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When the required number of customers is available in the general bulk service (GBS) queueing system, the server begins service.
Otherwise, the server will remain inactive until the number of consumers in the queue reaches that minimum required number.
Customers that have already come must wait throughout this time, regardless of their arrival time. In some circumstances, like
specimens awaiting testing in a clinical laboratory or perishable commodities awaiting delivery, it is necessary to finish services
before the expiration date. It might only be achievable if consumers’ waiting times are kept under control. As a result, the flexible
general bulk service (FGBS) rule is developed in this article to provide flexibility in batching. +e effectiveness of FGBS
implementation has been demonstrated using two examples: a clinical laboratory and a distribution center. To justify the
suggested model, a simulation study and numerical illustration are provided.

1. Introduction

+e server in a typical queueing system provides services to a
single customer or a batch of customers. In terms of waiting
time, the batch service is always deemed to be superior to the
single service. Furthermore, the number of customers served
in batch service is always greater than the number of
consumers provided in single service. +e batch size can be
any number, but selecting a suitable batch size is essential,
since it influences the customer’s waiting time. +e batching
strategy with the least amount of waiting time and the lowest
cost is regarded the best. As a result, selecting a suitable
batching strategy is critical.

General bulk service (GBS) rule performs better among
many batching techniques because the batch size depends
upon the length of the queue. GBS rule was first introduced
by Neuts [1]. In that, both the minimum and maximum
limits, referred to as a and b, determine the batch size. +e
server begins to provide service only when at least a units are
present in the queue. Immediately after completion of the
first service, all the existing customers will be taken for
service when the number of customers waiting in the queue

is greater than or equal to a but less than or equal to b. When
the number of customers exceeds b, the first b customers are
taken for service. But the next batch will be taken for service
only after the queue size reaches a in case the customers are
lesser than the minimum batch capacity a. +e server and
the existing customers have to wait until the number of
customers reaches minimum batch size. +is leads to an
increase in the average waiting time of a customer and
reduces server utilization.

Allowing the server to work on a subsidiary job or taking
a break might boost server utilization. Vacation, in general,
refers to the unavailability of the server to provide a service.
Several authors studied various combinations of bulk arrival
general bulk service and vacation queueing systems. A
survey on server vacation has been analyzed by Doshi [2].
Sasikala and Indhira [3] did a detailed survey on bulk service
queueing models. Only a few of the authors listed below took
actions to decrease the average waiting time of the customer
by modifying the general bulk service rule.

Balasubramanian et al. [4] explored a bulk service
queueing system with overloading and multiple vacations. If
the server finds that there are more than N customers after
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completing a service or vacation, the server will increase its
service capacity, known as overload, and serve N customers
in a batch. Bulk queue with modified vacation policy was
investigated by Jeyakumar and Arumuganathan [5]. In that,
if the queue size is less than a after M vacations, the server
remains idle until the queue size reaches the minimum
threshold value a. Following that, Balasubramanian and
Arumuganathan [6] enhanced that with state-dependent
arrival.

A bulk arrival bulk service queueing system with
working vacation was studied by Jeyakumar and Sen-
thilnathan [7]. Instead of being idle during the vacation
period, the server will work at a different rate while on
working vacation. Arumuganathan and Jeyakumar [8]
examined an MX/G(a, c, b)/1 queueing system in which the
server can choose between a single service and a bulk
service based on the number of consumers in the queue
while entering into service. Only when a customers are in
queue will the service begin. When the queue length is
greater than a, the server will select a single service and
serve it one at a time. When the queue length is c, (c≥ a),
the server will pick bulk service and serve at most b con-
sumers in a batch. Deepa and Azhagappan [9] looked at
batch arrival single and bulk service queues with multiple
vacation closedown and repairs. If the queue size is less
than a, the server provides single service; if the queue size is
greater than a, the server provides bulk service. If there are
no customers in line at the completion epoch of any service,
the server will begin a closedown and thereafter enter
multiple vacations. All of the foregoing work was done in
order to reduce the average waiting time of the customer. In
all these mentioned cases, the batch size was modified in the
GBS rule concerning only the number of customers ac-
cumulated in the queue.

Batching based only on the number of customers ac-
cumulating in the queue has several drawbacks. When the
client is perishable, for example, the customermay rot before
the service is completed due to a time delay in batching. As a
result, in such cases, the GBS rule must be modified. +is
article introduces the flexible general bulk service (FGBS)
rule, which modifies the GBS rule regarding the average
waiting time of a consumer in the queue. In FGBS, the server
starts bulk service when (i) there are at least a customers in
the queue or (ii) there are less than a customers in the queue
but the measured average waiting time of these customers in
the queue is greater than or equal to the waiting time tol-
erance T. +e server becomes idle if the number of cus-
tomers at the completion epoch of service is less than the
minimum batch size a and the average waiting time of a
customer in the queue is less than time T.

+e FGBS rule has been introduced to ensure that
customers who are waiting in the queue due to batching
inadequacy get served promptly. +e FGBS rule uses the
average waiting time of the inadequate number of customers
in the queue rather than individual waiting time, since mean
is the best central tendency value that reflects a group.
Individual waiting times, such as the waiting time of the
customer at the front of the line, might result in very tiny
batches and raise the cost.

Additional possibilities for accelerating the general bulk
service include increasing the number of servers, increasing
the service rate, and lowering the minimum batch size.
Increasing the rate of service in some queueing systems, such
as processing user requests at a base station or using an
elevator for transit, may not be possible. Increasing the
number of servers and lowering the minimum batch size will
raise the cost, which is unnecessary when traffic is low; yet,
FGBS performs well under these circumstances.

In the present era, computer is a part in almost all queue
management systems. Queue Management Software (QMS)
is used in such queues to track entries, exits, the average
waiting time of all customers in queue Wq, and so on. +e
waiting time tolerance T can be calculated using the ex-
perience, the expiration period, or the customer’s direct/
indirect feedback. If the number of customers in the queue is
insufficient for bulk service but the average waiting time of
the accumulated customers Wq in the queue exceeds the
waiting time tolerance T, customise the QMS to send an alert
or notification to provide bulk service to the waiting cus-
tomers after the ongoing service is completed.

