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*is paper presents a mathematical model for the thin film roll coating process of an incompressible Williamson material, passing
through a closed passage between a rotating roll and a web. In light of lubrication approximation theory, the flow equations are
nondimensionalized. *e regular perturbation approach is used to provide solutions for the velocity profile, pressure gradient,
flow rate per unit width, and shear stress at the roll surface. Important engineering quantities such as coating thickness, maximum
pressure, separation point, roll/sheet separating force, and roll-transmitted power to the fluid are also obtained. *e effects of
several factors are graphically projected. *e study shows that the material factors that are involved determine the operating
variables. Coating thickness and separation point are controlled by Weissenberg’s number, therefore acting as a controlling
parameter for the rate of flow, thickness in coating, power contribution, pressure, roll separating force, and separation point. In
comparison to the existing results in the literature, the current results are broader and zero-order results are more accurate.

1. Introduction

Deposition of fluid to the substrate under consideration is
performed through roll coating in an industrial process. *e
phenomenon had gained a healthy reputation during the
past few decades. As an example, the paper coating, deco-
ration, or protection of fabrics or metal with such materials,
films, coated products and magnetic recording, thin uniform
liquid coating are the examples of coating in industry. To
carry out these operations, a variety of apparatuses are used,
in which the most common are roll coaters. *e flow of non-
Newtonian materials has several industrial and physiological
applications in many coatings processes. Moreover, such
flows have caused various challenges for mathematical
scientists and model developers in the development of
procedures suitable for the calculation of flows.*is is due to
the complexity and higher-order nature of leading flow
expressions of non-Newtonian fluids than the Navier–Stokes
equations.

Due to the complex nature of flows, numerous leading
expressions for non-Newtonian flows are suggested in the
literature. Abegunrin et al. [1] analyzed the boundary layer
flow of two non-Newtonian fluids over an upper horizontal
surface of a paraboloid of revolution. Abegunrin and Ani-
masaun [2] studied the motion of non-Newtonian Wil-
liamson fluid over an upper horizontal surface of a
paraboloid of revolution due to partial slip and buoyancy.
Shah et al. [3] signified the water base nanoparticle’s radius,
heat flux due to concentration gradient, and mass flux due to
the temperature gradient. Animasaun and Omowaye [4]
studied the upper-convected Maxwell fluid flow with vari-
able thermophysical properties over a melting surface sit-
uated in a hot environment subject to thermal stratification.
Stability analysis of convection non-Newtonian vertical fluid
layer in the presence of gold nanoparticles is performed by
Mekheimer et al. [5]. Zaher et al. [6] studied the residual
time of sinusoidal metachronal ciliary flow of non-New-
tonian fluid through ciliated walls. Koumy et al. [7]
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investigated the hall and porous boundaries effects on
peristaltic transport through a porous medium of a Maxwell
model. Abdelsalam et al. [8] theoretically investigated the
physical traits of electromagnetohydrodynamics (EMHD) of
the bloodstream in the presence of electroosmotic forces via
arteries having both aneurysm and stenosis for a hybrid
fractional second-grade nanofluid. Raza et al. [9] investi-
gated the thermal transport of radiative Williamson fluid
over the stretchable curved surface. Pseudoplastic fluids are
considered the most common in non-Newtonian fluids.
Studies of pseudoplastic fluids have gained excessive at-
tention for their utmost utility in industrial processes like
extruding of polymer films, melts, and solutions with high
molecular weight polymers and films coated with emulsion
such as photographic films. Due to the pseudoplastic nature
of Williamson fluid [10–12], its model is being focused on.
However, less consideration has been paid to theWilliamson
fluid model, which describes the properties of pseudoplastic
fluids. Nadeem and Akbar [13] debated the peristaltic flow of
a Williamson fluid. Cramer and Marchello [14] demon-
strated with experimental evidence that this model is better
suited to polymer solutions and particle suspensions than
other models.

