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A hybrid double-loop optimization algorithm combing particle swarm optimization (PSO) and nonintrusive polynomial chaos
(NIPC) is proposed for solving the robust trajectory optimization of hypersonic glide vehicle (HGV) under uncertainties. In the
outer loop, the PSO method searches globally for the robust optimal control law according to a penalized fitness function that
contains the system robustness considerations. In the inner loop, uncertainty propagation of the stochastic system is performed
using the NIPCmethod, to provide statistical moments for the iterative scheme of the PSOmethod in the outer loop. Only control
variables are discretized, and the state constraints are satisfied implicitly through the numerical integration process, which reduces
the number of decision variables as well as the huge amount of computation increased by NIPC. In the end, the robust optimal
control law is achieved conveniently. Numerical simulations are carried out considering a classical time-optimal trajectory
optimization problem of HGV with uncertainties in both initial states and aerodynamic coefficients. )e results demonstrate the
feasibility and effectiveness of the proposed method.

1. Introduction

Hypersonic glide vehicle (HGV) is generally released from
solid rocket boosters and then reentry glides through the
atmosphere at hypersonic speed without power. Depending
on the high lift-to-drag (L/D) ratio shape design and proper
aerodynamic control techniques, it can achieve long flight
distance and strong maneuverability. In recent years, HGV
has attracted worldwide attention for its broad application
prospects in both military and civilian fields [1–3].

However, the reentry region of HGV is quite narrow and
always suffers from complex uncertainties, due to large space
span, long flight time, changeable aerodynamic environ-
ment, and shortage of flight experience [4]. )erefore, the
reentry trajectory design, as a core problem of the guidance
and control, has become a challenge and hotspot for HGV
[5, 6]. )e performance of trajectory design is the essential
section of a flight. )e trajectory design framework of offline
trajectory optimization and online tracking guidance is

usually adopted in engineering, because of the limitation of
the current vehicle-borne computing capacity and the high
real-time calculation requirements [6, 7]. Under this
framework, the reference trajectory is optimized offline and
then stored in the onboard computer for the guidance and
control system to track.

)e reference trajectory optimization process affords an
overall analysis of multidisciplinary designs and provides a
theoretical basis for many other disciplines, such as guid-
ance, control, defense penetration, and thermal protection.
It is essentially a nonlinear optimal control problem with
multiple constraints, including the control limitation, dy-
namic pressure, heating rate, and aerodynamic load. It is
difficult to solve this problem analytically; thus, many nu-
merical optimization algorithms have been developed and
applied by now [8–12]. According to Betts’ survey on nu-
merical trajectory optimization methods, these algorithms
can be divided into two categories [13]. )e first one is the
indirect method, in which the trajectory optimization
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problem is converted to a Hamiltonian boundary value
problem using the variation method or Pontryagin’s max-
imum principle [11]. )ese methods can obtain accurate
analytical solutions but their initial states are difficult to
guess. )e other one is the direct methods, in which the
optimal control problem is transformed into a nonlinear
programming problem and then solved by some numerical
methods. )ese methods are weakly dependent on their
initial states and require no system derivative information.
In the field of direct methods for trajectory optimization, the
metaheuristic algorithms, especially the swarm intelligence
algorithms, have received widespread attention [10].
However, the deterministic optimization methods lack ro-
bustness considerations for uncertainties and, therefore, will
increase the design burden of the online tracking guidance
system for the case of unpredictable fluctuations or devia-
tions from the original reference trajectory [14].

To solve this problem, trajectories that are statistically
less sensitive to uncertainties are preferred, and robust
reference trajectory optimization is needed. )e improve-
ment of robust trajectory optimization over the conventional
trajectory design is to integrate the independent design steps
into an interactive whole, by means of building a reverse
information flow between the offline trajectory optimization
and the online reentry environment. Compared with some
online trajectory optimization and tracking guidance tech-
niques [15, 16], robust trajectory optimization displays
obvious advantages in reducing the burden of the guidance
and control system effectively.

Robust trajectory optimization of HGV is a complex
stochastic process with multidisciplinary attributes such as
flight system modeling, uncertainty analysis, and trajectory
numerical solution. Since the deterministic optimization
technology is relatively mature, the commonly used robust
strategy is to transform the stochastic system into an
equivalent deterministic system. Generally, this is achieved
by adding appropriate statistical information (such as the
mean and the standard deviation) of the user-defined
qualities to the original objective function as well as the
constraints. To this end, the efficient and accurate uncer-
tainty propagation (UP) techniques [17] are necessary,
which usually include Monte Carlo (MC) simulation, linear
methods, and nonlinear methods. MC simulation relies on a
large random sample space to approach the true value and is
usually used to verify the effectiveness of the
target algorithm. Janson et al. proposed an MC motion
planning method for the robot trajectory optimization
problem under uncertainty and proved its feasibility and
effectiveness [18]. Linear methods simplify the uncertainty
propagation analytically but are inapplicable for highly
nonlinear hypersonic vehicles. As one of the popular
nonlinear methods, polynomial chaos (PC) uses the sum of
orthogonal polynomial chaos expansions to fit the proba-
bilistic model output response. It is based on the spectral
representation of uncertainties and can obtain the system’s
high-order statistical moments conveniently [19, 20]. )e
common implementation forms of PC include the gener-
alized polynomial chaos (gPC) and the nonintrusive poly-
nomial chaos (NIPC) that produce almost the same

accuracy. However, the NIPC is more promising for it treats
the system as a black box and requires no modification on
the existing code [21].

