows that the presented results are
acceptable.
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4. Conclusions

An analytical investigation of the Cu nanomaterial-based
nanofluid between parallel rotating sheets is conducted. +e
colloidal model is tackled analytically, and the results are
plotted against the pertinent flow parameters. From the
critical analysis of attained results, it is noticed that the
temperature of the nanofluid declines against higher volu-
metric fraction and abruptly increases for the Prandtl
number. +ese effects are prominent near the surface and
gradually become slow apart from the plates. Moreover, the
stronger viscous dissipation effects lead to the increment in
the temperature of the nanofluid. +e local rate of heat
transfer significantly rises for brick-shaped nanoparticles.
Finally, it is observed that the nanofluid is better for in-
dustrial uses due to its prominent heat transfer properties.
+e analysis is confined to the Newtonian host liquid;
otherwise, the model will be not valid. A comparative
analysis aligned the presented study with existing science
literature.
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[8] H. Ş. Aybar, M. Sharifpur, M. R. Azizian, M. Mehrabi, and
J. P. Meyer, “A review of thermal conductivity models for
nanofluids,” Heat Transfer Engineering, vol. 36, no. 13,
pp. 1085–1110, 2015.

[9] S. Göktepe, K. Ertürk, and H. Erturk, “Comparison of single
and two-phase models for nanofluid convection at the en-
trance of a uniformly heated tube,” International Journal of
Jermal Sciences, vol. 80, pp. 83–92, 2014.

[10] N. Hedayati and A. Ramiar, “Investigation of two phase
unsteady nanofluid flow and heat transfer between moving
parallel plates in the presence of magnetic field using GM,”
Nano Micro Scale Sci. Tech.vol. 4, no. 2, pp. 47–53, 2016.

[11] M. Sheikholeslami, D. D. Ganji, and H. R. Ashorynejad,
“Investigation of squeezing unsteady nanofluid flow using
ADM,” Powder Technology, vol. 239, pp. 259–265, 2013.

[12] M. Sheikholeslami, T. Hayat, and A. Alsaedi, “MHD free
convection of Al2O3-water nanofluid considering thermal
radiation: a numerical study,” International Journal of Heat
and Mass Transfer, vol. 96, pp. 513–524, 2016.

[13] M. Sheikholeslami and M. M. Rashidi, “Non-uniform mag-
netic field effect on nanofluid hydrothermal treatment con-
sidering Brownian motion and thermophoresis effects,”
Journal of the Brazilian Society of Mechanical Sciences and
Engineering, vol. 38, no. 4, pp. 1171–1184, 2016.

[14] M. Sheikholeslami and A. J. Chamkha, “Flow and convective
heat transfer of a ferro-nanofluid in a double-sided lid-driven
cavity with a wavy wall in the presence of a variable magnetic
field,” Numerical Heat Transfer, Part A: Applications, vol. 69,
no. 10, pp. 1186–1200, 2016.

[15] A. S. Dogonchi, K. Divsalar, and D. D. Ganji, “Flow and heat
transfer of MHD nanofluid between parallel plates in the
presence of thermal radiation,” Computer Methods in Applied
Mechanics and Engineering, vol. 310, pp. 58–76, 2016.

[16] M. Sheikholeslami and D. D. Ganji, “Nanofluid flow and heat
transfer between parallel plates considering Brownian motion
using DTM,” Computer Methods in Applied Mechanics and
Engineering, vol. 283, pp. 651–663, 2014.

[17] M. Sheikholeslami, M. M. Rashidi, D. M. Al Saad, F. Firouzi,
H. B. Rokni, and G. Domairry, “Steady nanofluid flow be-
tween parallel plates considering thermophoresis and
Brownian effects,” Journal of King Saud University-Science,
vol. 28, no. 4, pp. 380–389, 2016.

[18] S. T. Mohyud-Din, Z. A. Zaidi, U. Khan, and N. Ahmed, “On
heat and mass transfer analysis for the flow of a nanofluid
between rotating parallel plates,” Aerospace Science and
Technology, vol. 46, pp. 514–522, 2015.

[19] K. Singh, S. K. Rawat, andM. Kumar, “Heat and mass transfer
on squeezing unsteady MHD nanofluid flow between parallel
plates with slip velocity effect,” Journal of Nanoscience,
vol. 2016, Article ID 9708562, 11 pages, 2016.

[20] S. T. Mohyud-Din, Adnan, U. Khan et al., “+ermal transport
investigation in magneto-radiative GO-MoS2/H2O-C2H6O2
hybrid nanofluid subject to cattaneo-christov model,” Mol-
ecules, vol. 25, no. 11, Article ID 2592, 2020.

[21] S. Z. A. Adnan, S. Z. A. Zaidi, U. Khan et al., “Impacts of
freezing temperature based thermal conductivity on the heat
transfer gradient in nanofluids: applications for a curved riga
surface,” Molecules, vol. 25, no. 9, Article ID 2152, 2020.

[22] N. Ahmed, Adnan, U. Khan et al., “Radiative colloidal in-
vestigation for thermal transport by incorporating the impacts
of nanomaterial and molecular diameters (dNanoparticles,
dFluid): applications in multiple engineering systems,”
Molecules, vol. 25, no. 8, Article ID 1896, 2020.

[23] Z. Shah, S. Islam, H. Ayaz, and S. Khan, “Radiative heat and
mass transfer analysis of micropolar nanofluid flow of casson
fluid between two rotating parallel plates with effects of Hall
current,” Journal of Heat Transfer, vol. 141, no. 2, 2019.

[24] U. Khan, Adnan, N. Ahmed et al., “c-Nanofluid thermal
transport between parallel plates suspended by micro-canti-
lever sensor by incorporating the effective Prandtl model:
applications to biological and medical sciences,” Molecules,
vol. 25, no. 8, p. 1777, 2020.

[25] T. Gul, M. Z. Ullah, A. K. Alzahrani, and I. S. Amiri, “+ermal
performance of the graphene oxide nanofluids flow in an
upright channel through a permeable medium,” IEEE Access,
vol. 7, pp. 102345–102355, 2019.

[26] N. S. Akbar and A. W. Butt, “Ferromagnetic effects for
peristaltic flow of Cu-water nanofluid for different shapes of
nanosize particles,” Applied Nanoscience, vol. 6, no. 3,
pp. 379–385, 2016.

[27] R. Ellahi, M. Hassan, A. Zeeshan, and A. A. Khan, “+e shape
effects of nanoparticles suspended in HFE-7100 over wedge
with entropy generation and mixed convection,” Applied
Nanoscience, vol. 6, no. 5, pp. 641–651, 2016.

[28] W. Sikandar, U. Khan, N. Ahmed, and S. T. Mohyud-Din,
“Variation of parameters method with an auxiliary parameter
for initial value problems,” Ain Shams Engineering Journal,
vol. 9, no. 4, pp. 1959–1963, 2018.

Mathematical Problems in Engineering 11