For better understanding the procedure and to foresee
the complications faced during the development, many
hypothetical surveys have been undertaken on the flows
under discussion. Model for flow conduct inside toner of
the printing press by considering the concept of lubri-
cation was developed by Taylor and Zeltlemoyer [15]. *e
values for force and pressure distribution were calculated
by them. Hintermaier and White [16] developed the
model for the water flow between two rolls by using lu-
brication theory and observed the results compatible with
their conclusions carried out experimentally. Moreover,
the flow theory of roll coating of Newtonian Liquid, as-
suming the traditional lubrication concepts and some
general physical concepts was developed by Greener and
Middleman [17]. *eir model was modified by Benkreira
et al. [18] to a general situation of two rollers of equal or
unequalized rotating at the same speed or uneven one,
consequently establishing a model related to the general
situation. *eir conclusions were found close to experi-
mental results. Numerical outcomes on the mentioned
problem over a moving flat subs rate were provided by
Sofou [19] undertaking the lubrication approximation
theory. *ey manipulated the Herschel–Bulkley model of
viscoplasticity, thereby reducing it to the Newtonian
models under suitable modifications, Bingham, and
power-law. Recently, Zahid et al. [20, 21] undertook the
same situation with the viscoelastic fluid being incom-
pressible in which the roll, as well as web, was assumed to
move with the same rates. To simplify expressions for
motion, they performed the above-mentioned theory.
Using the regular perturbation method, solutions for
main flow, pressure gradient, flow rate per unit width, and
shear stress at the roll surface are computed.

To the best of our knowledge, no study has been
highlighted on the said fluid under roll coating in the
mentioned works. *e focus of the present study is to

establish the flow technique for the model under consid-
eration and to examine the influence of fluid physical
properties on the coating process. Among physical prop-
erties, the Weissenberg number (We) is used in the study of
viscoelastic flows and it usually gives the relation of stress
relaxation time of the fluid and a specific process time. Some
interesting studies regarding Weissenberg numbers are
given in [22, 23].*e paper has been ordered as below. In the
upcoming section, the flow equations and the construction
of the problem are defined.*e succeeding part discusses the
exact solution of the flow parameters. Lastly, outcomes,
discussion, and deductions are offered.

2. Mathematical Formulation

Consider a steady, laminar flow of an incompressible
Williamson fluid between a flat plate and cylindrical roll
of radius R as represented in Figure 1. *e plate moves
with a constant velocity U in a positive x-direction, as the
roll rotates counterclockwise with angular velocity ω. *e
plate and cylinder have a gap at the nip, H0. *e polymer
first bites the plane at the location x � − xb, as shown in
Figure 2. *e expressions leading the flow of a said fluid
are as follows:

∇ · V � 0, (1)

ρ
dV
dt

� − ∇p + ∇ · τ, (2)

where V is the velocity, ρ is the density, p is the pressure,
d/dt(·) � z/zt(·) + V · ∇(·) is the material derivative, and τ
is the extra stress tensor, for a Williamson fluid [24] defined
as

τ � η∞ + η0 − η∞( (1 − Γc)
− 1

 A1, (3)

where η∞ and η0 are correspondingly the infinite and zero
shear rate viscosities, respectively, A1 � ∇V + (∇V)t is the
first Rivlin–Ericksen tensor, Γ is the time constant, and the
shear rate c [5] is defined as

c �

�����������
1
2


i

cij 
j

cji



�

���
1
2
π



, (4)

where π � trace(A2
1) is the second invariant stress tensor.