Prior to implementation, it is always a good idea to run a
simulation analysis. +rough multiple iterations, simulation
analysis can be utilised to determine an appropriate waiting
time tolerance T for a given situation. So validation and
verification can be performed in a virtual environment and
initial implementation challenges in a real-time context can
be avoided. As a result, simulation is employed throughout
this research to demonstrate the value of the proposed
concept FGBS.

In this paper, the FGBS rule is applied to a multiple
vacation MX/G(a, b)/1 queueing system. +e assumptions
for GBS and FGBS with vacation are given in Table 1. To pick
the optimum value of T, the flexible general bulk service rule
is compared to the general bulk service rule. In addition, the
suggested flexible general bulk service rule is tested in two
scenarios, namely, a clinical laboratory and a distribution
center, to determine its efficacy.

+e rest of the article is organised as follows: +e model
description and notations used in the model are found in
Section 2. In Section 3, the model’s probability generating
function is derived. Section 4 describes the simulation of the
proposed model and the determination of the optimal value
of T. +e motivation for the suggested model is discussed in
Section 5. In this section, the FGBS rule is applied to manage
clinical laboratories queueing system and queue of perish-
able items waiting for delivery. In Section 6, conclusion and
some future extensions are mentioned.

2. Model Description

+e following are the assumptions made for the multiple
vacation MX/G (a, b)/1 queueing system with FGBS rule.

Arrival of batches of customers follows the Poisson
process with composite arrival rate λ. Actual number of
customers in any arriving module is a random variable X

with probability distribution Pr(X � k) � gk. Single server
provides bulk service to the customers in the FCFS disci-
pline. Service time follows a general distribution with rate μ.
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+e server will start to provide service for the customers only
when at least a units are present in the queue or else average
waiting time of a customer in queue Wq is greater than or
equal to the waiting time tolerance T. Maximum service
capacity is b, (b≥ a). After completion of a service or a
vacation,

(i) the number of customers in the waiting line is less
than or equal to b and greater than or equal to a,
then all the existing customers are taken for service;

(ii) more than b number of customers are in the queue,
then the first b customers are taken into service;

(iii) the number of customers is lesser than the mini-
mum batch capacity a and Wq <T, then the server
leaves for vacation, which follows an exponential
distribution with rate ];

(iv) the number of customers is lesser than the mini-
mum batch capacity a but Wq ≥T, then the entire
queue is taken for service.

+e server takesmultiple vacations until at the end of any
vacation either the queue size greater than or equal to a or
Wq ≥T.

2.1. Notations. +e following are the notations used in this
model: λ is arrival rate of the customers; μ is service rate of

the server; ] is vacation rate; X is group size random variable
of arrival; gk � Pr(X � k)–PMF of X; S is random variable
for service time; Wq is random variable for average waiting
time of a customer accumulated in the queue; S(·) is cu-
mulative distribution function of service time; V(·) is cu-
mulative distribution function of vacation time; S0(t) is
remaining service time at any time t; V0(t) is remaining
vacation time at any time t; s(x) is density function of S; v(x)

is density function of V; f(wq) is density function of Wq.

3. System Size Distribution

Steady-state system size distribution is obtained in this
section. Various states of the system at time t are defined as
follows:

DefineNq(t) � number of customers in the queue at any time t,

Ns(t) � number of customers in the service at any time t and,

Y(t) �
0, server is on vacation,

1, server is busy,
􏼨

Z(t) � j, the server is on j
th vacation.

(1)

+e state probabilities are defined as

Pi,j(x, t)dt � Pr Ns(t) � i, Nq(t) � j, x< S
0
(t)< x + dt, Y(t) � 1􏽮 􏽯, a≤ i≤ b, j> 0,

Qn,j(x, t)dt � Pr Nq(t) � n, x<V
0
(t)<x + dt, Y(t) � 0, Z(t) � j􏽮 􏽯, n> 0, j> 1.

(2)

3.1. System State Equations. All possible system states are
identified and corresponding equations are written for an
infinitesimalΔt using supplementary variable technique. For
example, Pi,0(t + Δt), that is, the probability that the state
with i, (1≤ i≤ a − 1) number of customers in the system and
the queue is empty at time (t + Δt), is obtained from the
following possible events:

(i) Server is providing bulk service for i customers, the
queue is empty at time t, and no one arrives in Δt.

(ii) Average waiting time of customers in the queue
exceeds T at the completion epoch of bulk of m at t,
and hence service starts in Δt.

(iii) Average waiting time of customers in the queue
exceeds T at the completion epoch of any vacation
at t, and hence service starts in Δt.

Pi,0(x − Δt, t + Δt) � Pi,0(x, t)(1 − λΔt) + 􏽘
b

m�1
Pm,i(0, t) 􏽚

∞

T
f wq􏼐 􏼑dwqs(x)Δt

+ 􏽘
∞

l�1
Ql,i(0, t) 􏽚

∞

T
f wq􏼐 􏼑dwqs(x)Δt, 1≤ i≤ a − 1.

(3)

Table 1: Service rule and vacation policy.

Service rule Number of customers waiting in queue Vacation policy
N< a a≤N< b N> b

GBS rule No service Bulk of N Bulk of b N< a

FGBS rule Bulk of N if Wq ≥T Bulk of N Bulk of b N< a and Wq <T
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Similarly, the following equations are obtained:

