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,is paper presents an efficient outer space branch-and-bound algorithm for globally solving a minimax linear fractional pro-
gramming problem (MLFP), which has a wide range of applications in data envelopment analysis, engineering optimization,
management optimization, and so on. In this algorithm, by introducing auxiliary variables, we first equivalently transform the
problem (MLFP) into the problem (EP). By using a new linear relaxation technique, the problem (EP) is reduced to a sequence of
linear relaxation problems over the outer space rectangle, which provides the valid lower bound for the optimal value of the problem
(EP). Based on the outer space branch-and-bound search and the linear relaxation problem, an outer space branch-and-bound
algorithm is constructed for globally solving the problem (MLFP). In addition, the convergence and complexity of the presented
algorithm are given. Finally, numerical experimental results demonstrate the feasibility and efficiency of the proposed algorithm.

1. Introduction

,is paper considers the following minimax linear fractional
programming problem:

(MLFP):

min max
φ1(x)

ψ1(x)
,
φ2(x)

ψ2(x)
, . . . ,

φp(x)

ψp(x)
􏼨 􏼩

s.t. x ∈ D � x ∈ R
n
|Ax≤ b􏼈 􏼉,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

where p≥ 2, A ∈ Rm×n, b ∈ Rm, D is a nonempty bounded
polyhedral set, and φi(x) � 􏽐

n
j�1 cijxj + di and

ψi(x) � 􏽐
n
j�1 eijxj + fi are all bounded affine functions over

D, and for ∀x ∈ D, we have that φi(x)≥ 0 and
ψi(x)> 0, i � 1, . . . , p.

,e problem (MLFP) has aroused the interest of many
practitioners and researchers. On the one hand, it has a wide
range of applications, such as electronic circuit design [1],
system identification [2–4], and finance and investment [5].
On the other hand, because it has multiple local optimal
solutions that are not globally optimal, it is still challenging to
solve the problem (MLFP). So, it is necessary to come up with
an efficient algorithm to globally solve the problem (MLFP).

In the past few decades, many algorithms have been
proposed for solving some special forms of the problem
(MLFP). In general, these algorithms can be classified into
the following categories: interior-point algorithm [6], pa-
rameter programming method [7], partial linearization al-
gorithm [8], monotonic optimization method [9], cutting
plane algorithm [10], and branch-and-bound algorithm
[11–19]. In addition to the above algorithms, in recent years,
Chen et al. [20] proposed a unified framework to study
various versions of Dinkelbach-type algorithms for solving
the generalized fractional programming problem; based on a
proximal bundle method, Boualam and Roubi [21] designed
a dual algorithm for solving the convex minimax fractional
programming problem; by analyzing the dual method of
centers, Boufi and Roubi [22] presented an algorithm for
solving the generalized fractional programs; Lai and Huang
[23] presented a duality programming problem for solving a
complex nondifferentiable minimax fractional program-
ming with complex variables. However, the above algo-
rithms can only deal with some specific cases of the problem
(MLFP). ,erefore, it is necessary to propose an efficient
algorithm for globally solving the general form of the
problem (MLFP).
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In this paper, we present an efficient outer space branch-
and-bound algorithm for globally solving the minimax
linear fractional programming problem (MLFP). In this
algorithm, we first transform the problem (MLFP) into an
outer space equivalent problem (EP) by introducing aux-
iliary variables. ,en, in order to obtain the lower bound of
the optimal value of the problem (EP), a new linear relax-
ation technique is proposed to construct the linear relaxation
problem (LRP) of the problem (EP) over the outer space
rectangle. And we can solve the problem (EP) by solving a
sequence of linear relaxation problems over the outer space
rectangle. Based on the outer space branch-and-bound
search and the new linear relaxation problem over the outer
space rectangle, we present an outer space branch-and-
bound algorithm for globally solving the problem (MLFP).
In addition, the global convergence and the computational
complexity of the proposed algorithm are given. ,e nu-
merical results demonstrate that the proposed algorithm can
effectively find the global optimal solutions for all tested
instances. ,e numerical comparisons among our algorithm
and the algorithms of Feng et al. [8], Jiao and Liu [12], and
Wang et al. [24] indicate that our algorithm outperforms the
algorithms presented in Feng et al. [8], Jiao and Liu [12], and
Wang et al. [24].