In recent years, the PC method has been implemented to
some aerospace engineering problems. Cottrill and Harmon
[22] proved that the gPC algorithm displayed improved
calculation efficiency while it maintained the same accuracy
withMonte Carlo simulation. Subsequently, they proposed a
robust trajectory optimization model that used the poly-
nomial chaos method and the Gaussian pseudospectral
method to transform the stochastic optimization problem
into a set of similar deterministic optimization problems.
Furtherly, Okamoto and Tsuchiya [23] combined the gPC
method with the Legendre-Gaussian pseudospectral method
to study the robust optimization of aircraft landing trajec-
tories in a microburst environment. Boutselis et al. [24]
combined the gPC method with the dynamic programming
algorithm for the trajectory optimization of quadcopters
with uncertain model parameters, and they adopted varia-
tional integrators to improve the performance of the pro-
posed framework.

)e robust optimization methods reviewed above are
concise. However, when the target system is complicated, the
repeated solution of the deterministic optimization problem
will be unacceptable. )erefore, Fisher and Bhattacharya
[25] transformed the stochastic optimization problem into
an expanded deterministic optimization problem in the
higher-dimensional state space and ensured the robustness
considerations by adding optimization constraints. After-
ward, Li et al. [26] conducted a preliminary study on the
robust dynamic trajectory optimization of the aircraft for a
small number of random variables. Huang et al. [27, 28]
combined the NIPC with the most probable point search
algorithm and the evidence theory, respectively, to study the
robust trajectory optimization of Mars entry. Wang et al.
[29] also addressed the Mars entry problem by combining
the gPC with convex optimization techniques, which im-
proved the efficiency and accuracy of the robust trajectory
optimization. )ese methods avoid the repeated solution of
corresponding deterministic optimization problems, but a
larger number of constraints, especially the expanded or-
dinary differential equations, increase the difficulty of op-
timization convergence.

Consequently, how to imply the PC method to solve the
complex HGV trajectory optimization problem with un-
certainties efficiently is still a crucial problem. )e key
difficulty in the application of polynomial chaos is that it is
easy to cause dimension disaster with the increase of random
variables. As a result, the computational burden is unac-
ceptable. )e sparse tensor-product theory is a potential
solution to this problem [30, 31]. However, if proper
mathematical techniques can be used to simplify the ap-
plication process of polynomial chaos in trajectory opti-
mization, these difficulties will be alleviated in a wider scope.

In this paper, a stochastic trajectory optimization model
of HGV is studied in the aspect of uncertainties in both
initial states and aerodynamic coefficients. Specifically, it is
assumed that the exact values of these uncertainties are
unknown, but their probability density functions can be
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accessed. On this basis, the objective function and the
constraint function are augmented to include the statistical
moments of the system, and the dynamic robust optimi-
zation model is established. )en, the NIPC method is
utilized to perform the uncertainty propagation over time
for the statistical information and transform the original
stochastic ordinary differential equations into deterministic
ones. Afterward, an expanded deterministic optimal control
problem with a stochastic flavor is obtained depending on
the NIPC representation of the dynamics. Since the di-
mension of deterministic states is expanded, the control
parameterization method is preferred in this paper for re-
ducing the number of decision variables. )erefore, a novel
version of the PSO method [32, 33] is incorporated to solve
the obtained problem, and a hybrid double-loop optimi-
zation algorithm called NIPC-PSO is developed. In the
proposed algorithm, the PSO particles which represent
different control laws are iteratively optimized in the outer
loop, based on their probabilistic behaviors that are calcu-
lated via NIPC in the inner loop. Moreover, the computing
efficiency of the proposed framework is further improved by
incorporating the concept of a numerical integration scheme
for solving the complex dynamic equations.

)e main contribution of this work lies in developing a
concise formulation for robust reference trajectory

optimization of HGV with uncertainty in dynamics. Only
control variables are discretized, and the expanded state
constraints are satisfied implicitly utilizing the benefits of the
numerical integration scheme. )e number of decision
variables as well as the huge amount of computation for
uncertainty propagation using NIPC is extremely reduced.
)ese above properties of the proposed approach indicate its
high efficiency and potential applicability for robust tra-
jectory optimization problems of HGV.

)e remainder of this paper is organized as follows. In
Section 2, the robust trajectory optimization model is
established. )en, the double-loop NIPC-PSO framework is
described step by step in Section 3. In Section 4, a classical
trajectory optimization problem of HGV with uncertainties
is introduced. )e numerical simulation examples are in-
cluded in Section 5, and conclusions are drawn in Section 6.

2. Problem Formulation

)e trajectory optimization is a typical nonlinear con-
strained optimal control problem. A commonly used op-
timal control formulation of the deterministic trajectory
optimization PD is as follows:

Problem: P
D

find U(t)

min J � M U t0( ,X t0( ,U tf ,X tf , t0, tf  + 
tf

t0

L(U(t),X(t), t)dt (a)

s.t. _X(t) � F(U(t), X(t), t) (b)

C(U(t),X(t), t)≤ 0 (c)

B X t0( , t0,X tf , tf  � 0, (d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where U(t) is the control variable vector and t is the time; J

is the objective function, in which M is the cost of boundary
constraints, and L is the cost of Lagrange (integral) term; t0
and tf denote the initial and final time, respectively; X(t) is
the state variable vector and _X(t) � F(U(t),X(t), t) is the
system ordinary differential equations, i.e., ODEs; C and B
are the path constraints and boundary constraints,
respectively.

With the consideration of uncertainties, random vari-
ables obeying some probability distribution functions
(PDFs) should be included [23]. In the present study, the
control variables are assumed as deterministic functions of
only t [23, 25], whereas the performance objective J, the

ODEs, and the constraints C and B are all stochastic
functions of the random variables. )e goal of robust tra-
jectory optimization is to obtain the optimal control law,
which is insensitive to possible disturbances. )erefore,
when uncertainty occurs, the expected trajectory dispersion
would be minimized statistically.