Pi,0(x − Δt, t + Δt) � Pi,0(x, t)(1 − λΔt) + 􏽘
b

m�1
Pm,i(0, t)s(x)Δt + 􏽘

∞

l�1
Ql,i(0, t)s(x)Δt, a≤ i≤ b,

Pi,j(x − Δt, t + Δt) � Pi,j(x, t)(1 − λΔt) + 􏽘

j

k�1
Pi,j−k(x, t)λgkΔt, 1≤ i≤ b − 1, j≥ 1,

Pb,j(x − Δt, t + Δt) � Pb,j(x, t)(1 − λΔt) + 􏽘
b

m�1
Pm,b+j(0, t)s(x)Δt + 􏽘

j

k�1
Pb,j−k(x, t)λgkΔt + 􏽘

∞

l�1
Ql,b+j(0, t)s(x)Δt, j≥ 1,

Q1,0(x − Δt, t + Δt) � Q1,0(x, t)(1 − λΔt) + 􏽘
b

m�1
Pm,0(0, t)v(x)Δt,

Q1,n(x − Δt, t + Δt) � Q1,n(x, t)(1 − λΔt) + 􏽘
b

m�1
Pm,n(0, t)v(x)Δt + 􏽘

n

k�1
Q1,n−k(x, t)λgkΔt, n≥ 1,

Qj,0(x − Δt, t + Δt) � Qj,0(x, t)(1 − λΔt) + Qj−1,0(0, t)v(x)Δt, j≥ 2,

Qj,n(x − Δt, t + Δt) � Qj,n(x, t)(1 − λΔt) + Qj−1,n(0, t) 􏽚
T

0
f wq􏼐 􏼑dwqv(x)Δt + 􏽘

n

k�1
Qj,n−k(x, t)λgkΔt, j≥ 2, n≥ 1.

(4)

In the steady state, the transient effects get faded. Hence,
the following steady-state equations are obtained using the

assumptions Pi,j(x, t) � Pi,j(x) and Qn,j(x, t) � Qn,j(x) in
the above system of equations:

−
d
dx

Pi,0(x) � −λPi,0(x) + 􏽘
b

m�1
Pm,i(0) 􏽚

∞

T
f(w)dws(x) + 􏽘

∞

l�1
Ql,i(0) 􏽚

∞

T
f(w)dws(x), 1≤ i≤ a − 1, j � 0, (5)

−
d
dx

Pi,0(x) � −λPi,0(x) + 􏽘
b

m�1
Pm,i(0)s(x) + 􏽘

∞

l�1
Ql,i(0)s(x), a≤ i≤ b − 1, (6)

−
d
dx

Pi,j(x) � −λPi,j(x) + 􏽘

j

k�1
Pi,j−k(x)λgk, a≤ i≤ b − 1, j≥ 1 (7)

−
d
dx

Pb,j(x) � −λPb,j(x) + 􏽘
b

m�1
Pm,b+j(0)s(x) + 􏽘

j

k�1
Pb,j−k(x)λgkt + 􏽘

∞

l�1
Ql,b+j(0)s(x), j≥ 1 (8)

−
d
dx

Q1,0(x) � −λQ1,0(x) + 􏽘
b

m�1
Pm,0(0)v(x) (9)

−
d
dx

Q1,n(x) � −λQ1,n(x) + 􏽘
b

m�1
Pm,n(0)v(x) + 􏽘

n

k�1
Q1,n−k(x)λgk, n≥ 1, (10)

−
d
dx

Qj,0(x) � −λQj,0(x) + Qj−1,0(0)v(x), j≥ 2 (11)

−
d
dx

Qj,n(x) � −λQj,n(x) + Qj−1,n(0) 􏽚
T

0
f(w)dwv(x) + 􏽘

n

k�1
Qj,n−k(x)λgk, j≥ 2, n≥ 1. (12)
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+e Laplace-Stieltjes transform is defined as follows:

􏽥Pi,n(θ) � 􏽚
∞

0
e

− θx
Pi,n(x)dx,

􏽥Qj,n(θ) � 􏽚
∞

0
e

− θx
Qj,n(x)dx.

(13)

Taking Laplace-Stieltjes transform on both sides of (5) to
(12),

θ􏽥Pi,0(θ) − Pi,0(0) � λ􏽥Pi,0(θ) − 􏽘
b

m�1
Pm,i(0) 􏽚

∞

T
f(w)dw􏽥S(θ) − 􏽘

∞

l�1
Ql,i(0) 􏽚

∞

T
f(w)dw􏽥S(θ), 1≤ i≤ a − 1, j � 0, (14)

θ􏽥Pi,0(θ) − Pi,0(0) � λ􏽥Pi,0(θ) − 􏽘
b

m�1
Pm,i(0)􏽥S(θ) − 􏽘

∞

l�1
Ql,i(0)􏽥S(θ), a≤ i≤ b − 1, (15)

θ􏽥Pi,j(θ) − Pi,j(0) � λ􏽥Pi,j(θ) − 􏽘

j

k�1

􏽥Pi,j−k(θ)λgk, a≤ i≤ b − 1, j≥ 1, (16)

θ􏽥Pb,j(θ) − Pb,j(0) � λ􏽥Pb,j(0) − 􏽘
b

m�1
Pm,b+j(0)􏽥S(θ) − 􏽘

j

k�1

􏽥Pb,j−k(θ)λgkt − 􏽘
∞

l�1
Ql,b+j(0)􏽥S(θ), j≥ 1, (17)

θ􏽥Q1,0(θ) − Q1,0(0) � λ􏽥Q1,0(θ) − 􏽘
b

m�1
Pm,0(0)􏽥V(θ), (18)

θ􏽥Q1,n(θ) − Q1,0(0) � λ􏽥Q1,n(θ) − 􏽘
b

m�1
Pm,n(0)􏽥V(θ) − 􏽘

n

k�1

􏽥Q1,n−k(θ)λgk, n≥ 1, (19)

θ􏽥Qj,0(θ) − Qj,0(0) � λ􏽥Qj,0(θ) − Qj−1,0(0)􏽥V(θ), j≥ 2, (20)

θ􏽥Qj,n(θ) − Qj,n(0) � λ􏽥Qj,n(θ) − Qj−1,n(0) 􏽚
T

0
f(w)dw􏽥V(θ) − 􏽘

n

k�1

􏽥Qj,n−k(θ)λgk, j≥ 2, n≥ 1. (21)

+e following marginal/partial probability generating
functions are defined to obtain the probability generating
function (PGF) of the system size at an arbitrary time:

􏽥Pi(z, θ) � 􏽘
∞

j�0

􏽥Pi,j(θ)z
j
,

Pi(z, 0) � 􏽘
∞

j�0
Pi,j(0)z

n
, 1≤ i≤ b,

􏽥Qj(z, θ) � 􏽘

∞

n�0

􏽥Qj,n(θ)z
n
,

Qj(z, 0) � 􏽘

∞

n�0
Qj,n(0)z

n
, j≥ 1.