Constitutive equation (3) takes the following form, when we
consider the case for which η∞ � 0 and Γc< 1:

τ � η0(1 + Γc)A1. (5)

*e above model reduces to Newtonian when Γ � 0.
*e curved channel length molded by the plane and the
roll is much larger than the parting at the nip, that is,
H0≪R, thereby causing the flow to become two-di-
mensional. *e velocity profile consequently takes the
following form:

V � u11(x, y), v11(x, y) . (6)

In view of equation (6), the flow equations (1) and (2) in
components form can be written as
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zσyy

zy
, (9)

where σxx, τyx, τxy, and σyy are the stress components which
can be written from equation (5) as

σxx � 2η0(1 + Γc)
zu11

zx
,

τxy � τyx � 2η0(1 + Γc)
zu11

zx
+

zv11

zy
 ,

σyy � 2η0(1 + Γc)
zu11

zy
.

(10)

We start with the LAT assumptions that the most
significant dynamic phenomena happen in the region
where the minimum gap exists, that is, the nip region. In
that region, and extending to either side (i.e., the ±x
direction) by a distance of the order of x0, the roll surfaces
are nearly parallel. *en, it is reasonable to assume that
v11≪ u11 and (z/zx)≪ (z/zy). In order to obtain the
characteristic scale for the velocity and pressure, we

conduct in brevity an order of magnitude analysis, and
we can identify the following scales for x, y, and
u11, x ∼ Lc, y ∼ H0, u11 ∼ U, u11 ∼ U. *en, from equation
(1), we obtain (vc/U) ∼ (H0/Lc)≪ 1, which shows that the
order of magnitude of a transversal velocity vc is smaller
than the longitudinal velocity, where the longitudinal
characteristic length is given by Lc �

�����
2RH0


. Based on

the above discussion, we introduce the following di-
mensionless quantities:

x �
x
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y
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,
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U
,

ϑ1 �

���
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R



,

(11)

Figure 1: Physical representation of forward roll coating.
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Figure 2: Geometry of the studied physical model.
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into equations (7)–(10), and we get the following nondi-
mensional equations (after dropping (− ) for simplicity):

zu

zx
+
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zy
� 0, (12)

Reϑ1 u
zu
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+ v
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zy
  � −
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, (13)
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zσyy
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+ ϑ21
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, (14)

σxx � 2ϑ1[1 + We c]
zu

zx
,

τxy � τyx � [1 + We c]
zu

zy
+ ϑ21
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zx
 ,

σyy � 2ϑ1[1 + We c]
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(15)

where Re � ρUH0/η0,We � ΓU/H0, and c � [2ϑ21(zu/zx)2+

((zu/zy) + ϑ21(zv/zx))2 + 2ϑ21(zv/zy)2](1/2).
Neglecting the terms having ϑ1 being small quantity as ϑ1

is a square root of the ratio of H0 to R, we get

z

zy

zu

zy
1 + We

zu

zy
   �
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, (16)

zp

zy
� 0. (17)

It is obvious from equation (17) that p is not a function of
y, so it is the function of x only; that is, p � p(x). *us,
equation (16) becomes

dp

dx
�

z
2
u

zy
2 + We

z

zy

zu

zy
 

2
⎡⎣ ⎤⎦. (18)

*e corresponding nondimensional boundary condi-
tions are

u � 1, aty � 0,

u � 1, aty � h(x),
, (19)

where h(x) � 1 + (x2/2) represents the dimensionless gap
between roll and the web. Along with equation (18), the
following nondimensional balanced mass equation is
needed:

λ � 
h(x)

0
u(y)dy, (20)

where λ � (Q/UWH0), Q is the dimensionless flow rate per
unit width.

3. Solution of the Problem

Most of the mathematical problems do not possess ex-
plicit solutions, so it is very important to know methods
for approximating the solution of such type of problems.
Asymptotic analysis like the perturbation technique

provides a powerful procedure for obtaining approximate
solutions to complex problems. Such problems contain a
parameter that is very large or very small, and one wants
to take advantage of this structure to get the best ap-
proximation. *ese techniques are very useful in con-
verging/diverging geometries like coating flow problems.
*e closed-form solution of equation (18) is difficult
being a nonlinear differential equation. *erefore, regular
perturbation is used to find its solution. We take We≪ 1
(as a perturbation parameter) and expand velocity u,
pressure p, and dimensionless film thickness in power
series of We:

u � u0 + We u1 + We2u2 + O We3 , (21)

dp

dx
�
dp0

dx
+ We

dp1

dx
+ We2

dp2

dx
+ O We3 , (22)

λ � λ0 + We λ1 + We2λ2 + O We3 . (23)

Substituting expressions (21)–(23) into equations
(18)–(20) and equating like powers of We, we obtain the
following problems.