,is paper is organized as follows. In Section 2, the
equivalent problem (EP) of the problem (MFLP) is obtained,
and by utilizing the new linear relaxation technique, the
linear relaxation problem (LRP) of the problem (EP) over
the outer space rectangle is constructed. In Section 3, an
efficient outer space branch-and-bound algorithm is de-
scribed, and the global convergence and the computational
complexity of the proposed algorithm are given. Numerical
results are reported to show the feasibility and efficiency of
the proposed algorithm in Section 4. Finally, some con-
clusions are presented in Section 5.

2. EquivalentProblemand ItsLinearRelaxation

For globally solving the problem (MLFP), we need to es-
tablish its equivalent problem (EP). For this purpose, we first
compute the initial lower bound β0

i
� minx∈Dψi(x) and the

upper bound β0i � maxx∈Dψi(x) of the function ψi(x) over
D so that we can obtain the initial outer space rectangle:

Ω0 � ψi(x) ∈ R
p
|β0

i
≤ψi(x)≤ β0i , i � 1, 2, . . . , p}.􏼚 (2)

By introducing a new variable r, we can establish the
outer space equivalent problem (EP) of the problem (MLFP)
as follows:

(EP):

min r

s.t.

φi(x)

ψi(x)
≤ r, i � 1, 2, . . . , p,

β0
i
≤ψi(x)≤ β0i , i � 1, 2, . . . , p, Ax≤ b.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Theorem 1. (x∗, r∗) is a global optimal solution of the
problem (EP) if and only if x∗ is a global optimal solution of
the problem (MLFP).

Proof. ,e conclusion of the theorem is obvious; therefore,
the proof is omitted.

From ,eorem 1, for globally solving the problem
(MLFP), we can globally solve its equivalence problem (EP)
instead; they have the same optimal solutions and optimal
value. In order to globally solve the problem (EP), we need to
construct its linear relaxation problem of the problem (EP)
over the outer space rectangle, which can provide a reliable
lower bound for the optimal value of the problem (EP). And
the next main task is to construct the linear relaxation
problem of the problem (EP).

First of all, let Ω � ψi(x) ∈ Rp|β
i
≤ψi(x)≤􏽮

βi, i � 1, 2, . . . , p} denote the initial rectangle Ω0 or a sub-
rectangle ofΩ0 that is generated by the branching operation.
,en, for convenience in expression, some notations are
introduced as follows:

α0i � min
x∈D

φi(x), α0i � max
x∈D

φi(x). (4)

From the above formulas, it is easy to see that
0≤ α0i ≤φi(x)≤ α0i , 0< β

i
≤ψi(x)≤ βi, i � 1, 2, . . . , p. And we

consider the term (φi(x)/ψi(x)), i � 1, 2, . . . , p, and it fol-
lows that α0i ψi(x) − β

i
φi(x)≥ 0, ψi(x) − β

i
≥ 0, so that we

have

α0i ψi(x) − β
i
φi(x)􏼐 􏼑 ψi(x) − β

i
􏼐 􏼑≥ 0. (5)

Expanding the above formula, we have that

α0i ψ
2
i (x) − α0i βi

ψi(x) − β
i
φi(x)ψi(x) + β2

i
φi(x)≥ 0. (6)

Since β2
i
ψi(x)> 0, we divide both ends of the above

inequality by β2
i
ψi(x) at the same time, and we can obtain

that

φi(x)

ψi(x)
≥
φi(x)

β
i

−
α0i
β2

i

ψi(x) +
α0i
β

i

. (7)

Let Ψi(x, r) � (φi(x)/ψi(x)) − r; we have the following
relation:

Ψi(x, r) �
φi(x)

ψi(x)
− r≥

φi(x)

β
i

−
α0i
β2

i

ψi(x) +
α0i
β

i

− r � Ψl
i(x, r).