To achieve the goal of robust trajectory optimization,
the objective and constraint functions are often aug-
mented to include robustness considerations, usually the
statistical moments of the stochastic system, such as the
mean and the standard deviation. In this study, the robust
trajectory optimization problem PR is formulated as
follows:
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Problem : P
R

find U(t)

min JA � kμ · Jμ(U(t),X(t, ξ), t) + kσ · Jσ(U(t),X(t, ξ), t) (a)

s.t. _X(t, ξ) � F(U(t),X(t, ξ), t, ξ) (b)

Cμ(U(t),X(t, ξ), t)≤ 0

Bμ X t0, ξ( , t0,X tf, ξ , tf  � 0

⎧⎨

⎩ (c)

Cσ(U(t),X(t, ξ), t)≤ εC

Bσ X t0, ξ( , t0,X tf, ξ , tf ≤ εB,

⎧⎨

⎩ (d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where ξ is the random variable vector; JA is the augmented
objective function; Jμ and Jσ are the expectation and
standard deviation of J, respectively; kμ and kσ are the weight
factors of Jμ and Jσ ; X(t, ξ) denotes the stochastic state
variable vector; _X(t, ξ) � F(U(t),X(t, ξ), t, ξ) denotes the
stochastic ODEs; the variables Cμ, Bμ and Cσ , Bσ are the
expectations and standard deviations of C and B, respec-
tively; εC and εB are allowable standard deviation thresholds
of C and B.

For the above robust optimization model, the deter-
ministic demands are satisfied using mean values and the
stability requirements are guaranteed with standard devia-
tions. Robustness of both the objective function and the
constraint functions is carried out simultaneously. When
this model is performed for trajectory planning problems of
HGV, it is necessary to solve the complex stochastic ODEs as
well as system robustness considerations.

3. The Proposed Robust Trajectory
Optimization Scheme

To solve the above robust trajectory optimization problem, a
step-by-step description of the proposed hybrid procedure
using NIPC and PSO is given as follows.

Step 1. Transform the stochastic ODEs into augmented
higher-dimensional deterministic ODEs using the
NIPC method.
For a q − dimensional random variable vector ξ, the
exact solutionX(t, ξ) to the original stochastic ODEs of
equation (2b) can be represented as the following NIPC
model:

X(t, ξ) ≈ X(t, ξ) � 

p

i�0

Xi(t)ϕi(ξ), (3)

where X(t, ξ) is the approximation of X(t, ξ); p is the
number of expansion terms that is determined by p +

1 � (((q + r)!)/(q!r!)) and r is the desired approxi-
mation order of orthogonal polynomials; Xi(t) are the
PC expansion coefficients; ϕi(ξ) are the orthogonal PC
basis functions belonging to the Askey family [20] and
satisfy the following orthogonal properties:

<ϕi(ξ), ϕj(x)> � δij <ϕi(ξ)
2 > , (4)

where δij is the Kronecker delta function, and 〈·, ·〉

denotes the inner product, defined by

<f(ξ), g(ξ)> �  f(ξ)g(ξ)W(ξ)dξ, (5)

where f(ξ) and g(ξ) are functions of ξ and W(ξ) is a
weight function. )ere are a corresponding polynomial
basis function and weight function for a random
variable with a given distribution. Moreover, for the q −

dimensional random vector ξ, ϕi(ξ) and W(ξ) can be
obtained based on the product of corresponding
functions related to random variables in each
dimension.
According to the NIPC expansion scheme, the un-
known PC expansion coefficients Xi(t) of equation (3)
can be calculated by the following integral [26]:

Xi(t) �
1
〈ϕi(ξ)

2〉
X(t, ξ)ϕi(ξ)W(ξ)dξ, i � 0, 1, 2, . . . , p.

(6)

Based on the above formulation, the full tensor-product
numerical quadrature rule can be used to approximate
Xi(t), i.e.,

Xi(t) � 
m

k1�1
· · · 

m

kq�1
X t, ξk1

, . . . , ξkq
 

ϕi ξk1
, . . . , ξkq

 

〈ϕ2i 〉


q

j�1
ωkj

,

(7)

where m is the number of quadrature points along each
dimension of ξ; ξkj

, k � 1, . . . , m, j � 1, . . . , q, are the
kth integration points of the jth component of ξ, and
ωkj

is the multidimensional quadrature weight
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corresponding to the jth dimension of the quadrature
point ξkj

, k � 1, . . . , m.
To implement the above numerical approximation of
equation (7), (ξk1

, . . . , ξkq
) and ωkj

need to be deter-
mined firstly according to a proper quadrature rule,
such as Gaussian quadrature. )en, compute
ϕi(ξk1

, . . . , ξkq
) and 〈ϕ2i 〉. Afterward, calculate

X(t, ξk1
, . . . , ξkq

) by substituting (ξk1
, . . . , ξkq

) into
equation (2b). According to equation (7), there are


q
i�1 m � mq quadrature points of (ξk1

, . . . , ξkq
), i.e.,

ξ1, ξ2, . . . , ξn , n � mq. )erefore, mq deterministic
ODEs are generated and need to be solved, i.e.,

_X t, ξ1(  � F U(t),X t, ξ1( , t, ξ1( 

_X t, ξ2(  � F U(t),X t, ξ2( , t, ξ2( 

⋮
_X t, ξn(  � F U(t),X t, ξn( , t, ξn( , n � m

q
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

where _X(t, ξn) � F(U(t),X(t, ξn), t, ξn) is the aug-
mented deterministic ODEs with ξn.
Step 2. Establish the equivalent deterministic trajectory
optimization model PE D of PR based on NIPC.

