Research Article

Closed-Form Solution of a Rational Difference Equation

Tarek F. Ibrahim,1 Abdul Qadeer Khan,2 Burak Oğul,3 and Dağistan Şimşek4

1Department of Mathematics, Faculty of Sciences, Mansoura University, Mansoura, Egypt
2Department of Mathematics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
3Department of Management Information Systems, School of Applied Science, Istanbul Aydin University, Istanbul, Turkey
4Department of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey

Correspondence should be addressed to Abdul Qadeer Khan; abdulqadeerkhan1@gmail.com

Received 22 August 2021; Accepted 8 November 2021; Published 29 November 2021

Academic Editor: M Syed Ali

Copyright © 2021 Tarek F. Ibrahim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we study the solution of the difference equation

$$\Omega_{m+1} = \frac{\Omega_{m-1}}{1 + a\Omega_{m+1}^2}, \quad m = 0, 1, \ldots,$$

(1)

respectively. DeVault et al. [4] examined

$$\Omega_{m+1} = \frac{A}{\Omega_m} + \frac{1}{\Omega_{m-2}}, \quad m = 0, 1, \ldots$$

(2)

Elsayed [5] dealt with

$$\Omega_{m+1} = a + \frac{b\Omega_{m-1} + c\Omega_{m-2}}{d\Omega_{m-2} + e\Omega_{m-2}}, \quad m = 0, 1, \ldots$$

(3)

respectively. For some more results concerning difference equations, we refer the reader to [10–21].

In this work, we deal with the following nonlinear difference equation:

$$\Omega_{m+1} = \frac{\Omega_{m-3}}{1 + \prod_{t=0}^{\infty} \Omega_{m-(qt+1)}}, \quad m = 0, 1, \ldots$$

(5)

where $$\Omega_{m-(qt+6)}, \Omega_{m-(qt+5)}, \ldots, \Omega_{m-1}, \Omega_0 \in (0, \infty)$$ is investigated.
2. Main Results

Let \(\Omega \) be the unique equilibrium of equation (5); then,
\[
\tilde{\Omega} = \frac{\Omega}{1 + \Omega \cdot \Omega \cdot \Omega \cdot \Omega \cdot \Omega} \Rightarrow \Omega + \tilde{\Omega} = \tilde{\Omega} = 0 \Rightarrow \Omega = 0,
\]
so \(\Omega = 0 \) is obtained. For every \(q \geq 0 \) and \(m > q \), notation \(i = \frac{q}{m} \) means \(i = q, q + 1, \ldots, m \).

Theorem 1. For (5), the following statements are true:

(a) The sequences \(\{ \Omega(t) \} \) are decreased, and \(a_1, a_2, \ldots, a_{7q+3} \geq 0 \) exists such that
\[
\lim_{n \to \infty} \Omega(7q+3)n-(7q+6)+t = a_{1+t}, \quad t = 0, 7q+6.
\]

(b) In view of equation (5),
\[
\Omega(7q+3)n+(7q+6) = \frac{\Omega(7q+3)n+(7q+6)}{1 + \sum_{i=0}^{5} \Omega(7q+3)n-(q+i)|t|}.
\]

Then,
\[
\lim_{n \to \infty} \Omega(7q+3)n+(7q+6) = \lim_{n \to \infty} \frac{\Omega(7q+3)n+(7q+6)}{1 + \sum_{i=0}^{5} \Omega(7q+3)n-(q+i)|t|}.
\]

(c) If there exists \(n_0 \in \mathbb{N} \) such that
\[
\sum_{t=0}^{5} \Omega(n-t)=\Omega_{n+1} \leq \Omega_{n+1} \leq \sum_{t=0}^{5} \Omega(n-t)=\Omega_{n+1}
\]
for all \(n \geq n_0 \), then
\[
\lim_{n \to \infty} \Omega_{n}=0.
\]

(d) We can generate the following formulas:
\[
\Omega(7q+3)n+(7q+6) = \frac{\Omega(7q+3)n+(7q+6)}{1 + \sum_{i=0}^{5} \Omega(7q+3)n-(q+i)|t|}.
\]

(e) If \(\Omega(7q+3)n+(7q+6)+1 |t| = a_{1+t} \neq 0 \) then \(\Omega(7q+3)n+(7q+6)+1 \).

