Certain Bounds of Regularity of Elimination Ideals on Operations of Graphs

Zongming Lv, 1 Muhammad Junaid Ali Junjua, 2 Muhammad Tajammal Tahir, 2 and Khurram Shabbir 2

1 School of Information and Finance, Xuancheng Vocational & Technical College, Xuancheng, 242000, AnHui, China
2 Department of Mathematics, G. C. University, Lahore, Pakistan

Correspondence should be addressed to Zongming Lv; lzm_1234562021@163.com and Khurram Shabbir; dr.khurramshabbir@gcu.edu.pk

Received 2 September 2021; Revised 30 September 2021; Accepted 4 October 2021; Published 29 October 2021

Academic Editor: Muhammad Faisal Nadeem

Copyright © 2021 Zongming Lv et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Elimination ideals are regarded as a special type of Borel ideals, obtained from the degree sequence of a graph, introduced by Anwar and Khalid. In this paper, we compute graphical degree stabilities of $K_n \vee C_m$ and $K_n \ast C_m$ by using the DV method. We further compute sharp upper bound for Castelnuovo–Mumford regularity of elimination ideals associated to these families of graphs.

1. Introduction

Let $S = k[x_1, \ldots, x_n]$, $n \geq 2$ be a polynomial ring in n variables over an infinite field k. Bayer and Stillman (see [1]) noted that a monomial ideal $I \subset S$ is of Borel type, if it satisfies the following condition:

$$ (I : x_j^\infty) = (I : (x_1, \ldots, x_j)^\infty), \quad \text{for all } 1 \leq j \leq n. \quad (1) $$

The Castelnuovo–Mumford regularity (or simply regularity) gives an estimate of the complexity of computing Gröbner bases. The regularity of an ideal I is defined as $\text{reg}(I) = \{ \max j : \beta_{ij}(I) \neq 0 \}$, where β_{ij}'s are the graded Betti numbers of ideal I. The regularity of monomial ideals of Borel type was extensively studied (see for instance [2–4]).

The study of degree sequence started in 1981 by Bollobás [5]. Tyshkevich et al. in [6] established a correspondence between degree sequence of a graph and some structural properties of this graph. Havel–Hakimi criterion (see [7]) states that a sequence (d_1, d_2, \ldots, d_n) of non-negative integers such that $d_1 \geq d_2 \geq \cdots \geq d_n$ is graphic if and only if the sequence $(d_1 - 1, \ldots, d_{d_1} - 1, d_{d_1} + 2, \ldots, d_n)$ is graphic. Given a non-negative sequence (d_1, d_2, \ldots, d_n), this sequence will be called realizable if it is a degree sequence of any graph.

Throughout this paper, we assume H to be a simple, finite, and connected graph and label its vertices according to the degree sequence in descending order. In figures, we identify the vertex v_i of H with the positive integer i. Further, we identify a vertex v_i of a graph H with variable x_i of the polynomial ring $S = k[x_1, \ldots, x_n]$. Recently, Anwar and Khalid in [2] introduced a new class of monomial ideals, namely, elimination ideals $I_D(H)$, associated to a graph H. They showed that elimination ideals are the monomial ideals of Borel type. They gave the description of graphical degree stability of graph H denoted by $\text{Stab}_d(H)$, a combinatorial measure associated to H. They gave a systematic procedure to compute the graphical degree stability, namely, dominating vertex elimination method (DVE method). In [2, 8], the authors computed the upper bounds of the Castelnuovo–Mumford regularity of elimination ideals associated to some families of graphs [9–11].

Motivated by the studies in [2, 8], we further extend this study for join and corona product of complete and cyclic graphs. We compute the graphical degree stabilities of join and corona product of above graphs by using the dominating vertex elimination method (see Lemmas 1 and 2). We give a description on computing the sharp upper bounds for
2. Preliminaries

Definition 1. Let H be a simple, finite, and connected graph with vertex set $V(H)$. The degree of a vertex $v \in V(H)$, denoted by $d(v)$, is the number of edges at v.