(22)

Multiplying (18) and (19) by z0 and zn, n � 1, 2, . . . a − 1,
respectively, we get
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[θ − λ + λX(z)] 􏽥Q1(z, θ) � Q1(z, 0) − 􏽥V(θ) 􏽚
T

0
f(w)dw 􏽘

a−1

n�0
􏽘

b

m�1
Pmn(0)z

n⎡⎣ ⎤⎦. (23)

Multiplying (20) and (21) by z0 and zn, n � 1, 2, . . . a − 1,
respectively, we get

[θ − λ + λX(z)] 􏽥Qj(z, θ) � Qj(z, 0) − 􏽥V(θ) 􏽘
a−1

n�0
Qj−1(0)z

n
􏽚

T

0
f(w)dw, j≥ 2. (24)

Multiplying (14) and (16) by z0 and zj, j � 1, 2, . . . a − 1,
respectively, we get

[θ − λ + λX(z)]􏽥Pi(z, θ) � Pi(z, 0) − 􏽥S(θ) 􏽚
T

0
f(w)dw 􏽘

b

m�1
Pm,i(0) + 􏽘

∞

l�1
Ql,i(0)⎡⎣ ⎤⎦, 0≤ i≤ a − 1. (25)

Multiplying (15) and (16) by z0 and zj,
j � a, a + 1, . . . b − 1, respectively, we get

[θ − λ + λX(z)]􏽥Pi(z, θ) � Pi(z, 0) − 􏽥S(θ) 􏽘
b

m�1
Pm,i(0) + 􏽘

∞

l�1
Ql,i(0)⎡⎣ ⎤⎦, a≤ i≤ b − 1. (26)

Multiplying (15) and (17) by z0 and zj, we get

[θ − λ + λX(z)]􏽥Pb(z, θ) � Pb(z, 0) − 􏽥S(θ) 􏽘
∞

j�0
􏽘

b

m�1
Pm,b+j(0)z

j
+ 􏽘
∞

j�0
􏽘

∞

l�1
Ql,b+j(0)z

j⎡⎢⎢⎣ ⎤⎥⎥⎦. (27)

Or

z
b
[θ − λ + λX(z)]􏽥Pb(z, θ) � z

b
Pb(z, 0) − 􏽥S(θ) 􏽘

b

m�1
Pm(z, 0) − 􏽘

b−1

j�0
􏽘

b

m�1
Pm,j(0)z

j
+ 􏽘
∞

l�1
Ql(z, 0) − 􏽘

b−1

j�0
􏽘

∞

l�1
Ql,j(0)z

j⎡⎢⎢⎣ ⎤⎥⎥⎦. (28)
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When θ � λ − λX(z), the above equations gives

Q1(z, 0) � 􏽥V(λ − λX(z)) 􏽚
T

0
f(w)dw 􏽘

a−1

n�0
􏽘

b

m�1
Pmn(0)z

n⎡⎣ ⎤⎦,

Qj(z, 0) � 􏽥V(λ − λX(z)) 􏽘
a−1

n�0
Qj−1(0)z

n
􏽚

T

0
f(w)dw, j≥ 2,

Pi(z, 0) � 􏽥S(λ − λX(z)) 􏽚
T

0
f(w)dw 􏽘

b

m�1
Pm,i(0) + 􏽘

∞

l�1
Ql,i(0)⎡⎣ ⎤⎦, 0≤ i≤ a − 1,

Pi(z, 0) � 􏽥S(λ − λX(z)) 􏽘
b

m�1
Pm,i(0) + 􏽘

∞

l�1
Ql,i(0)⎡⎣ ⎤⎦, a≤ i≤ b − 1,

z
b
Pb(z, 0) � 􏽥S(λ − λX(z)) 􏽘

b

m�1
Pm(z, 0) − 􏽘

b−1

j�0
􏽘

b

m�1
Pm,j(0)z

j
+ 􏽘
∞

l�1
Ql(z, 0) − 􏽘

b−1

j�0
􏽘

∞

l�1
Ql,j(0)z

j⎡⎢⎢⎣ ⎤⎥⎥⎦a≤ i≤ b − 1

� 􏽥S(λ − λX(z)) 􏽘
b−1

m�1
Pm(z, 0) + Pb(z, 0) − 􏽘

b−1

j�0
􏽘

b

m�1
Pm,j(0)z

j
+ 􏽘

∞

l�1
Ql(z, 0) − 􏽘

b−1

j�0
􏽘

∞

l�1
Ql,j(0)z

j⎡⎢⎢⎣ ⎤⎥⎥⎦,

z
b

− 􏽥S(λ − λX(z))􏽨 􏽩Pb(z, 0) � 􏽥S(λ − λX(z)) 􏽘
b−1

m�1
Pm(z, 0) − 􏽘

b−1

j�0
􏽘

b

m�1
Pm,j(0)z

j
+ 􏽘
∞

l�1
Ql(z, 0) − 􏽘

b−1

j�0
􏽘

∞

l�1
Ql,j(0)z

j⎡⎢⎢⎣ ⎤⎥⎥⎦,

􏽥Q1(z, θ) �
[􏽥V(λ − λX(z)) − 􏽥V(θ)]

[θ − λ + λX(z)]
􏽚

T

0
f(w)dw 􏽘

a−1

n�0
􏽘

b

m�1
Pmn(0)z

n⎡⎣ ⎤⎦,

􏽥Qj(z, θ) �
[􏽥V(λ − λX(z)) − 􏽥V(θ)]

[θ − λ + λX(z)]
􏽘

a−1

n�0
Qj−1(0)z

n
􏽚

T

0
f(w)dw, j≥ 2,

􏽥Pi(z, θ) �
[􏽥S(λ − λX(z)) − 􏽥S(θ)]

[θ − λ + λX(z)]
􏽚

T

0
f(w)dw 􏽘

b

m�1
Pm,i(0) + 􏽘

∞

l�1
Ql,i(0)⎡⎣ ⎤⎦0≤ i≤ a − 1,

􏽥Pi(z, θ) �
[􏽥S(λ − λX(z)) − 􏽥S(θ)]

[θ − λ + λX(z)]
􏽘

b

m�1
Pm,i(0) + 􏽘

∞

l�1
Ql,i(0)⎡⎣ ⎤⎦, a≤ i≤ b − 1,

􏽥Pb(z, θ) �
[􏽥S(λ − λX(z)) − 􏽥S(θ)]

[θ − λ + λX(z)] z
b

− 􏽥S(λ − λX(z))􏽨 􏽩
􏽘

b−1

m�1
Pm(z, 0) − 􏽘

b−1

j�0
􏽘

b

m�1
Pm,j(0)z

j
+ 􏽘

∞

l�1
Ql(z, 0) − 􏽘

b−1

j�0
􏽘

∞

l�1
Ql,j(0)z

j⎡⎢⎢⎣ ⎤⎥⎥⎦.