If \(\Omega(7q+3)n+(7q+6)+1 \) then \(\Omega(7q+3)n+(7q+6)+1 \) as \(n \to \infty \).

\[
\Omega_{n+1} \leq \Omega_{n} \leq \Omega_{n+1}
\]
for all \(n \geq n_0 \), then
\[
\lim_{n \to \infty} \Omega_{n}=0.
\]

Proof

(a) Firstly, for all \(n \in \mathbb{N} \), from (5), one gets
\[
\lim_{n \to \infty} \Omega(7q+3)n+(7q+6)+t = a_{1+t}, \quad t = 0, 7q+6.
\]

(b) In view of equation (5),
\[
\Omega(7q+3)n+(q+i)|t| = \frac{\Omega(7q+3)n+(q+i)|t|}{1 + \sum_{i=0}^{5} \Omega(7q+3)n-(q+i)|t|}.
\]

Then,
\[
\lim_{n \to \infty} \Omega(7q+3)n+(q+i)|t| = \lim_{n \to \infty} \frac{\Omega(7q+3)n+(q+i)|t|}{1 + \sum_{i=0}^{5} \Omega(7q+3)n-(q+i)|t|}.
\]

(c) If there exists \(n_0 \in \mathbb{N} \) such that
\[
\sum_{t=0}^{5} \Omega(n-t)=\Omega_{n+1} \leq \Omega_{n+1} \leq \sum_{t=0}^{5} \Omega(n-t)=\Omega_{n+1}
\]
for all \(n \geq n_0 \), then
\[
\lim_{n \to \infty} \Omega_{n}=0.
\]

(d) Subtracting \(\Omega_{n-(7q+6)} \) from both sides in (5), we have
\[
\Omega_{n+1} - \Omega_{n-(7q+6)} = \frac{1}{1 + \sum_{i=0}^{5} \Omega_{n-(q+i)|t|}}.
\]
and the following formula, for \(n \geq q+1 \),
\[
\Omega(n-t)=\Omega_{n-(7q+6)} \leq \Omega_{n-(7q+6)} \leq \Omega(n-t).
\]

From (20), we get
\[
\Omega_{n+1} - \Omega_{n-(6q+6)} = \frac{1}{1 + \sum_{i=0}^{5} \Omega_{n-(q+i)|t|}}.
\]
\[\Omega_{(7q+7)n+1} - \Omega_{-(7q+6)} = (\Omega_1 - \Omega_{-(7q+6)}) \sum_{h=0}^{n} \prod_{k=1}^{7h} \frac{1}{\Omega_{(q+1)(-q+1)t-q} + 1}. \]

\[
\overbrace{\cdots}^{\theta}
\]

So,

\[\Omega_{(7q+7)n+q+1} - \Omega_{-(6q+6)} = (\Omega_{q+1} - \Omega_{-(6q+6)}) \sum_{h=0}^{n} \prod_{k=1}^{7h} \frac{1}{\Omega_{(q+1)(-q+1)t-q} + 1}. \]

\[
\overbrace{\cdots}^{\theta}
\]

Also,

\[\Omega_{(7q+7)n+2q+2} - \Omega_{-(5q+5)} = (\Omega_{q+1} - \Omega_{-(5q+5)}) \sum_{h=0}^{n} \prod_{k=1}^{7h+1} \frac{1}{\Omega_{(q+1)(-q+1)t-q} + 1}. \]

\[
\overbrace{\cdots}^{\theta}
\]

\[\Omega_{(7q+7)n+2q+3} - \Omega_{-(5q+4)} = (\Omega_{q+1} - \Omega_{-(5q+4)}) \sum_{h=0}^{n} \prod_{k=1}^{7h+2} \frac{1}{\Omega_{(q+1)(-q+1)t-q} + 1}. \]