A vertex v_j of a graph H is called dominating vertex, if $\deg(v_j) \geq \deg(v_i)$ for all $v_i \in V(H)$ with $i \neq j$. The set of all dominating vertices of a graph H is called dominating set and is denoted by $D(H)$. A graph H is called scattered graph if it has at least one vertex with degree zero; otherwise, it is called non-scattered graph.

Here, we introduce different operations on graphs.

Definition 2. Let G and H be two graphs with mutually disjoint vertex sets $V(G) = \{u_1, u_2, \ldots, u_n\}$ and $V(H) = \{v_1, v_2, \ldots, v_m\}$. A graph obtained by taking one copy of G and then joining the jth vertex of G to every vertex in the jth copy of H. We denote this graph as $G \ast H$. Corona product of two graphs G and H with n and m vertices, respectively, has $n + nm$ vertices.

Definition 3. The corona product of two graphs G and H is the graph obtained by taking one copy of G and $|V(G)|$ disjoint copies of H and then joining the jth vertex of G to each vertex in the jth copy of H. We denote this graph as $G \ast H$. Corona product of two graphs G and H with n and m vertices, respectively, has $n + nm$ vertices.

Definition 4. Let H_j be a graph and pick a vertex $x \in D(H_j)$ such that $H_{j+1} = H_j - \{x\}$ is an induced, non-scattered subgraph of H_j. This method of obtaining an induced, non-scattered subgraph H_{j+1} from H_j by eliminating a vertex from the dominating set $D(H_j)$ is called the dominating vertex elimination method (DVE method). Let H be a simple finite and connected graph; then, the length of the maximum chain of induced, non-scattered, subgraphs of H obtained by successively applying DVE method is called graphical degree stability and is denoted as $\text{Stab}_d(H)$. In other words, if $H = H_0H_1\cdots H_n$ is the maximum chain of induced, non-scattered, subgraphs of H obtained by using DVE method, then $\text{Stab}_d(H)$. Note that the vertex set of H_j contains $[n - j]$ vertices where $1 \leq j \leq r$.

Definition 5. Let H be a simple, finite, and connected graph with vertex set $V(H) = \{x_1, x_2, \ldots, x_n\}$ having degree sequence of vertices (d_1, d_2, \ldots, d_n) such that $d_1 \geq d_2 \geq \cdots \geq d_n$ and $d_i \geq 0$ for $1 \leq i \leq n$; then, the ideal $Q(H) = \langle x_1^{d_1}, x_2^{d_2}, \ldots, x_n^{d_n} \rangle$ is called the sequential ideal associated to the graph H. Let $H = H_0H_1\cdots H_n$ be the maximum chain of induced, non-scattered, subgraphs of H obtained by using the DVE method with $\text{Stab}_d(H) = r$ and $Q(H_j) = \langle x_1^{d_1}, x_2^{d_2}, \ldots, x_n^{d_n} \rangle$ be the sequential ideal corresponding to H_j for $0 \leq j \leq r$; then, the elimination ideal of H is defined as

$$I_D(H) = Q_{H_n} \cap Q_{H_1} \cap \cdots \cap Q_{H_0}.$$ \hspace{1cm} (2)

Let $S = K[x_1, x_2, \ldots, x_n]$, $n \geq 2$, be a polynomial ring over infinite field K and $I \subseteq S$ be a monomial ideal of S. Let $G(I)$ be the minimal set of monomial generators of I and the highest degree of monomial in $G(I)$ is denoted as $\deg(I)$. Also, let J_{xy} be an ideal generated by monomial of I of degree $\geq t$. Given a monomial $u \in S$, set $m(u) = \max\{i: x_i | u\}$ and $m(I) = \max_{u \in G(I)} m(u)$. A monomial ideal I is stable if for any $u \in G(I)$ we have $x_1u|x_1m(u) \in I$ for all $1 \leq i < m(u)$.

Eisenbud et al. proved the following result in [12].

Proposition 1. Let I be a monomial ideal such that $I_{\geq e}$ is stable, where $e \geq \deg(I)$ is an integer. Then, $\text{reg}(I) \leq e$.