(29)
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Let P(z) be the probability generating function of the
queue size at an arbitrary time epoch. +en

P(z) � 􏽘

a−1

i�1

􏽥Pi(z, 0) + 􏽘

b−1

i�a

􏽥Pi(z, 0) + 􏽥Pb(z, 0) + 􏽘

∞

j�1

􏽥Qj(z, 0)

� 􏽘
a−1

i�1

[􏽥S(λ − λX(z)) − 1]

[−λ + λX(z)]
􏽚

T

0
f(w)dw 􏽘

b

m�1
Pm,i(0) + 􏽘

∞

l�1
Ql,i(0)⎡⎣ ⎤⎦ + 􏽘

b−1

i�a

[􏽥S(λ − λX(z)) − 1]

[−λ + λX(z)]
􏽘

b

m�1
Pm,i(0) + 􏽘

∞

l�1
Ql,i(0)⎡⎣ ⎤⎦

+
[􏽥S(λ − λX(z)) − 􏽥S(θ)]

[θ − λ + λX(z)] z
b

− 􏽥S(λ − λX(z))􏽨 􏽩
􏽘

b−1

m�1
Pm(z, 0) − 􏽘

b−1

j�0
􏽘

b

m�1
Pm,j(0)z

j
+ 􏽘
∞

l�1
Ql(z, 0) − 􏽘

b−1

j�0
􏽘

∞

l�1
Ql,j(0)z

j⎡⎢⎢⎣ ⎤⎥⎥⎦

+
[􏽥V(λ − λX(z)) − 1]

[−λ + λX(z)]
􏽚

T

0
f(w)dw 􏽘

a−1

n�0
􏽘

b

m�1
Pmn(0)z

n⎡⎣ ⎤⎦ + 􏽘
∞

j�2

[􏽥V(λ − λX(z)) − 1]

[−λ + λX(z)]
􏽘

a−1

n�0
Qj−1(0)z

n
􏽚

T

0
f(w)dw.

(30)

Let Pi � 􏽐
b
m�1 Pmi(0), qi � 􏽐

∞
l�1 Qli(0), and ci � pi + qi.

P(z) � [􏽥S(λ − λX(z)) − 1] z
b

􏽚
∞

T
f(w)dw 􏽘

a−1

i�1
ci + 􏽘

b−1

i�a

ci
⎡⎣ ⎤⎦ −􏽘

b−1

i�1
ciz

i⎤⎦⎡⎣ ⎤⎦ +
z

b
− 1􏽨 􏽩 􏽒

T

0 f(w)dw[ 􏽥V(λ − λX(z)) − 1]􏽐
a−1
i�1 ciz

i

λ + λX(z)] z
b

− 􏽥S(λ − λX(z))􏽨􏽨 􏽩
.

(31)

4. Simulation Model

+e random variable Wq signifies the average waiting time
of customers in the queue, whereas f(wq) is the corre-
sponding density function called average waiting time dis-
tribution. For the average waiting time distribution, no
assumptions were used. Because obtaining performance
measures of the suggested model via an analytical/closed
form solution is tedious, simulation is used to justify the
model. +e transient and steady-state behaviours of a
queueing system can be visualised using a simulation model.
It can also provide performance measures that are not
available in an analytical method, such as the number of
customers who join the system, the number of customers
who are served, and the average batch size. +e suggested
model’s ARENA Document, as well as the descriptions used
in the modules, is shown in Figure 1.

+e simulation was conducted over the course of a year.
Table 2 shows performance measures such as average
number of customers and average waiting time of a cus-
tomer in the queue under FGBS and GBS rules. In the table,
the values assigned to both fixed and variable parameters are
listed. +e following are some observations:

(i) When the mean rate of arrival decreases, the
interarrival time 1/λ increases. As a result, the re-
quired number of customers for batching is slowly
reached, resulting in a decrease in queue length and
an increase in the average waiting time of a

customer under GBS rule. +e FGBS rule, on the
other hand, controls the customer’s waiting time.

(ii) When the mean service time 1/μ increases, the mean
waiting time of a customer increases under both
GBS and FGBS rules. However, the waiting time in
the system with FGBS rule is lesser than that in the
system with GBS rule.

(iii) Average waiting time of a customer grows when the
minimum need for batch service a increases in the
system under the GBS rule. +e FGBS rule works
nicely in this case. It controls the number of cus-
tomers waiting in the queue and the average waiting
time of the customer in the queue.

(iv) +e server’s nonavailability increases as the vacation
time 1/v increases. +e GBS rule increases the av-
erage customer waiting time, whereas the FGBS rule
keeps it under control.

4.1. An Illustration to Find the Optimum Value of T. For a
given set of parametric values, Table 2 displays the per-
formance measures of a queue with GBS and FGBS rules. It
was discovered that the FGBS rule efficiently controls the
batching delay. In the case of the FGBS queue, T is a factor
that influences a customer’s average waiting time; therefore
it is critical to select appropriate T for the model. Smaller T

value often makes small batches lead to an increase in cost.
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Figure 1: ARENA Document for the system with FGBS rule.

Table 2: Performance measures of FGBS and GBS queueing system.