\[
\overbrace{\cdots}^{\theta}
\]

\[\Omega_{(7q+7)n+3q+3} - \Omega_{-(4q+4)} = (\Omega_{q+1} - \Omega_{-(4q+4)}) \sum_{h=0}^{n} \prod_{k=1}^{7h+2} \frac{1}{\Omega_{(q+1)(-q+1)t-q} + 1}. \]
Moreover,

\[
\Omega_{(7q+7)n+3q+4} - \Omega_{-(4q+3)} = \left(\Omega_1 - \Omega_{-(7q+6)}\right) \sum_{h=0}^{n} \prod_{k=1}^{\frac{7h+3}{5}} \frac{1}{\Omega_{(q+1)k-(q+1)t-q} + 1}
\]

(24)

On the contrary,

\[
\Omega_{(7q+7)n+4q+4} - \Omega_{-(3q+3)} = \left(\Omega_{q+1} - \Omega_{-(6q+6)}\right) \sum_{h=0}^{n} \prod_{k=1}^{\frac{7h+4}{5}} \frac{1}{\Omega_{(q+1)k-(q+1)t-q} + 1}
\]

(25)

Also,

\[
\Omega_{(7q+7)n+5q+5} - \Omega_{-(2q+2)} = \left(\Omega_{q+1} - \Omega_{-(6q+6)}\right) \sum_{h=0}^{n} \prod_{k=1}^{\frac{7h+5}{5}} \frac{1}{\Omega_{(q+1)k-(q+1)t-q} + 1}
\]

(26)
Moreover,

\[
\Omega_{(7q+7)m+6q+7} - \Omega_{-r} = \left(\Omega_{1} - \Omega_{-(7q+6)} \right) \sum_{h=0}^{n} \prod_{k=1}^{7h+6} \frac{1}{\prod_{t=0}^{r} \Omega_{(q+1)k-(q+1)r-q} + 1}
\]

(27)

Now, we get the above formulas:

\[
\Omega_{(7q+7)m+7q+7} - \Omega_{0} = \left(\Omega_{q+1} - \Omega_{-(q+6)} \right) \sum_{h=0}^{n} \prod_{k=1}^{7h+6} \frac{1}{\prod_{t=0}^{r} \Omega_{(q+1)k-(q+1)r + 1}}
\]

where \(r = 0, 6 \) and \(s = 0, q \) hold.

(e) Suppose that \(a_1 = a_{q+2} = a_{2q+3} = a_{3q+4} = a_{4q+5} = a_{5q+6} = a_{6q+7} = 0 \). By (d), we produce the following formulas:

\[
\lim_{n \to \infty} \Omega_{(7q+7)m+1} = \lim_{n \to \infty} \Omega_{-(7q+6)} \left(1 - \frac{\prod_{t=0}^{5} \Omega_{-(q+1)t-q}}{\prod_{t=0}^{5} \Omega_{(q+1)t-(q+1)t-q} + 1} \right)
\]

\[
\times \sum_{h=0}^{\infty} \prod_{k=1}^{7h} \frac{1}{\prod_{t=0}^{r} \Omega_{(q+1)k-(q+1)t-q} + 1}
\]

(29)

\[
a_1 = \Omega_{-(7q+6)} \left(1 - \frac{\prod_{t=0}^{5} \Omega_{-(q+1)t-q} \Omega_{-11+q}}{\prod_{t=0}^{5} \Omega_{(q+1)t-(q+1)t-q} + 1} \right) \sum_{h=0}^{\infty} \prod_{k=1}^{7h} \frac{1}{\prod_{t=0}^{r} \Omega_{(q+1)k-(q+1)t-q} + 1}
\]

\[
a_1 = \frac{\prod_{t=0}^{5} \Omega_{-(q+1)t-q} + 1}{\prod_{t=0}^{5} \Omega_{(q+1)t-(q+1)t-q} + 1} = \sum_{h=0}^{\infty} \prod_{k=1}^{7h} \frac{1}{\prod_{t=0}^{r} \Omega_{(q+1)k-(q+1)t-q} + 1}
\]
Similarly,