(8)

,rough the above discussions, the linear relaxation
problem of the problem (EP) over the outer space rectangle
Ω is constructed as follows:

(LRP):

min r

s.t.
Ψl

i(x, r)≤ 0, i � 1, 2, . . . , p,

β
i
≤ψi(x)≤ βi, i � 1, 2, . . . , p,

Ax≤ b.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

From the above results, the optimal value of the problem
(LRP) is less than or equal to that of the problem (EP) over
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Ω. ,erefore, the problem (LRP) can provide a valid lower
bound for the optimal value of the problem (EP) over Ω.
,eorem 2 will show that the problem (LRP) will infinitely
approximate the problem (EP) overΩ as ‖β − β ‖⟶ 0. □

Theorem 2. For any ψi(x) ∈ Ω � [β, β], we consider the
functions Ψl

i(x, r) and Ψi(x, r). /en, we have that

lim
β−β

����
����⟶ 0
Ψi(x, r) − Ψl

i(x, r)􏼐 􏼑⟶ 0.
(10)

Proof. From the definitions Ψi(x, r) and Ψl
i(x, r), we have

Ψi(x, r) − Ψl
i(x, r)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �
φi(x)

ψi(x)
−

φi(x)

β
i

−
α0i
β2

i

ψi(x) +
α0i
β

i

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
φi(x)

ψi(x)
−
φi(x)

β
i

+
α0i
β2

i

ψi(x) −
α0i
β

i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ φi(x)

1
ψi(x)

−
1
β

i

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
α0i
β

i

ψi(x)

β
i

− 1⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� φi(x)
β

i
− ψi(x)

ψi(x)β
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
α0i
β

i

ψi(x) − β
i

β
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ α0i

βi − β
i

β2
i

+
α0i
β

i

βi − β
i

β
i

�
2 α0i􏼐 􏼑

2

β2
i

βi − β
i

􏼐 􏼑.

(11)

,erefore, we have that

lim
β−β

����
����⟶ 0
Ψi(x, r) − Ψl

i(x, r)􏼐 􏼑⟶ 0,
(12)

and the proof of the theorem is completed.
From,eorem 2, we can know that the linear relaxation

function Ψl
i(x, r) will infinitely approximate the function

Ψi(x, r) as ‖β − β ‖⟶ 0, which guarantees the global
convergence of the proposed algorithm. □

3. Algorithm, Global Convergence, and
Complexity Analysis

In this section, we first describe the outer space branching
rule. ,en, based on the outer space partitioning search and
the linear relaxation problem, an efficient outer space
branch-and-bound algorithm is developed to globally solve
the problem (MLFP). Finally, the global convergence and the

computational complexity of the presented algorithm are
derived.

3.1. Outer Space Partitioning Rule. ,e important factor to
ensure that the proposed algorithm in this paper can con-
verge to the global minimum of the problem (MLFP) is to
choose a suitable outer space partitioning strategy. In this
paper, we choose an outer space rectangle bisection method,
which can ensure the global convergence of the proposed
outer space branch-and-bound algorithm. ,e proposed
outer space partitioning rule is given as follows.

Consider any node subproblem identified by the sub-
rectangle Ω � ψi(x) ∈ Rp|β

i
≤ψi(x)≤ βi, i � 1, 2,􏽮 . . . , p}⊆

Ω0; the branching rule is described as follows:

(i) Let τ � argmax βi − β
i
|i � 1, 2, . . . , p􏽮 􏽯.

(ii) Let

Ω′ � ψi(x) ∈ R
p
|β

i
≤ψi(x)≤ βi, i � 1, 2, . . . , p, i≠ τ, β

τ
≤ψτ(x)≤

βτ + βτ
2

⎧⎨

⎩

⎫⎬

⎭,

Ω″ � ψi(x) ∈ R
p
|β

i
≤ψi(x)≤ βi, i � 1, 2, . . . , p, i≠ τ,

βτ + βτ
2
≤ψτ(x)≤ βτ

⎧⎨

⎩

⎫⎬

⎭.

(13)

From the outer space partitioning rule, it can be seen that
the outer space rectangle Ω is partitioned into two outer
space subrectangles Ω′ and Ω″.

3.2.AlgorithmStatement. By the above discussions, the basic
steps of the proposed algorithm are given as follows. Let
LB(Ωk) and (x(Ωk), r(Ωk)) be the optimal objective
functional value of the problem (LRP) and an element of the

corresponding argmin over the subrectangle Ωk,
respectively.