3.1. Zeroth-Order Problem and Its Solution. Comparing
terms free from We in equation (18), we have the following
zero-order problem:

dp0

dx
�
d2u
dy

2, (24)

λ0 � 
h(x)

0
u0dy, (25)

with the agreeing zeroth-order boundary conditions:

u0 � 1, aty � 0,

u0 � 1, aty � h(x).
(26)

*e solution for equation (24) with conditions (26) is
given by

u0(x, y) � 1 +
1
2
dp0

dx
y
2

− hy . (27)

*e pressure distribution in equation (27) can be found
by utilizing the standard of preservation of mass and has the
accompanying structure:

dp0

dx
� 12

h(x) − λ0
h(x)

3 . (28)

By using equation (28) into equation (27), one can write
the zero-order velocity distribution as

u0(x, y) � 1 + 6
h − λ0

h
3  y

2
− hy . (29)

At the separation point located at x � xs and
y � (h(xs)/2), as shown in Figure 2, the velocity goes to
zero. Hence, from equation (29), we can write
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xs �

������

3λ0 − 1


. (30)

Integrating equation (28), write in the following form:

p0 � 12
x

xs

h(x) − λ0
h(x)

3 dx, (31)

where xs is the value of x at p � 0. Since we are assuming that
the liquid splits evenly to the web and the roll, we can write
Q0 � 2Uhc and in dimensionless form λ0 � (2hc/H0). *e
pressure at the separation point may be found by the first
integral of equation (28), using assumption xb⟶ − ∞, as

p0(x) �
6 − (9/2)λ0( x

1 + x
2/2 

−
3λ0x

1 + x
2/2  

2 +
12

�
2

√ −
9λ0�
2

√ tan− 1 x
�
2

√ +
6π

�
2

√ 1 −
3λ0
4

 . (32)

*e simplest dynamic model of the separation region is
based on the assumption that the film splits at the point,
where u0 � 0 andp0 � 0; resultantly, the above equation
becomes a transcendental equation in λ0 whose solutionmay
be obtained by a numerical technique named as the modified
regula falsi method with a predefined accuracy of 10− 10. For
the said accuracy, the zero-order flow rate is λ0 � 1.3232524,
which is correct up to five decimal places, and the residual
error in this case is 0.0000011085; this coating thickness has
been achieved at the separation point xs � 1.723298349. It is
worth to mention that the above zero-order results are more
accurate as calculated by Middleman [17].

3.2. First-Order Problem and Its Solution. Equating the co-
efficients of terms We in equation (18), the first-order
problem is

dp1

dx
�
d2u1

dy
2 +

d
dy

du0

dy
 

2

, (33)

Q1 � λ1 � 
h(x)

0
u1dy, (34)

with the agreeing first-order boundary conditions:

u1 � 0, aty � 0,

u1 � 0, aty � h(x).
(35)

Adopting the same procedure as in Section 3.1, applying
equation (27) into equation (33), after twice integration and
using conditions (35), we acquire the following first-order
solution:

u1(x, y) �
1
2
dp1

dx
y
2

− hy  −
1
6

dp0

dx
 

2

2y
3

− 3hy
2

+ h
2
y ,

(36)

dp1

dx
� − 12

λ1
h
3. (37)