Remark 1. Let I and J are two monomial ideals with $r \geq \deg(I)$ and $s \geq \deg(J)$, where r and s are two integers such that $I_{\geq r}$ and $J_{\geq s}$ are stable ideals; then, $(I \cap J)_{\geq \max(r,s)}$ is stable ideal.

3. Regularity of $K_n \ast C_m$

In this section, we present our results regarding the Castelnuovo–Mumford regularity of elimination ideals associated to join operation of complete graph and cyclic graph.

In [2], the authors gave the following formula to compute the graphical degree stability for cyclic graphs.

Proposition 2. If C_m, $m \geq 3$, is the cyclic graph, then

$$\text{Stab}_d(C_m) = \begin{cases} \frac{m}{3} & \text{if } m \equiv 0 \pmod{3}, \\ \frac{m - 1}{3} & \text{if } m \equiv 1 \pmod{3}, \\ \frac{m - 2}{3} & \text{if } m \equiv 2 \pmod{3}. \end{cases}$$ \hspace{1cm} (3)

Lemma 1. Let K_n, $n \geq 2$, be a complete graph and C_m, $m \geq 4$, be a cyclic graph; then,

$$\text{Stab}_d(K_n \ast C_m) = n + \text{Stab}_d(C_m).$$ \hspace{1cm} (4)

Proof. We shall prove it by induction on n. Let $n = 2$; then, $H_0 = K_2 \ast C_m$ with degree sequence

$$\left(\frac{m + 1, m + 1, 4, \ldots, 4}{m-\text{tuple}}\right),$$ \hspace{1cm} (5)

and $D(H_0) = \{x_1, x_2\}$. Without loss of generality, pick $x_1 \in D(H_0)$, and using the DVE method, we get H_1 with the degree sequence (always rearrange the sequence after applying DVE method) $(m, 3, \ldots, 3)$ and $D(H_1) = \{x_1\}$. So,
Mathematical Problems in Engineering

Consider $n = p + 1$; then, $H_0 = K_{p+1} \lor C_m$ with degree sequence

$$Q_i = \left\langle x_1^{n-m+1}, \ldots, x_{m-i+1}^{n-m+1}, x_{m-i}^{n-i+2}, \ldots, x_{n-m+i}^{n-i+2} \right\rangle, \quad 0 \leq i \leq n,$$

be the sequential ideal associated to H_0; then, Q_i is stable ideal, where $\gamma(i) = (n - i)^2 + m(2n - 2i + 1) + 2(i + n - 1)$ and $0 \leq i \leq n$.

Proof. This proof is immediate from Lemma 1. \hfill \Box

Proposition 3. Let $K_n \lor C_m$, $n \geq 2$ and $m \geq 4$, be the join of complete and cyclic graphs, respectively, and

$$Q_i = \left\langle x_1^{n-m+1}, \ldots, x_{m-i+1}^{n-m+1}, x_{m-i}^{n-i+2}, \ldots, x_{n-m+i}^{n-i+2} \right\rangle,$$

be the sequential ideal associated to H_0; then, Q_i is stable ideal, where $\gamma(i) = (n - i)^2 + m(2n - 2i + 1) + 2(i + n - 1)$ and $0 \leq i \leq n$.

Proof. Let $H_0 = K_n \lor C_m$, $n \geq 2$ and $m \geq 4$, be the join of complete and cyclic graphs, respectively; then, by Corollary 1, sequential ideal associated to H_0, $0 \leq i \leq n$, is given as $Q_i = \left\langle x_1^{a_1}, \ldots, x_{n-m+i}^{a_{n-m-i}} \right\rangle$ where

$$a_k = \left\{ \begin{array}{ll} n + m - i - 1, & 1 \leq k \leq n - i, \\ n - i - 2, & n - i + 1 \leq k \leq n + m - i. \end{array} \right.$$ (11)

Let $\gamma(i) = (n - i)^2 + m(2n - 2i + 1) + 2(i + n - 1)$, for all $0 \leq i \leq n$. We shall show that $Q_{\gamma(i)}$ is stable ideal. Take $u \in Q_{\gamma(i)}$; then, $u = \alpha x_k$ for some $1 \leq k \leq n + m - i$ where $\alpha = x_1^m x_{m+i}^{n-m+i}$. If $m(u) > k$, then $x_k u x_{m(u)} = x_i \sqrt{m(u)} x_k^2 \in Q_{\gamma(i)}$ for all $l < m(u)$. So, $Q_{\gamma(i)}$ is stable.