Step 1: given the convergence tolerance ε≥ 0, the set of
feasible points F � ∅ and the upper bound UB0 � +∞.

Solve the problem LRP (Ω0) for obtaining its optimal
solution (x(Ω0), r(Ω0)) and optimal value LB(Ω0). Let
(x0, r0) � (x(Ω0), r(Ω0)) and LB0 � LB(Ω0).

Mathematical Problems in Engineering 3



If (x0, r0) is feasible to the problem (EP), then we
update F and UB0.
If UB0 − LB0 ≤ ε, then the algorithm stops with that
(x0, r0) is an ε-global optimal solution for the problem
(EP); otherwise, set Θ0 � Ω0􏼈 􏼉 be the set of all active
notes, k � 1, and go to step 2.
Step 2: let UBk � UBk−1, select and subdivide Ωk−1 into
two subrectanglesΩk,1 andΩk,2 based on the branching
rule. Set Ω � Ωk,1,Ωk,2􏽮 􏽯.
Step 3: for each Ωk,s ∈ Ω(s � 1, 2), solve the problem
LRP (Ωk,s) to get the lower bound LB(Ωk,s) and
(x(Ωk,s), r(Ωk,s)).
If LB(Ωk,s)>UBk, let Ω � Ω\Ωk,s; otherwise, set

F � F∪ (x(Ω), r(Ω)){ }. (14)

Update the upper bound:

UBk � min UBk, r Ωk,s
􏼐 􏼑􏽮 􏽯. (15)

If UBk � r(Ωk,s), let (xk, rk) � (x(Ωk,s), r(Ωk,s)), and it
is obvious that (xk, rk) is the best feasible solution for
the problem (EP). Let Θk � (Θk−1\Ωk−1)∪Ω and
LBk � min LB(Ω)|Ω ∈ Θk􏼈 􏼉.
Step 4: set Θk+1 � Θk\ Ω: UBk − LB(Ω)> ε,Ω ∈ Θk􏼈 􏼉.

If Θk+1 � ∅, then the algorithm stops, and (xk, rk) is an
ϵ-global optimal solution of the problem (EP).

Otherwise, select the new subrectangle Ωk such that
Ωk+1 � argminΩ∈Θk

LB(Ω); let k � k + 1, and return to step 2.

3.3. Convergence Analysis. ,e following theorem gives the
proof of the convergence of the above algorithm.

Theorem 3. /e proposed algorithm either terminates fi-
nitely with the solution xk which is a global ϵ-optimal solution
for the problem (MLFP) or generates an infinite sequence xk􏼈 􏼉

of iterations such that any infinite branch of the branch-and-
bound tree and any accumulation point will be a global
optimal solution of the problem (MLFP).

Proof. When the algorithm is finitely terminated, the con-
clusion is obvious. When the algorithm is not finitely ter-
minated, Horst and Tuy [25] point out that a sufficient
condition for the algorithm to be convergent to the global
minimum is that the bounding operation must be consistent
and the selection operation is bound improving.

Let LBk be a lower bound computed in stage k, and let
UBk be the best upper bound at iteration k not necessarily
occurring inside the same subrectangle with LBk. A
bounding operation is called consistent if, at every step, any
unfathomed partition can be further refined, and since our
subdivision process is the bisection, the branching process is
exhaustive. ,erefore, from ,eorem 2, we have that

lim
k⟶∞

UBk − LBk( 􏼁 � 0. (16)

,en, this implies that the employed bounding operation
is consistent.

A selection operation is called bound improving if at
least one partition element where the actual upper bound is
attained is selected for further partition after a finite number
of refinements. Obviously, since the partition element where
the actual upper bound is attained is selected for further
partition in the immediately following iteration, the
employed selection operation is bound improving.