According to the NIPC model of equation (3), the
original stochastic state X(t, ξ) can be represented as
X(t, ξ). When the PC expansion coefficients Xi(t), i �

0, 1, . . . , p have been calculated, its first two statistical
moments can be easily computed as follows:

Xμ(t, ξ) � X0(t),

Xσ(t, ξ) �

���



p

i�1




Xi(t)
2 <ϕ2i >

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

where Xμ(t, ξ) and Xσ(t, ξ) are the mean and the
standard deviations of X(t, ξ).
)e original performance objective J and the con-
straints C and B are all functions with respect to the
approximate stochastic state X(t, ξ). )erefore, their
statistical moments can also be calculated determin-
istically based on the PC expansion coefficients and
their specific function forms using corresponding
computation rules, such as addition, subtraction,
multiplication, and division [29].
Afterward, the original stochastic optimal control
problem PR is approximately transcribed into a de-
terministic optimal control problem PE D, i.e.,

Problem : P
E D

find U(t)

min JA � kμ · Jμ(U(t), X(t, ξ), t) + kσ · Jσ(U(t), X(t, ξ), t) (a)

s.t.

_X t, ξ1(  � F U(t),X t, ξ1( , t, ξ1( 
_X t, ξ2(  � F U(t),X t, ξ2( , t, ξ2( , n � m

q

⋮
_X t, ξn(  � F U(t),X t, ξn( , t, ξn( 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(b)

Cμ(U(t), X(t, ξ), t)≤ 0
Bμ

X t0, ξ( , t0,
X tf , ξ( , tf(  � 0

⎧⎨

⎩ (c)

Cσ(U(t), X(t, ξ), t)≤ εC,

Bσ
X t0, ξ( , t0,

X tf , ξ( , tf( ≤ εB.
 (d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

)e main difficulty in the application of the above
model lies in the repeated solutions of the augmented
deterministic ODEs to obtain the PC expansion coef-
ficients. In particular, for the complex flight systems of
HGV, this process requires a lot of calculation and time.
Some mathematical techniques are adopted to improve
this problem in this study.
Step 3. Discretize the continuous optimal control
problem to PE DZ and use the numerical integration
scheme to simplify the calculation of PC expansion
coefficients.
To solve the above continuous optimization problem
PE D using direct optimization algorithms, dis-
cretization strategies are necessary and the number of
decision variables always affects the calculation

amount of the discrete optimization process signifi-
cantly. In the problem of PE D, there are mq deter-
ministic ODEs and the number of state variables is
quite a lot. )us, for reducing the number of decision
variables, the control parameterization method [33]
instead of the state and control parameterization
method is adopted here to discretize the continuous
optimization problem.
)e time interval from t0 to tf is first divided into N

subintervals as follows:

Z � t0, t1, . . . , tN , t0 < t1 < · · · < tN−1 < tN � tf,

(11)

where Z is the discretized sampling time.
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)en, the control variables at the discrete nodes are
selected as the decision variables to be optimized, that is,

U(Z) � UT
t0

,UT
t1

, . . . ,UT
tN

 
T
, (12)

where U(Z) is the discretized control vector.
)e discrete-time dynamic optimization problem is
established by fewer design variables; however, the mq

expanded ODEs are still not resolved. In this study, the
numerical integration scheme is incorporated to sim-
plify the calculation of PC expansion coefficients.
For the discretized control vector U(Z), during each
segment Δt ∈ [ti, ti+1], it can be approximated by linear
interpolation, i.e.,

U Δti(  ≈ Uti
+
Uti+1

− Uti

ti+1 − ti

Δti − ti( ,

Δti ∈ ti, ti+1 , i � 0, 1, . . . , N − 1.

(13)

)e approximate continuous control variable U(t) can
be represented as follows:

U(t) � 
N−1

i�0
U Δti( . (14)

For the convenience of description, represent the ex-
panded ODEs of equation (8) in a brief form as follows:

_XD(t) � FD
U(t)t, nXDq(t)h,t( , (15)

where XD denotes the deterministic states
X(t, ξ1),X(t, ξ2), . . . ,X(t, ξn)  and FD denotes the
augmented deterministic ODEs. According to the
numerical integration theory, the state variables
propagate from t0 to tf and their values of any time can
be obtained. Herein, by providing control inputs U(t)

and necessary initial conditions, a brief fixed-step
fourth-order Runge-Kutta method is applied to effec-
tively reduce the amount of calculation; i.e., when

Determine the discrete control vector U(Z), the swarm 
size NS, the iterations times NI, and other operating 

parameters of PSO to reform the problem PED to PEDZ. 

n > mq?

Converge? Or
j > NI?

n = n + 1

Compare all the results of NS particles and obtain 
the optimal control law of the j-th iteration. 

Calculate the required statistical information 
using NIPC and obtain the fitness function 

Pi of the i-th particle Ui(Z).

i > NS?

i = i + 1
n = 1

Obtain the optimal control law for the 
robust trajectory planning problem.

Update all the particles 
based on the last iteration 

and set j = j + 1, i = 1.

For a q-dimensional random variable vector ξ of 
the problem PR, using NIPC with m quadrature 

points to transform the stochastic ODEs into
deterministic and obtain the problem PED.

For the i-th particle Ui(Z) of the j-th iteration, solve the ODEs 
with ξn through numerical interpolation and integration 

algorithms, i.e. X(t,ξn) = F(U(t),X(t,ξn),t,ξn)

Initialize all the particles for the first iteration 
of PSO and set parameters j = 1, i = 1, and n = 1.