Fixed Varying Varying parameter FGBS GBS
Parameter value Parameter Value Lq Wq Lq Wq

7 5.5331 19.428 9 5.968 6 19.450 0
p � 0.5, μ � 1/15 8 4.779 5 19.546 6 4.845 4 19.6091
1/v � 10, T � 20 1/λ 9 4.307 2 19.600 6 4.402 7 19.818 0
a � 5, b � 10 10 3.921 4 19.732 0 4.003 3 20.195 4

11 3.561 3 19.597 7 3.794 0 20.767 5
16 6.079 5 21.454 5 6.014 6 21.468 3

p � 0.5, λ � 1/7 17 6.764 4 23.672 3 6.8101 24.037 5
1/v � 10, T � 20 1/μ 18 7.061 8 24.054 4 6.9151 24.440 0
a � 5, b � 10 19 7.660 9 27.487 5 8.087 4 28.729 9

20 9.670 6 29.495 8 8.354 5 30.227 0
6 5.859 8 20.490 6 .0017 21.161 0

p � 0.5, λ � 1/7 7 5.829 2 20.508 0 6.647 2 23.428 2
1/7 � 10, T � 20 a 8 5.820 4 20.460 8 7.3731 25.706 4
μ � 1/15, b � 10 9 5.876 2 20.537 5 8.062 9 28.726 2

10 5.869 3 20.432 0 8.686 2 30.242 6
11 5.892 7 20.462 6 6.230 2 21.838 6

p � 0.5, λ � 1/7 12 5.7161 20.014 2 6.0551 21.6661
1/μ � 1/15, T � 20 1/v 13 5.9351 20.520 4 6.587 7 22.978 6
a � 5, b � 10 14 5.869 0 20.490 3 6.666 5 23.359 8

15 5.807 2 20.369 4 6.540 5 23.050 9
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Setting a large T value results in bigger batches, which may
save costs but increases the average wait time of a customer.
An optimal T value, on the other hand, manages and
minimises a customer’s queue waiting time at the lowest
possible cost. +e T value can be derived from the problem
itself in some real-world situations like the blood samples
awaiting clinical testing, perishable commodities awaiting
delivery, and so on. If no such T is available in the problem,
one can use the ARENA Output Analyzer to get the opti-
mum value of T. +e procedure of choosing the correct T

value is given below.
Along with the FGBS simulation model in ARENA, a

.dat file is produced in the statistic module to collect the data
of the variable BatchSize to identify the optimum T value.
Figure 2 depicts a spreadsheet view of the .dat file. To find the
optimum T value, along with the FGBS simulation model in
ARENA a .dat file is created in the statistic module to collect
the statistics of the BatchSize. Spreadsheet view of the .dat
file is shown in Figure 2.

For each T value from 1 to 27, a separate .dat file was
produced. +ese data files include data that is persistent
across time. So, using the batch/truncate icon in Output
Analyzer, a .flt file was produced for each file. Using the
Conf. Int (Mean) icon in the Output Analyzer, all of these .flt
files were uploaded to obtain the confidence interval of the
average batch size. +e results are shown in the graph of
mean batch size with a confidence interval (95%) in Figure 3
and a summary in Table 3.

p � 0.5, λ � 1/7, μ � 1/15, a � 7, b � 10, 1/v � 10.
+e average waiting time of a customer in the queue

under the GBS rule is 23.428 2 for the parametric set of
parameters p � 0.5, � 1/7, � 1/15, a � 7, b � 10, 1/v � 10
from Table 2. Figure 3 shows that when T ranges from 1 to
11, the average batch size does not change. Table 3 further
shows that, for any T between 1 and 11, the average batch
size is 4.54, the average waiting time of a customer is
18.185 8, and the total number of services is 4664. Under the
FGBS rule, a customer’s minimal average waiting time is
18.185 8 minutes. From T�12, the average batch size is
beginning to rise. To identify an optimum T, the data in
Table 3 are shown in Figure 4. From the graph, the average
waiting time of a customer can be controlled from 18.185 8.
As per the graph, the maximum T value which minimises
average waiting time of a customer in the queue, maximizes
average batch size, and minimizes number of services is 18.
At the optimum T, the average waiting time of a customer is
18.660 5. As a result, if the T value is not provided in the
problem, the suitable T value can be determined by prior
experience or simulation based on the waiting time
constraint.

5. Application of Proposed Model

Managing the customers having a fixed lifetime in a queue is
a complicated task because it should not die or destroy
before departing from the system. If it expires before the
service completion the cost of product and service become a
loss. Two common and frequently occurring situations are
considered to show the effectiveness of the proposed model.

+e first one is a clinical laboratory problem, where the
specimens are alive only for a fixed lifetime after which they
will expire. Analysis of the expired specimen creates a
clinical error. +e second one is the management of per-
ishable items such as meat, vegetables, and flowers. +e
expiration of perishable items leads to wastage of the item
itself.

5.1. Flexible General Bulk Service in Clinical Laboratory.
Every day, clinical laboratories worldwide analyze billions of
samples. Clinical laboratory results are used to provide
essential information that allows reliable clinical decision-
making for diagnosis, drug prescriptions, patient’s admis-
sion, or discharge from the hospital. +e complex process of
laboratory testing finally provides a report, which is not
error-free always. Clinical errors affect the emotional, fi-
nancial, physical, and social behaviours of patients and
sometimes technicians as well. Although Plebani and Car-
raro [10] demonstrated that 74% of laboratory errors did not
affect patient’s outcome, the other 26% becomes a patient
care problem leading at least to further inappropriate in-
vestigations, discomfort, increased costs, even worse, im-
proper care, modification to therapy, and so forth. Steps in
clinical specimen testing are given in Figure 5. Lab testing
process generally comprises three phases. +e first is the
preanalytical phase, which encompasses all the steps from
the test request, sample collection, transport, and registra-
tion of the sample up to the start of specimen analysis. +e
second is the analytical phase, which involves the analysis of
the samples and technical validation of the results. +e third
is the postanalytical phase, which includes the interpretation
of the results, approval from the lab manager, and reporting
to the physician. Laboratory errors might occur at any of
these three phases.