In general, it can show that the bounding operation is
consistent and that selection operation is bound improving.
,erefore, the proposed algorithm is convergent to the
global minimum of the problem (MFLP), and the proof of
the theorem is completed. □

3.4. Computational Complexity Analysis. In this section, we
will analyze the complexity of the algorithm. To this end, we
define the size Δ(Ω) of a rectangle Ω � ψi(x) ∈ Rp|β

i
≤􏽮

ψi(x)≤ βi, i � 1, 2, . . . , p}⊆Ω0, given by

Δ(Ω) ≔ max βi − β
i
|i � 1, 2, . . . , p􏽮 􏽯. (17)

Additionally, for convenience, we denote by

μ � max
2 α0i􏼐 􏼑

2

β0
i

􏼐 􏼑
2 , i � 1, 2, . . . , p

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (18)

Theorem 4. Given the convergence tolerance ε> 0, if there
exists a rectangle Ωk generated by the algorithm at kth iter-
ation, such that Δ(Ωk)≤ (ε/μ), then we have

UB − LB Ωk
􏼐 􏼑≤ ε, (19)

where LB(Ωk) is the optimal value to the problem (LRP (Ωk))
and UB is the best current known upper bound of the opti-
mum value to the problem (EP).

Proof. From,eorem 2,Δ(Ωk)≤ (ε/μ), and the definition of
α0i , βi

, and βi, we have

UB − LB Ωk
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤max
2 α0i􏼐 􏼑

2

β2
i

βi − β
i

􏼐 􏼑, i � 1, 2, . . . , p
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤max≤ ε,
2 α0i􏼐 􏼑

2

β0
i

􏼐 􏼑
2 βi − β

i
􏼐 􏼑, i � 1, 2, . . . , p

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤ μΔ(Ω),

(20)

and the proof of the theorem is completed. □

Remark 1. Given the convergence tolerance ε> 0, the
proposed algorithm finds a global ε-optimal solution to the
problem (MFLP) in at most iterations:

N � 2􏽐
p

i�1⌈log2 μ β
0
i − β0

i
)/ε)⌉−1.􏼐􏼐 (21)
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Based on the above discussions, the maximum iterations
of the algorithm can be obtained by analyzing the com-
putational complexity of the proposed algorithm.

4. Numerical Experiments

In this section, we numerically compare our algorithm with
the existing branch-and-bound-algorithms presented in the
works of Feng et al. [8], Jiao and Liu [12], and Wang et al.
[24]. All algorithms are coded in MATLAB R2014a; our
algorithm is executed on the microcomputer with Intel(R)
Core(TM) i7-10700K CPU @3.80GHz processor and 32GB
RAM. All test examples and their numerical results are listed
as follows.

First of all, for Examples 1–8, when n is smaller, with
the given approximation error ε � 10− 6, numerical
comparisons among our algorithm and the algorithms
presented in works of Feng et al. [8], Jiao and Liu [12], and
Wang et al. [24] are given in Table 1. Next, for randomly
generated large-scale Example 9, when n≥ 1000, with the
given approximation error ε � 10− 4, numerical compu-
tational results of our algorithm are given in Table 2.
When n≥ 1000, since the algorithms presented in works of
Feng et al. [8], Jiao and Liu [12], and Wang et al. [24] all
failed to solve the randomly generated large-scale Ex-
ample 9 in 3600 s, we only present the numerical com-
putational results of our algorithm in Table 2. For all
numerical tests of randomly generated Example 9, we
solved arbitrary ten independently generated test prob-
lems and recorded their average numerical results among
these ten test problems.

From the numerical results for Examples 1–8 in Ta-
ble 1, first of all, we can observe that our algorithm can
obtain the almost same optimal solution and optimal
value as the algorithms presented in the works of Feng
et al. [8], Jiao and Liu [12], and Wang et al. [24]. Secondly,
in terms of computational efficiency, in all cases, our
algorithm outperforms the algorithms presented in the
works of Feng et al. [8], Jiao and Liu [12], and Wang et al.
[24].

From the numerical results for the randomly gen-
erated large-scale Example 9 in Table 2, it is obvious that
the proposed algorithm can solve randomly generated
large-scale Example 9 with the large-size variables
(n≥ 1000). However, the algorithms of Feng et al. [8],
Jiao and Liu [12], and Wang et al. [24] all failed to solve
the randomly generated large-scale Example 9. ,ere-
fore, this demonstrates the robustness and stability of our
algorithm.