\[
\lim_{n \to \infty} \Omega_{(7q+7)n+q+2} = \lim_{n \to \infty} \Omega_{-(6q+5)} \left(1 - \frac{\prod_{r=0}^{6} (\Omega_{-(q+1)r-q}/\Omega_{-(6q+5)})}{\prod_{r=0}^{5} \Omega_{-(q+1)r-q} + 1} \right) \\
\times \sum_{h=0}^{n} \prod_{k=1}^{7h+1} \frac{1}{\prod_{r=0}^{5} \Omega_{-(q+1)k-(q+1)r-q} + 1},
\]

\[
a_{q+2} = \Omega_{-(6q+5)} \left(1 - \frac{\prod_{r=0}^{6} (\Omega_{-(q+1)r-q}/\Omega_{-(6q+5)})}{\prod_{r=0}^{5} \Omega_{-(q+1)r-q} + 1} \right) \\
\times \sum_{i=0}^{\infty} \prod_{k=1}^{7h+1} \frac{1}{\prod_{r=0}^{5} \Omega_{-(q+1)k-(q+1)r-q} + 1},
\]

\[
a_{q+2} = 0 \Rightarrow \prod_{r=0}^{6} \Omega_{-(q+1)r-q} + 1 = \sum_{h=0}^{\infty} \prod_{k=1}^{7h+1} \frac{1}{\prod_{r=0}^{5} \Omega_{(q+1)k-(q+1)r-q} + 1}
\]

Similarly,

\[
\lim_{n \to \infty} \Omega_{(7q+7)n+2q+3} = \lim_{n \to \infty} \Omega_{-(5q+4)} \left(1 - \frac{\prod_{r=0}^{6} (\Omega_{-(q+1)r-q}/\Omega_{-(5q+4)})}{\prod_{r=0}^{5} \Omega_{-(q+1)r-q} + 1} \right) \\
\times \sum_{h=0}^{n} \prod_{k=1}^{7h+2} \frac{1}{\prod_{r=0}^{5} \Omega_{-(q+1)k-(q+1)r-q} + 1},
\]

\[
a_{2q+3} = \Omega_{-(5q+4)} \left(1 - \frac{\prod_{r=0}^{6} (\Omega_{-(q+1)r-q}/\Omega_{-(5q+4)})}{\prod_{r=0}^{5} \Omega_{-(q+1)r-q} + 1} \right) \\
\times \sum_{h=0}^{\infty} \prod_{k=1}^{7h+2} \frac{1}{\prod_{r=0}^{5} \Omega_{-(q+1)k-(q+1)r-q} + 1},
\]

\[
a_{2q+3} = 0 \Rightarrow \prod_{r=0}^{6} \Omega_{-(q+1)r-q} + 1 = \sum_{h=0}^{\infty} \prod_{k=1}^{7h+2} \frac{1}{\prod_{r=0}^{5} \Omega_{(q+1)k-(q+1)r-q} + 1}
\]
Similarly,

\[
\lim_{n \to \infty} \Omega_{(7q+7)\tau + 3q-4} = \lim_{n \to \infty} \Omega_{-(4q+3)} \left(1 - \frac{\prod_{t=0}^{6}(\Omega_{-(q+1)\tau-q}/\Omega_{-(4q+3)})}{\prod_{t=0}^{5} \Omega_{-(q+1)\tau-q} + 1} \right)
\]

\[
\times \sum_{h=0}^{n} \prod_{k=1}^{7h+3} \frac{1}{\Omega_{-(q+1)k-(q+1)\tau-q} + 1}
\]

\[
da_{3q+4} = \Omega_{-(4q+3)} \left(1 - \frac{\prod_{t=0}^{6}(\Omega_{-(q+1)\tau-q}/\Omega_{-(4q+3)})}{\prod_{t=0}^{5} \Omega_{-(q+1)\tau-q} + 1} \right)
\]