If $m(u) = k$, then clearly $u \in \left\langle x_1, \ldots, x_{n-m+i} \right\rangle^{\gamma(i)}$. \hfill \Box

We show that $\left\langle x_1, \ldots, x_{n-m+i} \right\rangle^{\gamma(i)} \subseteq Q_{\gamma(i)}$. Let $w \in \left\langle x_1, \ldots, x_{n-m+i} \right\rangle^{\gamma(i)}$, then $w = x_1^{b_1} x_2^{b_2} \ldots, x_{n-m+i}^{b_{n-m+i}}$. We shall show that $\left\langle x_1, \ldots, x_{n-m+i} \right\rangle^{\gamma(i)} \subseteq Q_{\gamma(i)}$.
Proof. If Stab\(_d(C_m) = p\), then by using Proposition 2, Stab\(_d(K_n \vee C_m) = n + p\), so the corresponding elimination ideal is given as \(I_D(K_n \vee C_m) = \cap_{i \in I} Q_i\), and by using Propositions 3 and 4 and Remark 1, \(I_D(K_n \vee C_m)\) is stable for \(\gamma\), where

\[
\gamma = \max\{\gamma(i), 0 \leq i \leq n + p\} = n^2 + m(2n + 1) - 2n + 1.
\]

By using Proposition 1,

\[
\text{reg}(I_D(K_n \vee C_m)) \leq n^2 + m(2n + 1) - 2n + 1.
\]

Example 1. Consider \(K_2 \vee C_4\), where \(n = 2\) and \(m = 4\) (see Figure 1).

\[D(H_0) = \{x_1, x_2\}, \quad Q_0 = \langle x_1^2, x_1^2, x_2^2, x_3^2, x_4^2, x_4^2\rangle, \quad \text{and} \quad \text{reg}(Q_0) = 21.
\]

\[D(H_1) = \{x_1\}, \quad Q_1 = \langle x_1^2, x_1^2, x_2^2, x_2^2, x_3^2, x_4^2\rangle, \quad \text{and} \quad \text{reg}(Q_1) = 12.
\]

\[D(H_2) = \{x_1, x_2, x_3, x_4\}, \quad Q_2 = \langle x_1^2, x_2^2, x_2^2, x_3^2, x_4^2\rangle, \quad \text{and} \quad \text{reg}(Q_2) = 5.
\]

\[D(H_3) = \{x_1\}, \quad Q_3 = \langle x_1^2, x_2^2, x_3^2, x_3^2\rangle, \quad \text{and} \quad \text{reg}(Q_3) = 2.
\]

Remark 2. In general, \(Q_{2i+1}\) is not stable, where \(Q_i\) are sequential ideals of \(K_n \vee C_m\), where \(0 \leq i \leq n + \text{Stab}(C_m)\). As in Example 1, \(Q_{1+i}\) is not a stable ideal for \(i = 1\) and \(\gamma(1) = 12\).

4. Regularity of \(K_n \ast C_m\)

In this section, we present our results concerning the Castelnuovo–Mumford regularity of elimination ideals associated to corona product operation of complete graph and cyclic graphs.