Example 1 (see [12, 14]).

min max
3x1 + x2 − 2x3 + 0.8

2x1 − x2 + x3
,
4x1 − 2x2 + x3

7x1 + 3x2 − x3
􏼨 􏼩

s.t.

x1 + x2 − x3 ≤ 1,

−x1 + x2 − x3 ≤ − 1,

12x1 + 5x2 + 12x3 ≤ 34.8,

12x1 + 12x2 + 7x3 ≤ 29.1,

−6x1 + x2 + x3 ≤ − 4.1,

1.0≤x1 ≤ 1.1, 0.55≤x2 ≤ 0.65, 1.35≤ x3 ≤ 1.45.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Example 2 (see [12, 14]).

max min
37x1 + 73x2 + 13
13x1 + 13x2 + 13

,
63x1 − 18x2 + 39
13x1 + 26x2 + 13

􏼨 􏼩

s.t.
5x1 − 3x2 � 3,

1.5≤x1 ≤ 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Example 3 (see [12, 14]).

min max
2x1 + 2x2 − x3 + 0.9

x1 − x2 + x3
,
3x1 − x2 + x3

8x1 + 4x2 − x3
􏼨 􏼩

s.t.

x1 + x2 − x3 ≤ 1,

−x1 + x2 − x3 ≤ − 1,

12x1 + 5x2 + 12x3 ≤ 34.8,

12x1 + 12x2 + 7x3 ≤ 29.1,

−6x1 + x2 + x3 ≤ − 4.1,

1.0≤x1 ≤ 1.2, 0.55≤x2 ≤ 0.65, 1.35≤ x3 ≤ 1.45.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)
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Table 1: Numerical comparisons among the algorithm presented in the works of Feng et al. [8], Jiao et al. [12], Wang et al. [24], and our
algorithm on Examples 1–8.

Example Refs. Optimal value Optimal solution Iter CPU time

1

Feng et al. [8] 0.57310 (1.0157, 0.5905, 1.4037) 1897 88.40531
Jiao and Liu [12] 0.57310 (1.0157, 0.5905, 1.4037) 22 1.05172
Wang et al. [24] 0.57310 (1.0157, 0.5905, 1.4037) 22 1.38462

Ours 0.57335 (1.0157, 0.5902, 1.4041) 1 0.20335

2

Feng et al. [8] 0.67136 (1.5000, 1.5000) 123 3.69388
Jiao and Liu [12] 0.67136 (1.5000, 1.5000) 16 0.52438
Wang et al. [24] 0.67136 (1.5000, 1.5000) 20 1.11778

Ours 0.67136 (1.5000, 1.5000) 1 0.05756

3

Feng et al. [8] 1.34783 (1.0167, 0.5500, 1.4500) 428 14.23580
Jiao and Liu [12] 1.34783 (1.0167, 0.5500, 1.4500) 22 1.01556
Wang et al. [24] 1.34783 (1.0167, 0.5500, 1.4500) 19 1.26376

Ours 1.34783 (1.0167, 0.5500, 1.4500) 17 0.89739

4

Feng et al. [8] 2.40000 (1.0167, 0.5500, 1.4500) 494 17.10538
Jiao and Liu [12] 2.40000 (1.0167, 0.5500, 1.4500) 23 0.93779
Wang et al. [24] 2.40000 (1.0167, 0.5500, 1.4500) 19 1.33390

Ours 2.40000 (1.0167, 0.5500, 1.4500) 43 2.13518

5

Feng et al. [8] 1.16157 (1.0000, 0.5500, 1.4500) 313 10.15298
Jiao and Liu [12] 1.16157 (1.0000, 0.5500, 1.4500) 21 0.85291
Wang et al. [24] 1.16157 (1.0000, 0.5500, 1.4500) 17 1.18794

Ours 1.16157 (1.0000, 0.5500, 1.4500) 19 0.88201

6

Feng et al. [8] 0.98971 (1.3452, 0.5000, 1.9464) 2272 113.77662
Jiao and Liu [12] 0.98971 (1.3452, 0.5000, 1.9465) 40 1.84189
Wang et al. [24] 0.98971 (1.3452, 0.5000, 1.9465) 39 2.04739