\[
\times \sum_{h=0}^{n} \prod_{k=1}^{7h+3} \frac{1}{\Omega_{-(q+1)k-(q+1)\tau-q} + 1}
\]

\[
da_{3q+4} = 0 \Rightarrow \frac{\prod_{t=0}^{6}(\Omega_{-(q+1)\tau-q}/\Omega_{-(4q+3)})}{\prod_{t=0}^{5} \Omega_{-(q+1)\tau-q} + 1} = \sum_{h=0}^{n} \prod_{k=1}^{7h+3} \frac{1}{\Omega_{-(q+1)k-(q+1)\tau-q} + 1}
\]

Similarly,

\[
\lim_{n \to \infty} \Omega_{(7q+7)\tau + 4q-5} = \lim_{n \to \infty} \Omega_{-(3q+2)} \left(1 - \frac{\prod_{t=0}^{6}(\Omega_{-(q+1)\tau-q}/\Omega_{-(3q+2)})}{\prod_{t=0}^{3} \Omega_{-(q+1)\tau-q} + 1} \right)
\]

\[
\times \sum_{h=0}^{n} \prod_{k=1}^{7h+4} \frac{1}{\Omega_{-(q+1)k-(q+1)\tau-q} + 1}
\]

\[
da_{4q+5} = \Omega_{-(3q+2)} \left(1 - \frac{\prod_{t=0}^{6}(\Omega_{-(q+1)\tau-q}/\Omega_{-(3q+2)})}{\prod_{t=0}^{3} \Omega_{-(q+1)\tau-q} + 1} \right)
\]

\[
\times \sum_{h=0}^{n} \prod_{k=1}^{7h+4} \frac{1}{\Omega_{-(q+1)k-(q+1)\tau-q} + 1}
\]

\[
da_{4q+5} = 0 \Rightarrow \frac{\prod_{t=0}^{6}(\Omega_{-(q+1)\tau-q}/\Omega_{-(3q+2)})}{\prod_{t=0}^{3} \Omega_{-(q+1)\tau-q} + 1} = \sum_{h=0}^{n} \prod_{k=1}^{7h+4} \frac{1}{\Omega_{-(q+1)k-(q+1)\tau-q} + 1}
\]
Similarly,

$$\lim_{n \to \infty} \Omega_{(7q+7)n+5q+6} = \lim_{n \to \infty} \Omega_{-(2q+1)} \left(1 - \frac{\prod_{t=0}^{6} \Omega_{-(q+1)t-q}/\Omega_{-(2q+1)}}{\prod_{t=0}^{5} \Omega_{-(q+1)t-q} + 1} \right) \times \sum_{h=0}^{n} \prod_{k=1}^{7h+5} \frac{1}{\prod_{r=0}^{5} \Omega_{-(q+1)r-q} + 1},$$

$$a_{5q+6} = \Omega_{-(2q+1)} \left(1 - \frac{\prod_{t=0}^{6} \Omega_{-(q+1)t-q}/\Omega_{-(2q+1)}}{\prod_{t=0}^{5} \Omega_{-(q+1)t-q} + 1} \right) \times \sum_{h=0}^{n} \prod_{k=1}^{7h+5} \frac{1}{\prod_{r=0}^{5} \Omega_{-(q+1)r-q} + 1},$$

(34)

Similarly,

$$\lim_{n \to \infty} \Omega_{(7q+7)n+6q+7} = \lim_{n \to \infty} \Omega_{-(7q+7)n+6q+7} \left(1 - \frac{\prod_{t=0}^{6} \Omega_{-(q+1)t-q}/\Omega_{-(2q+1)}}{\prod_{t=0}^{5} \Omega_{-(q+1)t-q} + 1} \right) \times \sum_{h=0}^{n} \prod_{k=1}^{7h+6} \frac{1}{\prod_{r=0}^{5} \Omega_{-(q+1)r-q} + 1},$$

$$a_{6q+7} = \Omega_{-(7q+7)n+6q+7} \left(1 - \frac{\prod_{t=0}^{6} \Omega_{-(q+1)t-q}/\Omega_{-(2q+1)}}{\prod_{t=0}^{5} \Omega_{-(q+1)t-q} + 1} \right) \times \sum_{h=0}^{n} \prod_{k=1}^{7h+6} \frac{1}{\prod_{r=0}^{5} \Omega_{-(q+1)r-q} + 1},$$