Lemma 2. Let \(K_n\), \(n \geq 2\), be a complete graph and \(C_m\), \(m \geq 4\), be a cyclic graph; then,

\[
\text{Stab}_d(K_n \ast C_m) = n + n\text{Stab}_d(C_m).
\]

Proof. We shall prove it by induction on \(n\). Let \(n = 2\); then, \(H_0 = K_2 \ast C_m\) with degree sequence

\[
\left(\begin{array}{c}
m + 1, m + 1, 3, \ldots, 3, 3, \ldots, 3 \\
\end{array}\right)_{m\text{-tuple}},
\]

\[
\left(\begin{array}{c}
2, \ldots, 2, \ldots, 2 \\
\end{array}\right)_{m\text{-tuple}}.
\]

and \(D(H_0) = \{x_1, x_3\}\). Without loss of generality, pick \(x_1 \in D(H_0)\), and using the DVE method, we get \(H_1\) with the degree sequence

\[
\left(\begin{array}{c}
m, 3, \ldots, 3, 2, \ldots, 2 \\
\end{array}\right)_{m\text{-tuple}}.
\]

Now \(D(H_1) = \{x_1\}\), and again applying the DVE method, we have only two copies of \(C_m\) in \(H_2\) with degree sequence

\[
\Rightarrow \text{Stab}_d(K_2 \ast C_m) = 2 + 2\text{Stab}_d(C_m).
\]

Suppose that result is true for \(n = p\); then, the degree sequence of \(K_p \ast C_m\) will be

\[
\left(\begin{array}{c}
p + m - 1, \ldots, p + m - 1, 3, \ldots, 3, 3, \ldots, 3 \\
p\text{-tuple} & m\text{-tuple} \end{array}\right),
\]

\[
\Rightarrow \text{Stab}_d(K_p \ast C_m) = p + p\text{Stab}_d(C_m).
\]

Consider \(n = p + 1\); then, \(H_0 = K_{p+1} \ast C_m\) with degree sequence

\[
\left(\begin{array}{c}
p + m, \ldots, p + m, 3, \ldots, 3, 3, \ldots, 3 \\
p+1\text{-tuple} & m\text{-tuple} \end{array}\right),
\]

and \(|V(H_0)| = pm + p + m + 1\) with \(D(H_0) = \{x_1, \ldots, x_{p+1}\}\) which are precisely the vertices that initially belonged to \(K_{p+1}\) because \(m \geq 4\). By applying the DVE method, we get \(K_{p+1} \ast C_m\) and one copy of \(C_m\), and we call this graph \(H_1\).

\[
\Rightarrow \text{Stab}_d(K_{p+1} \ast C_m) = 1 + \text{Stab}_d(K_p \ast C_m) + \text{Stab}_d(C_m) = 1 + p + p\text{Stab}_d(C_m) + \text{Stab}_d(C_m),
\]

\[
\Rightarrow \text{Stab}_d(K_{p+1} \ast C_m) = (p + 1) + (p + 1)\text{Stab}_d(C_m).
\]

\[
\Box
\]
Corollary 2. Let $K_n, n \geq 2$, be a complete graph and $C_m, m \geq 4$, be a cyclic graph; then, the sequential ideal of $K_n \ast C_m$ is given as

$$Q_i = \begin{cases} x_1^{n+m-1}, & i = 0, \\ x_1^{n+m-i}, & 1 \leq i \leq n-1, \\ x_i, & i = n, \\ x_i, & n+1 \leq i \leq n+n\text{Stab}_q(C_m), \end{cases}$$

where $r = n + nm$

Proof. The proof is immediate from Lemma 2.

Proposition 5. Let $K_n \ast C_m, n \geq 2$ and $m \geq 4$, be the corona product of complete and cyclic graphs, respectively, and

$$Q_0 = \langle x_1^{n+m-1}, \ldots, x_1^{n-m+1}, x_1^3, \ldots, x_r^3 \rangle,$$

be the sequential ideal associated to H_0; then, Q_0 is stable ideal, where $r = n + nm$ and $y(0) = n^2 + n(3m - 2) + 1$.