Ours 0.99279 (1.3500, 0.5000, 1.9417) 91 4.06822

7

Feng et al. [8] 1.11789 (1.5054, 0.3500, 1.5500) 2076 96.72385
Jiao and Liu [12] 1.11789 (1.5054, 0.3500, 1.5500) 39 1.58835
Wang et al. [24] 1.11789 (1.5054, 0.3500, 1.5500) 41 2.08152

Ours 1.12533 (1.4844, 0.3500, 1.5500) 98 4.67947

8

Feng et al. [8] 1.11838 (1.7538, 0.3500, 1.5500) 10326 477.60639
Jiao and Liu [12] 1.11838 (1.7538, 0.3500, 1.5500) 46 1.77758
Wang et al. [24] 1.11838 (1.7538, 0.3500, 1.5500) 60 2.60233

Ours 1.13750 (1.4546, 0.3500, 1.3967) 149 6.75431

Table 2: Numerical results of our algorithm on Example 9 with the large-size variables.

(p, m, n) Avg.N Avg.T
(2, 100, 1000) 84.4 25.780946
(2, 100, 2000) 150.6 197.582295
(2, 100, 3000) 136.6 385.307614
(2, 100, 4000) 171.4 837.706223
(2, 100, 5000) 77.8 476.919714
(2, 100, 6000) 137.1 1418.259703
(2, 100, 7000) 140.7 2077.776716
(2, 100, 8000) 193.6 4235.722436
(2, 100, 10000) 80.2 2002.843398
(3, 100, 1000) 536.8 164.539888
(3, 100, 2000) 598.1 687.34879
(3, 100, 3000) 535.3 1249.842719
(3, 100, 4000) 760.7 3928.820802
(3, 100, 5000) 486.4 2941.007123
(3, 100, 6000) 558.1 5126.950975
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Example 4 (see [12, 14]).

min max
3x1 + x2 − 2x3 + 0.8

2x1 − x2 + x3
,
4x1 − 2x2 + x3

7x1 + 3x2 − x3
,
3x1 + 2x2 − x3 + 1.9

x1 − x2 + x3
,
4x1 − x2 + x3

8x1 + 4x2 − x3
􏼨 􏼩

s.t.

x1 + x2 − x3 ≤ 1,

−x1 + x2 − x3 ≤ − 1,

12x1 + 5x2 + 12x3 ≤ 34.8,

12x1 + 12x2 + 7x3 ≤ 29.1,

−6x1 + x2 + x3 ≤ − 4.1,

1.0≤ x1 ≤ 1.2, 0.55≤ x2 ≤ 0.65, 1.35≤x3 ≤ 1.45.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

Example 5 (see [12, 14]).

min max
2.1x1 + 2.2x2 − x3 + 0.8

1.1x1 − x2 + 1.2x3
,
3.1x1 − x2 + 1.3x3

8.2x1 + 4.1x2 − x3
􏼨 􏼩

s.t.

x1 + x2 − x3 ≤ 1,

−x1 + x2 − x3 ≤ − 1,

12x1 + 5x2 + 12x3 ≤ 40,

12x1 + 12x2 + 7x3 ≤ 50,

−6x1 + x2 + x3 ≤ − 2,

1.0≤x1 ≤ 1.2, 0.55≤x2 ≤ 0.65, 1.35≤ x3 ≤ 1.45.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)
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Example 6 (see [12, 14]).

min max
3x1 + 4x2 − x3 + 0.5
2x1 − x2 + x3 + 0.5

,
3x1 − x2 + 3x3 + 0.5
9x1 + 5x2 − x3 + 0.5

,
4x1 − x2 + 5x3 + 0.5
11x1 + 6x2 − x3

,
5x1 − x2 + 6x3 + 0.5
12x1 + 7x2 − x3 + 0.9

􏼨 􏼩

s.t.

x1 + x2 − x3 ≤ 1,

−x1 + x2 − x3 ≤ − 1,

12x1 + 5x2 + 12x3 ≤ 42,

12x1 + 12x2 + 7x3 ≤ 55,

−6x1 + x2 + x3 ≤ − 3,

1.0≤ x1 ≤ 2.0, 0.50≤ x2 ≤ 2.0, 0.50≤x3 ≤ 2.0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