+e majority of diagnostic lab errors are either pre-
analytical (46–68.2%) or postanalytical (18.5–47%). Indeed,
only 7 − 13% of errors occur during the analytical phase [11].
Detecting an error in the preanalytical phase is difficult and
hardest to regulate and monitor because of the involvement
of too many professionals like physicians, specialists of
laboratory medicine, nurses, laboratory technicians, and
phlebotomists [11]. Sakyi et al. [12] identified nine types of
most common preanalytical errors. Delay in sample trans-
portation is one of them. Nagat [13] investigated the fre-
quency of preanalytical errors and identified that delay in
sample transportation is a major cause for preanalytical
laboratory error with a high frequency of 39%. +is delay
time includes the time from the specimen collection to the
start of the specimen analysis. It includes the delay caused by
batching process and the blood samples are not reaching for
the test on time. So, it is essential to minimize the delay in
sample transportation to decrease the number of clinical
errors that occur in the preanalytical phase.

5.1.1. Model Description in Clinical Laboratory. +e clinical
laboratory conducts blood test for both inpatients (IP) and
outpatients (OP). For IP, the order of taking blood samples is
prepared as a first step and then the ward nurses take the
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blood samples. If the number of samples is more than a1, a
nurse batches the collected samples with a maximum of b1
samples and transports them to the laboratory. If the

number of samples is inadequate, then the nurse goes on a
vacation by taking a break or doing secondary work. +e
duration of vacation follows an exponential distribution

Figure 2: Spread sheet view of statistic module.

Figure 3: Confidence interval for mean batch size.

Table 3: Performance measures for different T value.

T
Mean

Wq

No. of
T

Mean
Wq

No. of
Batch size Services Batch size Services

(in thousands) (in thousands)
1 4.54 18.185 8 4.664 15 4.56 18.304 2 4.633
2 4.54 18.185 8 4.664 16 4.57 18.353 5 4.621
3 4.54 18.185 8 4.664 17 4.65 18.387 4.503
4 4.54 18.185 8 4.664 18 4.6 18.660 5 4.55
5 4.54 18.185 8 4.664 19 4.71 19.413 3 4.386
6 4.54 18.185 8 4.664 20 5.32 20.508 3.578
7 4.54 18.185 8 4.664 21 5.59 21.358 5 3.352
8 4.54 18.185 8 4.664 22 6.52 22.1731 2.719
9 4.54 18.185 8 4.664 23 8.32 22.829 5 1.905
10 4.54 18.185 8 4.664 24 8.67 23.111 7 1.796
11 4.54 18.185 8 4.664 25 8.66 22.840 8 1.837
12 4.54 18.258 3 4.652 26 8.68 23.428 2 1.787
13 4.55 18.286 3 4.651 27 8.68 23.428 2 1.787
14 4.56 18.278 4 4.639 28 8.68 23.428 2 1.787
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with a rate of v1. +e blood samples of the OP are taken in
the clinical laboratory itself. +e collected samples are
queued for the test bases on the FIFO queue discipline. +e
technician again batches the samples based on the capacity
of the machine. +e technician operates the machine only
when at least a2 samples are available and the machine can
hold a maximum of b2 samples. After running the machine,
the technician publishes the result for diagnosis. A blood
sample expires after a time frame T because the blood
structure changes. After that, it is not useful for medical
analysis. +e technician waits at least a2 number of samples
to optimize the operating cost of the testing machine, but the
blood samples will expire in T minutes. +erefore, the nurse
in the ward and the technician in the clinical laboratory
should not wait until the arrival of at least a1 and a2 numbers
of samples, respectively. So, the batching rule of the nurse in
the ward has to be modified as the specimens are taken for
transport: either the availability of at least a1 samples or the
average waiting time of the blood samples in the ward ex-
ceeding T1 minutes, whichever occurs first. Likewise, the
batching of blood tests is done based on the first occurrence
of either at least a2 or average waiting time in the clinic not
exceeding T2 minutes. At completion epoch of service or
vacation, if any of the conditions for batching fails to hold,
then the nurse or the technician takes a vacation. +e as-
sumptions in Table 4 are used to simulate the model.

5.1.2. Numerical Illustration. +e general bulk service (GBS)
and flexible general bulk service (FGBS) rule models are
simulated for the same set of values. +e models ran for
different values of minimum batch sizes a1 and a2 for 30
days. From that, the average waiting time of the customers in
the queue, the total number of customers served at the end of
the simulation run, the number of expiration of customers,
and the cost of the models are tabulated in Tables 5 and 6.

From Tables 5 and 6, the deviation between the service
rules GBS and FGBS on the performance measure of total
number of customers served and cost of the system is not
significant for different values of a1 and a2. But the aim of
introducing the FGBS rule is to reduce the average waiting
time of the customer and expiration. +e performance
measures like total number of expired customers and av-
erage waiting time of a customer in the system are signif-
icantly low. Hence, the FGBS satisfies its purpose.+e graphs
in Figures 6 and 7 illustrate this clearly.

Figures 6(a) and 6(b) show that the total number of
expirations of customers is minimum under FGBS rule and
considerably increases under GBS rule for higher values of a1
and a2, respectively.

Figures 7(a) and 7(b) show that the average waiting time
of a customer in the system is in control under FGBS rule but
it is out of control under GBS rule, especially at higher values
of a1 and a2.
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Figure 4: Performance measures with respect to T.
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Figure 5: Clinical laboratory flow diagram.

12 Mathematical Problems in Engineering



5.2. Flexible General Bulk Service in Perishable Goods
Management. +e distribution center is designed to store
the goods for retailers and wholesalers. +e goods are dis-
tributed to another seller or customer directly from the

distribution center. In today’s world, these distribution
centers are an important part of online retailers and
e-commerce businesses. Distribution centers may store both
perishable and nonperishable items. +e fulfillment of the

Table 4: Assumptions.

Parameter Transport from ward Testing machine
Interarrival time Exponential (λ1 � 1/7) From ward + exponential (λ2 � 1/6)∗
Service time Exponential (μ1 � 1/15) Exponential (μ2 � 1/25)
Vacation time Exponential (v1 � 1/10) Exponential (v2 � 1/45)
Minimum batch size a1 � 5 a2 � 24
Maximum batch size b1 � 10 b2 � 32
+reshold T1 � 20 T2 � 40
Cost-busy (hr) 60 57
Cost-idle (hr) 60 57
Cost per use 20 300
∗Arrival of OP blood sample is scheduled from 9.00 am to 5 pm. Holding cost per entity is assumed as 10.