Proof. Let $H_0 = K_n \ast C_m, n \geq 2$ and $m \geq 4$, be the corona product of complete and cyclic graphs, respectively; then, by Corollary 2, the sequential ideal associated to H_0 is given as $Q_0 = \langle x_1^{n+1}, \ldots, x_r^{n+1} \rangle$ where

$$a_j = \begin{cases} n + m - 1, & 1 \leq j \leq n, \\ 3, & n + 1 \leq j \leq r. \end{cases}$$

be the sequential ideal associated to H_i; then, $Q_{i-1}(0)$ is stable ideal, where $r = n + nm, y(i) = (n - i)^2 - 2(n + m - i) + 3mn + 1$ and $1 \leq i \leq n - 1$.

Proof. Let $H_0 = K_n \ast C_m, n \geq 2$ and $m \geq 4$, be the corona product of complete and cyclic graphs, respectively; then, by Corollary 2, sequential ideal associated to H_i, $1 \leq i \leq n - 1$, is given as $Q_i = \langle x_1^{n+1}, \ldots, x_r^{n+1} \rangle$ where

Let $y(0) = n^2 + n(3m - 2) + 1$. We show that $Q_{y(0)}$ is a stable ideal. Take $u \in Q_0$: then, $u = v x_i^k$ for some $1 \leq k \leq r$ where $v \in \langle x_1, \ldots, x_r \rangle^{y(0)} - a_i$.

If $m(u) > k$, then $x_i u / x_0(m(u)) = (x_i v / x_0(m(u))) x_i^k \in Q_{y(0)}$ for all $i < m(u)$. So, $Q_{y(0)}$ is stable.

If $m(u) = k$, then clearly $u \in \langle x_1, \ldots, x_r \rangle^{y(0)}$.

Thus, we have $Q_{y(0)} \subseteq \langle x_1, \ldots, x_r \rangle^{y(0)}$.

We show that $\langle x_1, \ldots, x_r \rangle^{y(0)} \subseteq Q_{y(0)}$. Let $w \in \langle x_1, \ldots, x_r \rangle^{y(0)}$; then, $w = x_{1}^{\beta_{1}}, x_{2}^{\beta_{2}}, \ldots, x_{r}^{\beta_{r}}$ with $\beta_{i} \geq 0$ for all $1 \leq i \leq r$ and $\sum_{i=1}^{r} \beta_{i} \geq y(0)$. Therefore, there exists at least one $s \in \{1, \ldots, r\}$ such that $\beta_{s} \geq a_{s}$ and $w = \langle x_{1}^{\beta_{1}}, \ldots, x_{2}^{\beta_{2}}, \ldots, x_{r}^{\beta_{r}} \rangle x_{s}^{\beta_{s}} \in Q_{y(0)}$, and the result follows.
\[a_j = \begin{cases}
\frac{n + m - i - 1}{3}, & 1 \leq j \leq n - i, \\
\frac{n - i + 1}{2}, & n - i + 1 \leq j \leq r - i \pm 1 + m + 1, \\
\frac{r - i \pm 1 + m + 1}{2}, & r - i \pm 1 + m + 1 \leq j \leq r - i.
\end{cases} \] (29)

Let \(\gamma(i) = (n - i)^2 - 2(n + m - i) + 3nm + 1 \), for all \(1 \leq i \leq n - 1 \). We shall show that \(Q_{\gamma(j)} \) is a stable ideal. Take \(u \in Q_{\gamma(j)} \); then, \(u = ux_k^\gamma \) for some \(1 \leq k \leq r - i \) where \(\gamma(v) = (x_1, \ldots, x_{r-i})^{\gamma(i)} - a_k \).

If \(m(u) > k \), then \(xu_k/u(x_{m(u)}) = x_i/v(x_{m(u)})x_k^{\gamma} \in Q_{\gamma(j)} \) for all \(l < m(u) \). So, \(Q_{\gamma(j)} \) is stable.