Example 7 (see [12, 14]).

min max
3x1 + 4x2 − x3 + 0.9
2x1 − x2 + x3 + 0.5

,
3x1 − x2 + 3x3 + 0.5
9x1 + 5x2 − x3 + 0.5

,
4x1 − x2 + 5x3 + 0.5
11x1 + 6x2 − x3 + 0.9

,
5x1 − x2 + 6x3 + 0.5
12x1 + 7x2 − x3 + 0.9

,
6x1 − x2 + 7x3 + 0.6
11x1 + 6x2 − x3 + 0.9

􏼨 􏼩

s.t.

2x1 + x2 − x3 ≤ 2,

−2x1 + x2 − 2x3 ≤ − 1,

11x1 + 6x2 + 12x3 ≤ 45,

11x1 + 13x2 + 6x3 ≤ 52,

−7x1 + x2 + x3 ≤ − 2,

1.0≤ x1 ≤ 2.0, 0.35≤ x2 ≤ 0.9, 1.0≤x3 ≤ 1.55.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)
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Example 8 (see [12, 14]).

min max
5x1 + 4x2 − x3 + 0.9
3x1 − x2 + 2x3 + 0.5

,
3x1 − x2 + 4x3 + 0.5
9x1 + 3x2 − x3 + 0.5

,
4x1 − x2 + 6x3 + 0.5
12x1 + 7x2 − x3 + 0.9

,
7x1 − x2 + 7x3 + 0.5
11x1 + 9x2 − x3 + 0.9

,
7x1 − x2 + 7x3 + 0.7
11x1 + 7x2 − x3 + 0.8

􏼨 􏼩

s.t.

2x1 + 2x2 − x3 ≤ 3,

−2x1 + x2 − 3x3 ≤ − 1,

11x1 + 7x2 + 12x3 ≤ 47,

13x1 + 13x2 + 6x3 ≤ 56,

−6x1 + 2x2 + 3x3 ≤ − 1,

1.0≤ x1 ≤ 2.0, 0.35≤ x2 ≤ 0.9, 1.0≤x3 ≤ 1.55.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

Example 9

min max
􏽐

n
j�1 d1jxj + g1

􏽐
n
j�1 e1jxj + h1

,
􏽐

n
j�1 d2jxj + g2

􏽐
n
j�1 e2jxj + h2

, . . . ,
􏽐

n
j�1 dpjxj + gp

􏽐
n
j�1 epjxj + hp

⎧⎨

⎩

⎫⎬

⎭

s.t.
􏽘

n

j�1
akjxj ≤ bk, k � 1, 2, . . . , m,

xj ≥ 0, j � 1, 2, . . . , n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

where all dij and eij, i � 1, 2, . . . , p and j � 1, 2, . . . , n,

and bk and akj, k � 1, 2, . . . , m and j � 1, 2, . . . , n, are ran-
domly generated in [0, 10]; all gi and hi, i � 1, 2, . . . , p, are
randomly generated in [0, 1].

From the numerical results in Tables 1 and 2, it is seen
that the proposed algorithm has higher computational ef-
ficiency than the algorithms presented in the works of Feng
et al. [8], Jiao and Liu [12], andWang et al. [24], which can be
used to globally solve the problem (MLFP) with the large-
size variables.

5. Concluding Remarks

In this paper, based on the outer space partitioning search
and the new linear relaxation problem, we present an outer
space branch-and-bound algorithm for globally solving the
problem (MLFP). ,e proposed algorithm is convergent to
the global optimal value by the successive refinement of the
outer space region and the subsequent solutions of a series of
linear relaxation programming problems over the outer
space region. ,e main work of the proposed algorithm

involves solving a series of linear relaxation programming
problems over the outer space region which does not grow in
size for each iteration and which can be efficiently solved by
the simplex method. Compared with the algorithms pre-
sented in the works of Feng et al. [8], Jiao and Liu [12], and
Wang et al. [24], numerical results for some test examples
are given to illustrate the feasibility and effectiveness of our
new algorithm. It is also hoped that the ideas and methods
used to create the algorithm will offer a useful tool for
globally solving the problem (MLFP).
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