(35)

$$a_{6q+7} = 0 \Rightarrow \frac{\prod_{t=0}^{5} \Omega_{-(q+1)t-q}}{\prod_{t=0}^{5} \Omega_{-(q+1)t-q} + 1} = \sum_{h=0}^{n} \prod_{k=1}^{7h+6} \frac{1}{\prod_{r=0}^{5} \Omega_{-(q+1)r-q} + 1},$$

From equations (29) and (30),

$$\frac{\prod_{t=0}^{5} \Omega_{-(q+1)t-q} + 1}{\prod_{t=0}^{5} \Omega_{-(q+1)t-q}} = \sum_{h=0}^{n} \prod_{k=1}^{7h+6} \frac{1}{\prod_{r=0}^{5} \Omega_{-(q+1)r-q} + 1} >$$

(36)

$$\frac{\prod_{t=0}^{5} \Omega_{-(q+1)t-q} + 1}{\prod_{t=0}^{5} \Omega_{-(q+1)t-q} + 1} = \sum_{h=0}^{n} \prod_{k=1}^{7h+6} \frac{1}{\prod_{r=0}^{5} \Omega_{-(q+1)r-q} + 1}$$
Thus, $\Omega_{-(7q+6)} > \Omega_{-(6q+5)}$.

$$\frac{\prod_{f=0}^{5} \Omega_{-(q+1)r-q}}{\prod_{f=0}^{6} \Omega_{-(q+1)r-q}^2} = \sum_{h=0}^{\infty} \prod_{k=1}^{7k+1} \frac{1}{\prod_{r=0}^{7r+1} \Omega_{-(q+1)r-q}^k r-q + 1}$$

(37)

Thus, $\Omega_{-(6q+5)} > \Omega_{-(5q+4)}$.

$$\frac{\prod_{f=0}^{5} \Omega_{-(q+1)r-q}}{\prod_{f=0}^{6} \Omega_{-(q+1)r-q}^3} = \sum_{h=0}^{\infty} \prod_{k=1}^{7h+2} \frac{1}{\prod_{r=0}^{7r+2} \Omega_{-(q+1)r-q}^k r-q + 1}$$

(38)

Thus, $\Omega_{-(5q+4)} > \Omega_{-(4q+3)}$.

$$\frac{\prod_{f=0}^{5} \Omega_{-(q+1)r-q}}{\prod_{f=0}^{6} \Omega_{-(q+1)r-q}^4} = \sum_{h=0}^{\infty} \prod_{k=1}^{7h+3} \frac{1}{\prod_{r=0}^{7r+3} \Omega_{-(q+1)r-q}^k r-q + 1}$$

(39)

Thus, $\Omega_{-(4q+3)} > \Omega_{-(3q+2)}$.

$$\frac{\prod_{f=0}^{5} \Omega_{-(q+1)r-q}}{\prod_{f=0}^{6} \Omega_{-(q+1)r-q}^5} = \sum_{h=0}^{\infty} \prod_{k=1}^{7h+4} \frac{1}{\prod_{r=0}^{7r+4} \Omega_{-(q+1)r-q}^k r-q + 1}$$

(40)

Thus, $\Omega_{-(3q+2)} > \Omega_{-(2q+1)}$.

$$\frac{\prod_{f=0}^{5} \Omega_{-(q+1)r-q}}{\prod_{f=0}^{6} \Omega_{-(q+1)r-q}^6} = \sum_{h=0}^{\infty} \prod_{k=1}^{7h+5} \frac{1}{\prod_{r=0}^{7r+5} \Omega_{-(q+1)r-q}^k r-q + 1}$$

(41)
Figure 1: Dynamics of equation (5) with initial conditions in Example 1.