Making use of equations (28) and (37) into equation
(36), the first-order velocity distribution takes the form

u1(x, y) �
6λ1
h
3 hy − y

2
  − 24

h − λ0
h3 

2

2y
3

− 3hy
2

+ h
2
y , (38)

p(x) � −
9
2

λ1
�
2

√
x
2

+ 2 
2
arctan((1/2)x

�
2

√
) + 2x

3
+(20/3)x 

x
2

+ 2 
2 . (39)

*e film splits at the point where p1 � 0; therefore, from the
above pressure expression, one can get λ1 � 0. From equation
(39) and the separation point condition for the pressure, we can

see clearly that the first-order flow rate is zero; therefore, in
order to get more insight into Williamson’s model, we need to
take one more term of the perturbation analysis.
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3.3. Second-Order Problem and Its Solution. Equating the
coefficients of terms We in equation (18), the second-order
problem is

dp2

dx
�
d2u2

dy
2 + 2

d
dy

du0

dy

du1

dy
 

2

, (40)

Q2 � λ2 � 
h(x)

0
u1dy, (41)

with the agreeing first-order boundary conditions:

u2 � 0, aty � 0,

u2 � 0, aty � h(x).
(42)

Adopting a similar procedure, using equations (27) and
(36) into equation (40) after twice integration and using the
boundary conditions (42), we get the following second-order
solution:

u2(x, y) �
24
h
3

dp0

dx
 

3

3y
4

− 6hy
3

+ 4h
2
y
2

  +
1
2
dp2

dx
y
2

− hy 

−
1
2

576 h
3

− λ30  − 1728 h
2λ0 − hλ20 

h
6

⎛⎝ ⎞⎠,

(43)

dp2

dx
� −

12
5

5h
4λ2 + 96 h

3
− λ30  − 288 h

2λ0 − hλ20 

h
7

⎛⎝ ⎞⎠. (44)

By substituting the first- and second-order pressure
gradient distributions into equation (43), one can find the
third-order velocity distribution. *e third-order pressure

distribution at the separation point may be found by inte-
grating the above equation as xb⟶ − ∞ given by

p2(x) �

2.25
�
2

√
λ2 − 0.142(  − 2 tan− 1 x

�
2

√  − π −

λ2 − 0.142( x
11

+ (34/3)λ2 − 0.142( x
9

+ (152/3)λ2 − 7.5( x
7

+ 112λ2 − 76.74( x
5

+ (368/3)λ2 − 1.67( x
3

+ (160/3)λ2 − 49.15( x

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

6250000 x
2

+ 2 
6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (45)

From equation (43), a relation between the separation
point and third-order flow rate can be found. Setting
x � xs and y � (h(xs)/2), in order to find the third-order
separation point, the regula falsi method has been used with
a predefined tolerance of 10− 10 which results in λ2 � 0.315,
and the resulting third-order separation point is xs � 0.2475.
Maple has a Numerical Analysis package that implements
many of the techniques we will discuss. *e results till the
third-order approximation are tabulated in Table 1.

Combining the solutions at each order of approximation
yield the solutions up to second order for velocity, pressure
gradient, and pressure.

4. Operating Variables

Once the velocity, pressure distribution, and pressure gra-
dient are found, then all other interesting engineering
quantities are readily available. *e operating variables are
computed in the following manner.

4.1. Coating :ickness. *e substrate thickness Hb at the
entering is given by

Hb � 1 +
x
2
b

2
. (46)

It is a very large number, in the case of an infinite
reservoir.

Since we are assuming that fluid separates uniformly to
coat both the roll and the plane, we can write volumetric flow
rate in the dimensional form as Q � 2UH and

H

H0
�
λ
2
. (47)

*is gives the resulting leaving coating thickness in a
dimensionless form.

*e examination is yet incomplete at this point as the
relationship between the nondimensional flow rate λ and
the separation point xs needs to be evaluated. Figure 2
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indicates that the web separates equally, and, conse-
quently, the segregation point is (xs, h(xs)/2); here, the
pressure and velocity profile approach zero. *is is as-
sumed as the roll and sheet has equal velocity. It causes
segregation point xs depending upon the dimensionless
coating thickness λ.