Yes

Yes

Yes

No

No

No

The inner loop

The outer loop

Figure 1: Flow chart of the algorithm program.
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XD(tk) is already obtained, XD(tk+1) � XD(tk + h) is
iteratively computed by

XD tk+1(  � XD tk(  +
h

6
k1 + 2k2 + 2k3 + k4( , (16)

where

k1 � FD
U tk( ,XD tk( , tk( ,

k2 � FD
U tk +

h

2
 ,XD tk(  +

h

2
k1, tk +

h

2
 ,

k3 � FD
U tk +

h

2
 ,XD tk(  +

h

2
k2, tk +

h

2
 

k4 � FD
U tk + h( ,XD tk(  + hk3, tk + h( ,

(17)

where h � tk+1 − tk is the fixed-step length of integra-
tions. )is approximation makes it possible to repre-
sent the PC expansion coefficients as a function of the
discrete control variables U(Z). Moreover, the solution
to the mq deterministic ODEs of the PC expansion
coefficients is simplified through numerical integra-
tions.)e discrete-time dynamic optimization problem
PE DZ is as follows:

Problem: P
E DZ

find U(Z)

min J � kμ · Jμ( U(t), X(t, ξ), t) + kσ · Jσ( U(t), X(t, ξ), t) (a)

s.t. _XD(t) � FD
U(t),XD(t), t(  (b)

Cμ( U(t), X(t, ξ), t)≤ 0

Bμ
X t0, ξ( , t0,

X tf, ξ , tf  � 0

⎧⎪⎨

⎪⎩
(c)

Cσ( U(t), X(t, ξ), t)≤ εC,

Bσ
X t0, ξ( , t0,

X tf, ξ , tf ≤ εB.

⎧⎨

⎩ (d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Table 1: Initial conditions and terminal constraints of the states.

Constraints y (km) θ ( °) φ ( °) V (m/s) c ( °) ψ ( °)

Initial conditions 100 160 25 7200 -2 58
Terminal constraints 20 232 37 1000

Table 2: Gauss Legendre quadrature points and weights.

Points Weights
−0.93247 0.17132
−0.66121 0.36076
−0.23862 0.46791
0.23862 0.46791
0.66121 0.36076
0.93247 0.17132

Table 3: Complexity analysis of the three cases.

Methods Particles Iterations Number of
ODEs

Number of
integrations

Running
time (s)

DO 50 100 1 5000 213.9
TRO 50 100 50 250000 10550.2
NIPC-
PSO 50 100 36 180000 7670.4
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Step 4. Incorporate the NIPC with PSO and solve the
problem PE DZ by the double-loop NIPC-PSO
framework.

Since the iteration optimization process of PSO de-
pends on the performance of its fitness function, it is
not directly available for the constrained optimization

Table 4: Statistical results of the three cases.

Mean values Standard deviations
DO TRO NIPC-PSO DO TRO NIPC-PSO

|P| 80.57 92.19 41.15 42.61 23.78 13.99
_Qmax(kW/m2) 854.13 776.84 815.97 27.33 28.55 25.26

qmax(kPa) 77.36 47.68 41.10 14.86 48.62 5.12
nmax 6.08 3.80 3.10 0.68 0.44 0.57
y(tf)(m) 19726 22833 20088 2405.61 1803.71 780.09
θ(tf)(

°) 231.75 231.05 231.53 3.03 2.61 1.83
φ(tf)(

°) 37.01 37.15 36.89 0.27 0.29 0.18
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Figure 2: Boundaries of the trajectory states in MC tests of the three cases.
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problem of equation (18). To solve this problem, a PSO
application model is established here using the penalty
function method, i.e.,

Problem: P
E DZ− PSO

find U(Z)

min P � pJA
· JA + pCμ · Cμ + pBμ · Bμ + pCσ · Cσ + pBσ · Bσ (a)

s.t. _XD(t) � FD
U(t),XD(t), t( , (b)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)

where P is the integrated penalty function and p∗
denote the coefficients of different penalty components.
)ese coefficients can be determined according to the
importance of different penalty components using

some evaluation methods, such as the analytic hier-
archy process (AHP) [34]. )e original equality con-
straint Bμ can be expressed by a pair of inequality
constraints. It should be noted that significant
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Figure 3: Comparison of the trajectory state standard deviations in MC tests of the three cases.
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differences between the magnitudes of the penalty
components will result in calculation difficulties. For
fairness, the normalization process should be applied to
map different objectives into comparable scales in some
cases.
For PSO, its population is represented by a swarm of
NS particles, i.e., Ωp � (uk, vk) , k � 1, 2, . . . , NS, and
the maximum number of iterations is set to be NI. Each
particle represents a potential solution to the optimi-
zation problem PE DZ− PSO and consists of a position
vector and a velocity vector as follows:

uk � uk,1, uk,2, . . . , uk,nZ
 

T
,

vk � vk,1, vk,2, . . . , vk,nZ
 

T
,

⎧⎪⎨

⎪⎩
(20)

where uk and vk denote the position vector and velocity
vector of particle k, respectively; nZ is the number of
discrete points of decision parameters in equation (12);
namely, nZ � dim(U(Z)).
For the first iteration, a swarm of NS particles Ω0p �

(u0k, v0k), k � 1, 2, . . . , NS  is generated randomly, i.e.,

u0k � uL + ru · uU − uL( 

v0k � vL + rv · vU − vL( 

⎧⎨

⎩ , k � 1, 2, · · · , NS, (21)

where uL and uU are, respectively, the lower and upper
bounds of the design parameters U(Z); ru and rv are
random coefficients between 0 and 1; vL and vU are the
lower and upper bounds for the velocity vector.
For thes − th iteration, the performance of the swarm of
NS particles is represented by their fitness functions
Ps

k, k � 1, 2, . . . , NS, which are calculated, respectively,
in the inner loop based on the NIPC method and the
numerical integration scheme. When the calculation of
the inner loop is all finished, the best position ps

k of each
particle k is recorded and the global best position ps

g of
the whole swarm up to the current iteration is updated,
i.e.,

ps
k � ulm

k , lm � argminp1�1,2,...,sP
p1
k , k � 1, 2, . . . , NS,

ps
g � uzm

qm
, zm, qm(  � argmin z1�1,2,...,s

q1�1,2,...,NS

P
z1
q1

.