If \(m(u) = k \), then clearly \(u \in \langle x_1, \ldots, x_{r-i} \rangle^{\gamma(i)} \).

\[\Rightarrow Q_{\gamma(j)} \subseteq \langle x_1, \ldots, x_{r-i} \rangle^{\gamma(i)}. \] (30)

We show that \(\langle x_1, \ldots, x_{r-i} \rangle^{\gamma(i)} \subseteq Q_{\gamma(j)} \). Let \(w \in \langle x_1, \ldots, x_{r-i} \rangle^{\gamma(i)} \); then, \(w = x_1^{\beta_1}x_2^{\beta_2}\ldots x_{r-i}^{\beta_{r-i}} \) with \(\beta_i \geq 0 \) for all \(1 \leq i \leq r - i \). Therefore, there exists at least one \(s \in \{1, \ldots, r - i\} \) such that \(\beta_s \geq a_s \) and \(w = x_1^{\beta_1}x_2^{\beta_2-a_2}\ldots x_{r-i}^{\beta_{r-i}-a_{r-i}}x_s \in Q_{\gamma(j)} \), and the result follows. \(\square \)

Proposition 7. Let \(K_n \ast C_m, n \geq 2 \) and \(m \geq 4 \), be the corona product of complete and cyclic graphs, respectively, and \(Q_r = \langle x_1^2, \ldots, x_{n+3m-3(n-1)} \rangle \) be the sequential ideal associated to \(H_r \); then, \(Q_r \) is stable ideal, where \(r = n + m \) and \(\gamma(n) = nm + 1 \).

Proof. Let \(K_n \ast C_m, n \geq 2 \) and \(m \geq 4 \), be the corona product of complete and cyclic graphs, respectively; then, by Corollary 2, sequential ideal associated to \(H_r \) is given as \(Q_r = \langle x_1^2, \ldots, x_{(n+2m-3(n-1)+1)}, \ldots, x_r \rangle \). Let \(\gamma(n) = nm + 1 \); then, by similar arguments as above, \(Q_r \) is a stable ideal. \(\square \)

Proposition 8. Let \(K_n \ast C_m, n \geq 2 \) and \(m \geq 4 \), be the corona product of complete and cyclic graphs, respectively, and

\[Q_i = \langle x_1^i, \ldots, x_{n+3m-3(n-i)+1}, \ldots, x_r \rangle, \] (31)

be the sequential ideal associated to \(H_i \); then, \(Q_i \) is stable ideal, where \(r = n + m \), \(\gamma(i) = nm + 3(n-i) + 1 \), and \(n + 1 \leq i \leq n + m + 1 \).

Proof. Let \(K_n \ast C_m, n \geq 2 \) and \(m \geq 4 \), be the corona product of complete and cyclic graphs, respectively; then, by Corollary 2, sequential ideal associated to \(H_i \) is given as \(Q_i = \langle x_1^i, \ldots, x_{n+3m-3(n-i)+1}, \ldots, x_r \rangle \), where

\[a_j = \begin{cases}
2, & \frac{1}{2} \leq j \leq nm - 3(i-1), \\
1, & nm - 3(i-1) + 1 \leq j \leq r - i.
\end{cases} \] (32)

Let \(\gamma(i) = nm + 3(n-i) + 1 \), for all \(n + 1 \leq i \leq n + m + 1 \). We shall show that \(Q_i \) is a stable ideal. Take \(u \in Q_i \); then, \(u = vx_k^{\gamma(i)} \) for some \(1 \leq k \leq r - i \) where \(\gamma(v) = (x_1, \ldots, x_{r-i})^{\gamma(i)} - a_k \).

If \(m(u) > k \), then \(xu_k/u(x_{m(u)}) = (x_i/v(x_{m(u)}))x_k^{\gamma(i)} \in Q_i \) for all \(l < m(u) \). So, \(Q_i \) is stable.