Figure 2: Dynamics of equation (5) with initial conditions in Example 2.
Thus, $\Omega_{-(2q+1)} > \Omega_{-(q)}$.

\[\Omega_{-(7q+6)} > \Omega_{-(6q+5)} > \Omega_{-(5q+4)} > \Omega_{-(4q+3)} > \Omega_{-(3q+2)} > \Omega_{-(2q+1)} > \Omega_{-(q)}\] \hspace{1cm} (42)

3. Examples

In this section, we consider some numerical examples.

Example 1. Assume that, for $q = 1$, we get

$$\Omega_{m+1} = \frac{(\Omega_{-13}/(1 + \Omega_{-2} \Omega_{-3} \Omega_{-4} \Omega_{-5} \Omega_{-6} \Omega_{-7} \Omega_{-8} \Omega_{-9} \Omega_{-10}))}{\Omega_{-13} = 10, \Omega_{-12} = 9, \Omega_{-11} = 2, \Omega_{-10} = 28, \Omega_{-9} = 27, \Omega_{-8} = 6.5, \Omega_{-7} = 5.5, \Omega_{-6} = 24, \Omega_{-5} = 23, \Omega_{-4} = 22, \Omega_{-3} = 21, \Omega_{-2} = 5, \Omega_{-1} = 4, \Omega_{0} = 3.}$$

Then, we have the graph in Figure 1.

Example 2. If we select the initial conditions as follows,

$$\Omega_{-13} = 29, \Omega_{-12} = 28, \Omega_{-11} = 27, \Omega_{-10} = 26, \Omega_{-9} = 25, \Omega_{-8} = 24, \Omega_{-7} = 23, \Omega_{-6} = 22, \Omega_{-5} = 21, \Omega_{-4} = 20, \Omega_{-3} = 19, \Omega_{-2} = 18, \Omega_{-1} = 17, \Omega_{0} = 16,$$

then we have the graph in Figure 2.

Data Availability

All the data utilized in this article have been included, and the sources from where they were adopted are cited accordingly.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] C. Cinar, “On the positive solutions of the difference equation $\Omega_{m+1} = (\Omega_{m-1}/(1 + \alpha \Omega_{m} \Omega_{m-1}))$,” *International Journal of Applied Mathematics and Computer Science*, vol. 158, pp. 890–892, 2004.

[2] C. Cinar, “On the solutions of the difference equation $\Omega_{m+1} = (\Omega_{m-1}/(1 + \Omega_{m} \Omega_{m-1}))$,” *Applied Mathematics and Computation*, vol. 158, no. 3, pp. 793–797, 2004.

[3] C. Cinar, “On the positive solutions of the difference equation $\Omega_{m+1} = (\alpha \Omega_{m-1}/(1 + b \Omega_{m} \Omega_{m-1}))$,” *Applied Mathematics and Computation*, vol. 156, no. 2, pp. 587–590, 2004.

[9] D. Simsek and M. Eroz, “Solutions of the rational difference equations $\Omega_{m+1} = (\Omega_{m-1}/(1 + \Omega_{m} \Omega_{m-1} \Omega_{m-2}))$,” *Manas Journal of Engineering*, vol. 4, no. 1, pp. 12–20, 2016.

[17] R. Karatas, C. Cinar, and D. Simsek, "On positive solutions of the difference equation \(\Omega_{m+1} = (\Omega_{m} - \Omega_{m-1})/(1 + \Omega_{m}, \Omega_{m-1})\)," *International Journal of Contemporary Mathematical Sciences*, vol. 10, no. 1, pp. 495–500, 2006.

[19] M. R. S. Kulenovic, G. Ladas, and W. S. Sizer, "On the recursive sequence \((a\Omega_{m} + b\Omega_{m-1})/(c\Omega_{m} + d\Omega_{m-1})\)," *Research in the Mathematical Sciences*, vol. 2, no. 5, pp. 1–16, 1998.