(22)
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Figure 4: Comparison of the normalized penalty functions in MC tests of the three cases.
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Afterward, the velocity and position vector of each
particle are updated in the outer loop as follows:

vs+1
k � ω · vs

k + c1 · r1 · ps
k − us

k(  + c2 · r2 · ps
g − us

k 

us+1
k � us

k + vs+1
k

⎧⎪⎨

⎪⎩
, k � 1, 2, . . . , NS, (23)

where ω denotes the inertia parameter and can be linearly
decreased with iteration for better optimization effect [35],
i.e., ωs+1 � ωmax − s((ωmax − ωmin)/NI), s� 1, 2, . . . , NI; c1
and c2 are two trust parameters, which represent confi-
dence the particle has in itself and in the swarm, respec-
tively; r1 and r2 are two independent random variables
between 0 and 1. To keep the position vector of the next
generation within the feasible region, vL and vU are chosen
as follows:

vL � uL − uU,

vU � uU − uL.
 (24)

Moreover, if any element in the updated velocity vector
and position vector violates its limits, it is set as the closest
boundary value before the next iteration starts.

To show the double-loop optimization algorithm more
clearly, a flow chart of its implementation program is shown
in Figure 1.

According to the above double-loop optimization
framework, the PSO iterates for the global optimal solution
in the outer loop, while the corresponding fitness functions
with robustness considerations are calculated in the inner
loop by the NIPC method and numerical integrations. Fi-
nally, the best particle of PSO which represents the optimal
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Figure 5: Mean values of path constraints in MC tests of the three cases.
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solution to the original robust optimization problem is
obtained conveniently.

4. The Robust Trajectory Optimization
Problem of HGV

In this section, a typical robust trajectory optimization
problem of HGV is introduced, and the reference aircraft is
chosen as the CAV-H which has been widely used in the
research of hypersonic vehicles [9, 36].

Considering the Earth rotation model, the specific tra-
jectory optimization formulation is as follows. Find the
design variables

U � αcσc 
T
, (25)

which minimize the objective function,

J � tf, (26)

and subject to the dynamic constraints

dy

dt
� V sin c,

dθ
dt

�
V cos c sinψ

y cosφ
,

dφ
dt

�
V cos c cosψ

y
,

dV

dt
� −D −

sin c

y
2 +Ω2y cosφ(sin c cosφ − cos c sinφ cosψ),

dc

dt
�
1
V

L cost nσcq + h
cos c

y
V

2
−
1
y

 x + 72CΩ; V cosφ sinψ +Ω2y cosφ(cos c cosφ + sin c sinφ cosψ) ,

dψ
dt

�
1
V

L sin σc
cos c

+
V

2

y
cos c sinψ tanφ − 2ΩV(tan c cosφ cosψ − sinφ) +

Ω2y
cos c

sinφ cosφ sinψ .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

)e path constraints are

C �

_Q �
C1��

R
√

ρ
ρs

 

0.5

V
3.15 ≤ _Qmax,

qr �
1
2
ρ V · Vc( 

2 ≤ qmax,

nr �

�������

L
2

+ D
2



≤ nmax,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

and the boundary constraints are

B �

y tf  − yf



≤ εfy
,

θ tf  − θf



≤ εfθ
,

φ tf  − φf



≤ εfϕ
,

V tf  − Vf



≤ εfV
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

where αc is the angle of attack and σc is the bank angle; θ, φ,
c, and ψ are the longitude, the latitude, the path angle, and
the azimuth, respectively; y, V, t, and Ω are dimensionless

variables of the geocentric distance, the velocity, the time,
and the angular rate of Earth rotation, and their dimen-
sionless parameters are R0, Vc � (g0R0)

0.5, (R0/g0)
0.5, and

(g0/R0)
0.5, respectively; R0 is the average radius of the Earth

and g0 is the gravitational acceleration at sea level; L and D

represent the dimensionless lift and drag acceleration; _Q,
qr, and nr are the heat flux, the dynamic pressure, and the
overload, respectively, in which R is the vehicle head radius
of curvature, ρ is the atmospheric density, ρs is the at-
mospheric density at sea level, and C1 is a constant; εfy

, εfθ
,

εfϕ
, and εfV

are error bounds for corresponding terminal
states.

In this paper, the path constraints are given as
_Qmax � 1000 kW/m2, qmax � 400 kPa, and nmax � 6, re-
spectively. )e initial conditions and desired terminal
states are shown in Table 1. In the proposed method, the
system state variables are obtained using numerical inte-
grations based on given initial conditions; thus, only ter-
minal conditions are required as boundary constraints. As
described in equation (29), the corresponding error bounds
of the terminal constraints are εfy

� 0, εfθ
� 0, εfϕ

� 0, and
εfV

� 0, respectively.
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Aerodynamic forces play an important role in the
unpowered reentry process of HGV. )e dimensionless lift
and drag acceleration shown in equation (27) is expressed as
follows:

L �
ρ · V · Vc( 

2
· SV · CL

2mV · g0( 
,

D �
ρ · V · Vc( 

2
· SV · CD

2mV · g0( 
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(30)

where mV � 907.2 kg is the vehicle mass; SV � 0.4839m2 is
the pneumatic reference area; CL and CD are the lift and drag
coefficients, which are functions of the angle of attack and
Mach number.