If \(m(u) = k \), then clearly \(u \in \langle x_1, \ldots, x_{r-i} \rangle^{\gamma(i)} \).

\[\Rightarrow Q_i \subseteq \langle x_1, \ldots, x_{r-i} \rangle^{\gamma(i)}. \] (33)

We show that \(\langle x_1, \ldots, x_{r-i} \rangle^{\gamma(i)} \subseteq Q_i \). Let \(w \in \langle x_1, \ldots, x_{r-i} \rangle^{\gamma(i)} \); then, \(w = x_1^{\beta_1}x_2^{\beta_2}\ldots x_{r-i}^{\beta_{r-i}} \) with \(\beta_i \geq 0 \) for all \(1 \leq i \leq r - i \). Therefore, there exists at least one \(s \in \{1, \ldots, r - i\} \) such that \(\beta_s \geq a_s \) and \(w = x_1^{\beta_1}x_2^{\beta_2-a_2}\ldots x_{r-i}^{\beta_{r-i}-a_{r-i}}x_s \in Q_i \), and the result follows. \(\square \)

Theorem 2. Let \(K_n \ast C_m, n \geq 2 \), be a complete graph and \(C_m, m \geq 4 \), be a cyclic graph; then, we have

\[\text{reg}(I_D(K_n \ast C_m)) \leq n^2 + n(3m - 2) + 1. \] (34)

Proof. If \(\text{Stab}_D(C_m) = \emptyset \), then by using Proposition 2, \(\text{Stab}_D(K_n \ast C_m) = n + mp \); so the corresponding elimination ideal is given as \(I_D(K_n \ast C_m) = \cap_{i=1}^{n+mp} Q_i \), and by using Propositions 5–8 and Remark 1, \(I_D(K_n \ast C_m) \) is stable for \(\gamma \), where

\[\gamma = \max\{\gamma(i)\mid 0 \leq i \leq n + mp\} = n^2 + n(3m - 2) + 1. \] (35)

By using Proposition 1,

\[\text{reg}(I_D(K_n \ast C_m)) \leq n^2 + n(3m - 2) + 1. \] (36)

Example 2. Consider \(K_2 \ast C_4 \), where \(n = 2 \) and \(m = 4 \) (see Figure 2).

\[D(H_0) = \{x_1, x_2\}, \quad Q_0 = \langle x_1^5, x_2^5, x_{12}^5, x_1^3, x_2^3, x_{12}^3, x_1^2, x_2^2, x_{12}^2, x_{12}^3 \rangle, \quad \text{and reg}(Q_0) = 25. \]

\[D(H_1) = \{x_1\}, \quad Q_1 = \langle x_1^3, x_1^3, x_1^3, x_1^3, x_1, x_1, x_1, x_1, x_1 \rangle, \quad \text{and reg}(Q_1) = 16. \]

\[D(H_2) = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}, \quad Q_2 = \langle x_1^3, x_2^3, x_3^3, x_4^3, x_5^3, x_6^3, x_7^3, x_8^3 \rangle, \quad \text{and reg}(Q_2) = 9. \]

\[D(H_3) = \{x_1, x_2, x_3, x_4, x_5\}, \quad Q_3 = \langle x_1^3, x_2^3, x_3^3, x_4^3, x_5^3 \rangle, \quad \text{and reg}(Q_3) = 6. \]

\[D(H_4) = \{x_1, x_2\}, \quad Q_4 = \langle x_1^3, x_2^3, x_3, x_4, x_5, x_6 \rangle, \quad \text{and reg}(Q_4) = 3. \]

Remark 3. In general, one cannot get \(Q_i \) stable, where \(Q_i \) are the sequential ideals of \(K_n \ast C_m, 0 \leq i \leq n + m + 1 \). As in Example 2, for \(i = 2 \gamma(2) = 9 \) and \(Q_{2,\gamma} \) is not a stable ideal.

Remark 4. Elimination ideals are Borel type ideals, and upper bound for Borel type ideals was discussed in [3, 13]; it
is worthy to note that our given bounds are sharper than the ones given in [3, 13].

Data Availability

The data used to support the findings of this study are included within this article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Zongming Lv verified and analyzed the results and arranged the funding for this study. Muhammad Junaid Ali Junjua proved the results. Muhammad Tajammal Tahir wrote the first version of the paper. Khurram Shabbir proposed the problem and supervised this work.

Acknowledgments

This study was supported by the Higher Education Commission (Islamabad) through the National Research Program for Universities (grant no. 7359/Punjab/NRPU/R&D/HEC/2017).

References