In case of Newtonian fluid, the relationship between
segregation point xs, nondimensional flow rate, and the
rheological parameters admits the value of one of these
parameters depending on others. As in case of Williamson
fluid, it is difficult to calculate explicitly xs in terms of λ. To
find the segregation point xs, some numerical system is
needed.

4.2.Roll SeparatingForce. *e roll separating force F is given
by

F � 
xs

− ∞
p(x)dx, (48)

where F � (FH0/η0URW), F is the dimensional roll sepa-
rating force per unit width W.

4.3. Power Contribution. *e power transmitted to the fluid
by the roll is calculated by integrating the product of shear
stress and the roll surface speed over the roll surface which is
obtained by setting y � H0, as

Pw � 
xs

− ∞
τxy(x, 1)dx. (49)

Here, Pw � (Pw/η0WU2) is the nondimensional power
and τxy � (τxyH0/η0U) the nondimensional stress tensor
given by equation (14).

4.4. Adiabatic Temperature. *e power contribution
has the capability to increase the temperature of fluid to
the maximum, given by rise in adiabatic temperature
(ΔT)ave:

(ΔT)ave �
Pw

QρCp

, (50)

where Cp is the melt heat capacity at constant pressure.

5. Results and Discussions

*is article investigates the roll coating procedure for an
incompressible Williamson fluid. For the simplification of
motion equations, the LAT is applied. Maple 15 software has
been used to generate numerical results for the volumetric
flow rate λ, the separation point xs, the exit sheet thickness
H/H0, the power contribution, and the roll separating force
presented in Table 1 for various values of the Weissenberg
number We. *e maximum coating thickness has been
observed as 0.8200 by approaching We⟶ 1, and for this

Table 1: Effect of Weissenberg number on operating variables.

We λ H/H0 xs F Pw

0.01 1.3232 0.6616 2.4171 0.02258 − 5.06243
0.1 1.3264 0.6632 2.4434 0.00302 − 4.70615
0.2 1.3358 0.6679 2.4874 − 0.03125 − 4.12705
0.3 1.3516 0.6758 2.5486 − 0.08286 − 3.15219
0.4 1.3736 0.6868 2.6263 − 0.15480 − 1.54170
0.5 1.4020 0.7010 2.7191 − 0.25030 1.02603
0.6 1.4366 0.7183 2.8248 − 0.37213 4.96889
0.7 1.4776 0.7388 2.9409 − 0.52245 10.8158
0.8 1.5248 0.7624 3.0646 − 0.70248 19.2218
0.9 1.5784 0.7892 3.1804 − 0.89035 29.6293
0.99 1.6382 0.8191 3.2653 − 0.89219 32.4523

1.4

1.3

1.2

1.1

u(
y)

1.0

0.9
0 0.2

We=0.1
We=0.2
We=0.3

We=0.4
We=0.5

0.4 0.6 0.8 1
y

Figure 3: Effect of the Weissenberg number on velocity distri-
bution at nip region (x� 0).
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Figure 4: Effect of the Weissenberg number on velocity distri-
bution at x� 0.25.
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coating thickness, the optimum point of separation is de-
tected. It is noticed that an increase in We causes an increase
in the coating thickness. *e minimum coating thickness
when We⟶ 0 has been observed as 0.6610. *e coating
thickness, volume flow rate, and separation point are in-
creasing functions of We (forces of inertia are controlling
viscous force).

*e outcome for the dimensionless velocity profiles is
projected in Figures 3–10. *rough the variation of We,
velocity profiles at various locations of the roll coating

procedure are presented. Figures 3 and 4 are plotted at
positions x� 0 and x� 0.25, respectively, indicating that the
increase in We first causes the velocity of the fluid to de-
crease in 0< y< 0.602 and then increase monotonically
beyond 0.6.