Generally, there are no analytical expressions for aero-
dynamic coefficients CL and CD. Instead, they are calculated
through numerical fitting based on experimental aerody-
namic data. However, due to the complex atmospheric
environment, these experimental data cannot be as accurate
as anticipated. )erefore, it is assumed that the variation in
CL and CD is a kind of uncertainty that can be represented by
a single random variable [14, 26]. Otherwise, for the hy-
personic vehicle, it is always not easy to achieve the designed

reentry point accurately [36]. As a result, random deviations
are also unavoidable at the beginning of the reentry process,
i.e., the uncertain initial conditions. Based on the above
discussions, two kinds of uncertainties are included in this
paper, and the uncertain parameters are as follows:

ξ � ξC, ξI 
T
, (31)

where ξC indicates the aerodynamic uncertainty in the lift
and drag coefficients, and ξI indicates the state deviation
uncertainty in the initial reentry conditions. It is assumed
that both ξC and ξI are uniformly distributed, and they are
independent of each other. In summary, the corresponding
stochastic model is as follows:

CL � CL 1 + ξC( ,

CD � CD 1 + ξC( ,

X0 � X0 1 + ξI( ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(32)

where CL and CD are the stochastic lift and drag coefficients,
respectively; X0 is the stochastic initial reentry states. It is
assumed that the aerodynamic uncertainty ξC lies in the
interval of [−0.2, 0.2] and the state deviation uncertainty ξI

lies in the interval of [−0.01, 0.01]. )is means that the

0 5000 10000
Index of MC test

14

16

18

20

22

24

26

28
Te

rm
in

al
 al

tit
ud

e (
km

)

DO

0 5000 10000
Index of MC test

14

16

18

20

22

24

26

28

Te
rm

in
al

 al
tit

ud
e (

km
)

TRO

0 5000 10000
Index of MC test

14

16

18

20

22

24

26

28

Te
rm

in
al

 al
tit

ud
e (

km
)

NIPC-PSO

Figure 6: Distributions of terminal altitude in MC tests of the three cases.
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deviation of the aerodynamic coefficients around their
nominal values is about [−20%, +20%], while the deviation
of the initial reentry conditions around their nominal values
is about [−1%, +1%].

It should be noted that although the state vector includes
six variables, we only introduce uncertainty to the altitude,
the longitude, the latitude, and the speed due to their more

demanding requirements. When equation (32) is incorpo-
rated, the deterministic trajectory optimization problem is
now reformulated to a robust trajectory optimization
problem.

)e penalty components of the PSO applicationmodel in
equation (19) are as follows:

J � tf, _Q, qr, nr, y tf  − yf



, θ tf  − θf



, φ tf  − φf



, V tf  − Vf



 
T
. (33)

A maximum normalization method is adopted to map
magnitudes of different penalty components into compa-
rable scales, i.e.,

Jj �
Jj

JjU

× 100, j � 1, 2, . . . , h0, (34)

where Jj � J(j), j � 1, 2, . . . , h0, indicate the values of dif-
fident components in equation (33) and h0 is the number of
all the terms; JjU is the corresponding upper limit of Jj and

Jj is its normalized value. After normalization, all the ob-
jective functions are mapped to the interval of [0, 100]. )e
objective function turns out to be

minP � kμ 

h0

j�1
μ Jj kμj

+ kσ 

h0

j�1
σ Jj kσj

, (35)

where all the penalty coefficients are user-defined parame-
ters determined through the AHP method.
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Figure 7: Distributions of terminal longitude in MC tests of the three cases.
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5. Simulation and Results

In this section, three simulation cases are carried out to
illustrate the proposed algorithm for the above HGV reentry
problem, i.e., the deterministic trajectory optimization
without consideration of uncertainties (denoted as DO), the
traditional robust trajectory optimization using MC
(denoted as TRO) [18], and the proposed robust trajectory
optimization in this paper (denoted as NIPC-PSO). Herein,
TRO is set to a similar structure of NIPC-PSO whereas its
uncertainty propagation process is performed using 50 runs
of MC simulations instead of the NIPC.

During optimization, the number of control discretization
nodes is set as 100; the number of numerical integration
points for the states is set as 500. Moreover, the swarm size of
the PSO particles is 50; the maximum number of iterations is
100; ω is linearly decreased from 0.9 to 0.4, and c1 � c2 � 2;
the angle of attack is limited within [10°, 20°] and the bank
angle is limited within [−80°, 80°]. Since the twice-order PC
expansion is accurate enough for common applications [37],
herein, the NIPC expansion order is set as r � 2 and the
number of Gauss points is set as m � 6 in order to balance the
calculation burden and accuracy. )e Gauss points and the
corresponding weights are shown in Table 2.

All the simulations are performed with Matlab2014 on a
personal computer with the Intel Core i5-8400 2.81GHz
processor and 16.0G of RAM. After abundant numerical
simulations, the convergence results of DO, NIPC-PSO, and
TRO are achieved. )e complexity analysis of the three cases
is shown in Table 3.

Since the control parameterization method is adopted in
this paper, only control variables are discretized and the
number of design variables in the three cases is the same. As
introduced in equation (27), HGV’s dynamic constraints are
complex and time-consuming to solve. )us, the complexity
of the three cases is mainly reflected in their augmented
ODEs. As shown in Table 3, DO only needs to deal with the
original six-dimensional ODEs, while the number of ODEs
in TRO and NIPC-PSO increases to 50 and 36, respectively.
)e number of numerical integrations as well as the cor-
responding running time of the three cases is directly
proportional to their number of ODEs. It is indicated that
both TRO and NIPC-PSO are more complex and time-
consuming than DO, but NIPC-PSO is obviously simpler
than that TRO of 50MC simulations. Since the trajectory
optimization is carried out in the offline phase of trajectory
design, it is worth sacrificing some design time to obtain
better robustness performance. Furthermore, under the
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Figure 8: Distributions of terminal latitude in MC tests of the three cases.
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double-loop optimization framework of this paper, the main
cost of robust optimization is the repeated numerical in-
tegrations which is much easier to solve than adding design
variables.

To compare the robustness of the designed trajectories in
the three cases, the more detailed simulation verification and
analysis are carried based on the optimal control laws of DO,
TRO, and NIPC-PSO. Specifically, 10,000 times MC tests are
implemented through numerical integrations under the same
stochastic model of robust optimization. )e obtained statis-
tical trajectory data are summarized in Table 4, and the more
intuitive comparisons are shown in Figures 2–8 distinctly.