Table 6: Performance of the system with GBS and FGBS for different values of a2.

a2
General bulk service rule Flexible general bulk service rule

E (W) No. served Expired Cost (Rs.) E (W) No. served Expired Cost

20 99.35 8533 559 563 995 59.79 8601 29 566 877
21 108.17 8587 849 586 365 60.01 8423 8 572 454
22 105.79 8505 810 580 504 60.26 8650 33 577 611
23 112.79 8488 928 591 951 60.97 8590 23 565 880
24 114.73 8562 1070 602 047 60.36 8600 16 570181
25 119.32 8438 1355 607 912 60.1 8591 19 580 819
26 123.67 8474 1377 616 739 60.01 8521 3 579136
27 128.7 8413 1684 625 369 60.08 8547 9 576 013

Table 5: Performance of the system with GBS and FGBS for different values of a1.

a1
General bulk service rule Flexible general bulk service rule

E (W) Served Expired Cost (Rs.) E (W) Served Expired Cost

2 107.2 8431 780 582 345 54.68 8533 0 584 643
3 109.07 8577 792 588 781 56.74 8567 9 568 737
4 110.11 8550 820 591 135 58.89 8552 20 567 272
5 114.73 8562 1070 602 047 60.36 8600 16 570181
6 118.52 8422 1280 603 946 60.14 8618 5 584 641
7 115.2 8488 1270 604 616 60.64 8629 30 593 734
8 113.14 8508 1466 620 084 60.08 8560 27 603 234
9 125.12 8599 1572 627 462 60.23 8531 21 600 620
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Figure 6: Expiration of customers.
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order has five steps as shown in Figure 8. +ere is a big
difference between managing perishable goods and man-
aging nonperishable goods. Storing and distributing the
goods at low cost is the only goal of nonperishable items.
Meanwhile, the time is the major constraint for perishable
items because they have a limited lifespan after which they
expire and become useless. Consider a distribution center
where many suppliers are storing their perishable goods.
+ere are less chances of delay until the third stage of order
fulfillment. But usually delay happens in the fourth and fifth
stage as they wait until at least a units are available to reduce
the shipping cost.+is mayminimize the transportation cost
but sometimes the items may deteriorate before delivery. So
it is essential to study storing and transporting the perishable
items with optimum cost and minimum expiration. In this
article, the distribution of perishable items is analyzed from
queueing theory perspective. More specifically, the problem
of storing and transporting perishable items at low cost and
minimum wastage is considered by applying the FGBS rule.

5.2.1. Model Description in Perishable Goods Management.
+e following assumptions are made: a bulk of perishable
goods arrive at the warehouse according to the Poisson
distribution with the composite arrival rate λ and they are
stored for later shipment with already existing products. +e
queue of products in the distribution center is served upon
arrival of a truck and its capacity is b units. Assume that one
truck is used to transport products from one distribution
center to customers. +e transportation cost and average
waiting time will be minimum if always transported with full

truckload. Most of products cannot be delivered in this
manner, because always the number of items in the dis-
tribution center may not be greater than or equal to b. In our
model, it is assumed that the transportation is performed
right after the quantity of goods accumulated in the ware-
house reaches:

less than a but the average waiting time of the items is
greater than or equal to time T, all the items are taken
for transport;
lesser than time T, the server leaves for a vacation;
greater than a but less than b, all the items are taken for
transport;
more than b, first b are taken for transport.

+e transportation time follows an exponential distri-
bution with rate μ. If the criterion to transport is not met, the
server used to transport the items will take multiple vacations
until the system meets the criteria at the end of any vacation.
+e duration of vacation follows an exponential distribution
with rate ]. +is type of queue will fall under MX/M(a, b)/1
with flexible general bulk service and multiple vacations. +e
queue discipline FIFO is suitable for this queue.

5.2.2. Numerical Illustration. +e following set of para-
metric values was considered to simulate the model: +e
arrival of the batches of perishable items follows the Poisson
process with rate λ � 1/15 per hr.+e size of each such batch
is a random variable X following a geometric distribution
with probability p � 0.5. +e service time of the truck
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Figure 7: Average waiting time of a customer in the queue.
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follows an exponential distribution with rate μ � 1 per hr.
Maximum truck capacity is b � 32. +e vacation time of the
server follows an exponential distribution with rate ] � 2.
+e lifespan of the product is 7 hrs. Table 7 shows how the
FGBS rule is more efficient than the GBS rule for increasing
the value of the minimum capacity of truck a.

+e box and whisker plot shown in Figure 9 was drawn
using the values from Table 7 to compare the results from
each of the rules. +e following is observed:

+e average waiting time of a customer is effectively
controlled under the FGBS rule. Its minimum value is
1.3731, maximum value is 1.503 5, median is 1.499 95, Q1
is 1.498 3, and Q3 is 1.499 5. +e box is not visible, since
the deviation between Q1 and Q3 has relatively a small
value.

Percentage of expiration is very low in case of FGBS rule
in comparison to GBS rule. Tolerance of average waiting
time of a perishable item in the distribution center T is
chosen based on the lifetime of the item.

Utilization of server is large because the frequency of
providing service in FGBS is greater than that in GBS.

By applying the FGBS rule in the distribution of per-
ishable items, the risk of spoilage or loss of freshness is
minimized. +e increase in the utilization of the server may
increase the cost but it reduces the cost due to the wastage of
items.

6. Conclusion

An attempt is made in this article to reduce the waiting time
of a customer in the general bulk service queueing system.
Flexible general service rule is introduced and analyzed for
different T values. It has been proved that the FGBS rule
effectively constricts the waiting time of a customer. +is
model is preeminent for the customer who has a fixed
lifespan. Application of the FGBS rule is illustrated in detail
with the help of two scenarios, namely, specimen waiting for
testing in a clinical laboratory and perishable item waiting
for delivery. It is observed that the FGBS rule effectively
reduced the expiration of specimen and wastage of per-
ishable items. FGBS rule is a threshold to reduce and control
the waiting time of a customer in any type of bulk service.
+e model can be further extended with restricted admis-
sibility, service and vacation interruptions, and setup time
concepts for future research. +e proposed queueing model
may be studied for discrete time case also. FGBS may be
incorporated in a multiple service channel queueing system.
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