It is interesting to see from Figure 3 that, at the nip
region, the reverse flow has been observed for the higher
values ofWe, and as thematerial moves away from the nip in
the direction of separation point, the backward flow de-
creases as shown graphically in Figures 4–6 and the fluid
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Figure 5: Effect of the Weissenberg number on velocity distri-
bution at x� 0.5.
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Figure 6: Effect of the Weissenberg number on velocity distri-
bution at x� 0.75.
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Figure 7: Effect of the Weissenberg number on velocity distri-
bution at x� 1.

0.9

1.0

0.8

0.7

0.6

u(
y)

0.5

0 10.5

We=0.1
We=0.2
We=0.3

We=0.4
We=0.5

1.5 2
y

Figure 8: Effect of the Weissenberg number on velocity distri-
bution at x� 1.5.

8 Mathematical Problems in Engineering



becomes more developed. Figure 4 indicates that all the
velocity curves have the same point of intersection, that is,
(y� 0.6, u� 1.4263) for different values of the Weissenberg
number.

Figures 5 and 6 have been depicted at positions x� 0.5
and 0.75, respectively; here, one can observe that an increase
inWe causes increase in the velocity profile asWe is the ratio
of viscous forces to the elastic forces. It indicates that the
viscous forces become controlling forces once the web
reaches the position x> 0.25. It is also observed from these
graphs that fluid becomes fully developed when one moves
toward the separation point.

Comparative to Figures 5 and 6, a symmetric but op-
posite behavior has been observed in Figures 7–10, which are
sketched at x� 1, x� 1.5, x� 2, and x� 2.5, respectively.With
an increase in the Weissenberg number, the velocity dis-
tribution increases. It is also highlighted that, as the fluid
approaches the separation point, the fluid viscosity increases
and dominance of viscous force over elastic force will cause
coating on the web; this behavior can clearly been seen from
Figures 7–10, Furthermore, from these figures, one can
analyze that the gap between the velocity lines near to the
web is smaller as compared to the gab between the velocity
line near to the roll.
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Figure 9: Effect of the Weissenberg number on velocity distribution at x� 2.
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Figure 10: Effect of the Weissenberg number on velocity distri-
bution at x� 2.5.
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distribution.
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*e result for the dimensionless pressure gradient dis-
tributions is presented in Figure 11, whereas the outcomes
for the dimensionless pressure profile are projected in
Figure 12. It is observed that the pressure gradient rises by
increasing the Weissenberg number, whereas the pressure
distribution decreases by increasing the Weissenberg
number. Starting from zero pressure at the attachment
point, pressure starts increasing and attains its extreme
values right at x � ±0.86.

6. Conclusion

Using lubrication approximation theory, the system of
nonlinear partial differential equations is reduced to ordi-
nary differential equations. *en, the obtained nonlinear
ODEs are linearized using the regular perturbation tech-
nique.*e influence of various evolving physical parameters
on velocity components, flow rate, pressure profile, roll
separating force, power contribution, separation point, and
most important coating thickness have been studied theo-
retically. Some of the results are tabulated numerically and
some are presented graphically.

*e key findings of the present study are as follows:

(i) For the pseudoplastic fluids, the results by Mid-
dleman [17] were verified when We⟶ 0 and
extended

(ii) Weissenberg’s number acts as a controlling pa-
rameter for the rate of flow, thickness in coating,
power contribution, pressure, roll separating force,
and separation point

(iii) *e extreme values for the pressure distribution
have been found at x � ±0.86

(iv) Viscous force plays a vital and dominating role in
coating thickness, force of separation, power, and
pressure profile

(v) *e reverse flow has been observed at the nip region
for the higher values of We, and as the material
moves away from the nip in the direction of sep-
aration point, the backward flow decreases

(vi) It is worth mentioning that the above zero-order
results are more accurate as calculated by
Middleman
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