To the statistical data of MC tests, the mean value of
different parameters represents corresponding trajectory
constraint satisfaction, while the standard deviation is usually
regarded as a direct measure of robustness. As shown in
Table 4, the mean values of path constraints and boundary
constraints for NIPC-PSO all meet the design requirements
well, whereas the maximum dynamic pressure of DO exceeds
the upper limit of 6 and the terminal altitude of TRO has a

large deviation from the reference value of 20,000m. All the
standard deviations of NIPC-PSO are significantly better than
those of DO. Moreover, except for the maximum dynamic
pressure, they are also better than the standard deviations of
TRO. It should be noted that, in some indicators, the standard
deviations of TRO are improved, but in others, they become
worse. )is is because there are only 50MC simulations in
TRO, and the uncertainty propagation process is not accurate
enough. To improve this problem, more MC simulations are
needed, but the complexity of TRO will be greatly increased.

In summary, the trajectories of DO are more likely to
become infeasible with disturbances, and this is because no
uncertainty of the online flight is considered by the tradi-
tional deterministic optimization. Although there is a little
sacrifice in the original objective function of flight time for
the inclusion of system robustness considerations, all the
trajectory indicators of NIPC-PSO are less sensitive to
uncertainties which is exactly what this article prefers.
Furthermore, compared with TRO, NIPC-PSO can achieve
better performance with much less computation.
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Figure 9: Mean values of states of MC tests and NIPC method in NIPC-PSO case.
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Based on the MC tests of the three cases, the evolution of
different states along the reentry process over time is shown
in Figure 2. As can be seen, all the states fluctuate in a certain
range around their nominal values and the states of NIPC-
PSO have smaller fluctuations.

More clearly, Figure 3 shows the evolution standard
deviations of the system states in the three cases. We can see
that the standard deviations of NIPC-PSO are always smaller
than those of DO and TRO, and it becomes more obvious
when approaching the terminal time. )is also suggests that
the optimal control law of NIPC-PSO is better in tolerability
and stability to the uncertainties. )e conclusion is con-
sistent with Table 4.

Figure 4 shows the normalized optimal penalty function
values of MC tests in the three cases. As the figure reveals,
both the stability and optimal values of the penalty functions
in NIPC-PSO are the best in the three cases. According to
Table 4, the standard deviations of these normalized penalty
functions in DO, TRO, and NIPC-PSO are 42.61, 23.78, and
13.99, respectively. Compared with DO, these standard

deviations of TRO and NIPC-PSO have been improved by
44% and 67%, respectively.)is indicates that both TRO and
NIPC-PSO have better robustness performance than DO,
whereas the optimal penalty function value of TRO needs
further improvement.

Since path constraints are significant to the trajectory
performance, the mean values of the heat flux, the dynamic
pressure, and the overload of MC tests in the three cases are
shown in Figure 5. As we can see, although under uncer-
tainties, path constraints in TRO and NIPC-PSO still show
better capability than DO. )is conclusion is in accordance
with the performance of their penalty functions.

)e terminal constraint distributions of altitude, lon-
gitude, and latitude are shown in Figures 6–8, respectively.
Compared with DO and TRO, the accuracy of terminal state
distributions of NIPC-PSO is improved obviously. )e ac-
curacy of TRO is not stable enough, and for better per-
formance, it needs more simulations. Simulation results
indicate that the proposed algorithm can achieve better
robustness with less computation.
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Figure 10: Standard deviations of states of MC tests and NIPC method in NIPC-PSO case.
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In the proposed algorithm, the NIPC method plays an
important role in providing statistical information for the
double-loop optimization framework. To verify the efficiency
and accuracy of the NIPC method adopted in this paper, the
statistical information obtained by the NIPC method is
compared with that of MC tests. Specifically, based on the
control law of NIPC-PSO and the same stochastic HGV
model of Section 4, the uncertainty propagations are carried
out using the NIPC method and 1000MC tests, respectively.
Statistical analysis is then conducted to obtain the mean and
standard diversions of these six trajectory states. )e com-
parison results of the NIPC method and MC tests are shown
in Figures 9 and 10, respectively.

As shown in Figure 9, the mean values of the two
methods are almost the same for all the states. In Figure 10,
their corresponding standard deviations basically match
each other well. As expected, the NIPC method is suitable
and accurate enough for our robust trajectory planning
problem and it has significantly fewer samples than the MC
method. However, it should be noted that there are some
errors between the two methods in Figure 10, especially in
the altitude. )is is because the PC expansions adopted in
this paper are only twice-order and the altitude changes
sharply during the skip reentry process. )e approximation
accuracy of NIPC can be improved by using the higher-order
PC expansions, but the computational amount will be in-
creased somewhat. Considering the trajectory performance
achieved above, these errors are acceptable in this paper and
the NIPC has good application potential in such complex
robust optimization problems.

6. Conclusion

To improve the robustness of the reference trajectory for
HGV with parametric uncertainties, a hybrid double-loop
NIPC-PSO methodology is developed in this paper. )e
stochastic optimal control problem is transformed into a
deterministic vision with higher-dimensional ODEs and
robustness considerations using the NIPCmethod.)e large
number of calculations of the PC expansion coefficients is
reduced through the control parameterization method and
the numerical integration scheme. Based on an uncon-
strained model with a penalized fitness function, the PSO
method searches globally for the optimal control law in the
outer loop, while the penalized fitness function with ro-
bustness considerations is calculated repeatedly in the inner
loop. )e HGV reentry simulation of a classical time-op-
timal trajectory optimization problem with uncertainties in
both initial states and aerodynamic coefficients shows that
the NIPC-PSO of our proposed method has better ro-
bustness and performance in constraint satisfaction com-
pared with the DO and TRO. )e proposed procedure
improves the feasibility and effectiveness of NIPC-based
optimization methods.
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