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In this paper, we propose a novel reduced differential transform method (RDTM) to compute analytical and semianalytical
approximate solutions of fractional order Airy’s ordinary differential equations and fractional order Airy’s and Airy’s type partial
differential equations subjected to certain initial conditions. )e performance of the proposed method was analyzed and
compared with a convergent series solution form with easily computable coefficients. )e behavior of approximated series
solutions at different values of fractional order α and its modeling in 2-dimensional and 3-dimensional spaces are compared with
exact solutions using MATLAB graphical method analysis. Moreover, the physical and geometrical interpretations of the
computed graphs are given in detail within 2- and 3-dimensional spaces. Accordingly, the obtained approximate solutions of
fractional order Airy’s ordinary differential equations and fractional order Airy’s and Airy’s type partial differential equations
subjected to certain initial conditions exactly fit with exact solutions. Hence, the proposed method reveals reliability, effectiveness,
efficiency, and strengthening of computed mathematical results in order to easily solve fractional order Airy’s type
differential equations.

1. Introduction

)e fractional calculus is a generalization of the differen-
tiation and integration to arbitrary noninteger order. It is the
theory of integrals and derivatives of arbitrary order which
unifies and generalizes the concepts of integer order dif-
ferentiation and n-fold integration. Currently, the theory of
fractional differentiation has gained much more attention as
the fractional order system response ultimately converges to
the integer order equations. )e no analytical solution
method was available for such type of equations before the
nineteenth century as explained in [1].

In recent past years, the glorious developments have
been investigated in the field of fractional calculus and
fractional differential equations. Several real phenomena
emerging in engineering and science fields can be demon-
strated successfully by developing models using the frac-
tional calculus theory. Some of these are time fractional heat

equations, time fractional heat-like equations, time frac-
tional wave equations, time fractional telegraphic equation,
fractional order Airy’s ordinary differential equation, time
fractional Airy’s partial differential equations, and so on.
)ese equations are represented by linear and nonlinear
differential equations, and since they have so many appli-
cations in the field of science, solving such fractional dif-
ferential equations is very important. )e main advantage of
fractional order differential equations is that it is a global
operator and produces accurate as well as stable results.
)erefore, these equations constitute an important class of
differential equations, and for some recent work, we refer the
readers to study the work in [2–9].

)e term Airy differential equation was first coined by
George Biddell Airy, who was particularly involved in optics
[10]. He also had an interest in the calculation of light in-
tensity in the area of a caustic surface. A number of scholars
have acknowledged that the )e Airy equation has a
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significant role in different science fields as it constitutes a
classical equation of mathematical physics. Airy equation
has various applications in different areas of sciences, par-
ticularly in mathematical physics. Its applications include
modeling the diffraction of light and optic problems, though
its applicability is not limited to this area. Airy’s partial
differential equation is one of the linear partial differential
equations used in many real-world physical applications,
and the Airy equation is one of the first models of water
waves: a small wave traveling “wave trains” in deep water
[11]. )e early day of mathematical modeling of water waves
was assumed that the wave height was small compared to the
water depth which leads to linear dispersive equations, a
representative model of which is Airy’s partial differential
equation [12]. Such equations are somewhat satisfying in this
regard because they have solutions that resemble wave
traveling along with constant speed and fixed profile along
the water surface, just like one sees in nature [13].

Fractional calculus involves different definitions of the
fractional integral and derivatives such as the Rie-
mann–Liouville fractional derivatives, Caputo fractional
derivatives, Riesz fractional derivatives, and Grun-
wald–Letnikov fractional derivative [14, 15]. Among these,
Riemann–Liouville is the baseline for derivatives. Here, we
consider Caputo’s definition for starting baseline of the
finding. A mathematical model is a simplified description of
physical reality expressed in mathematical terms. )us, the
investigation of exact or approximate solution helps us to
understand the means of these mathematical models. Many
authors used different methods for solving fractional dif-
ferential equations. A few of these methods are the Dif-
ferential Transform Method (DTM) [16], the Adomian
Decomposition Method (ADM) [17], the Variational Iter-
ation Method (VIM) [18], and the steepest descent method
[10]. Recently, Keskin and Oturanc [18–20] developed the
reduced differential transform method (RDTM) for the
fractional differential equations and showed that RDTM is
the easily usable semianalytical method and gives the exact
solution for both the linear and nonlinear differential
equations. Using the RDTM, it is possible to find the exact
solution or closed approximate solution of a differential
equation [21]. It is an iterative procedure for obtaining
Taylor series solution of differential equations [22].

)e classical Taylor series method has been proposed for
solving the differential equations. With an advent of high-
speed computers, there has been an increasing trend towards
exploring new ideas out of traditional techniques for the last
couple of decades. An updated version of Taylor series
method, called the DTM, was introduced by Zhou, and then
the DTM was applied in order to solve electric circuits [16].
Another improved approach for solving the initial value
problem for partial differential equations, known as the
RDTM, has recently been used by the Turkish mathemati-
cians Keskin and Oturanc, and they developed RDTM for
the fractional differential equations and showed that the
RDTM is the easily usable semianalytical method and gives
the exact solution for both the linear and nonlinear dif-
ferential equations [19]. Currently, many researchers applied
the RDTM in its fractional form. For instance, some findings

of the researchers are as follows: the solution obtained as an
infinite power series for appropriate initial condition, which
can in turn express the exact solutions in a closed form. It is
demonstrated that the RDTM solves the linear and non-
linear Goursat problem without using any complicated
polynomials such as the Adomian polynomials.)is method
is a powerful mathematical tool for solving partial differ-
ential equations with variable coefficients. Computational
work fully reconfirms the reliability and efficiency of the
RDTM [23–25]. )e RDTM was used for solving dispersive
partial differential equations and applied on the one-di-
mensional linear third-order dispersive partial differential
equation, and it shows the reliability and efficiency of the
methods [26].

In the last several years, other authors have discussed
about the analysis of the solution of Airy’s and Airy’s type
differential equation using different methods such as clas-
sical and nonclassical Lie symmetry analysis and some
technical calculations [27], combining the knowledge of the
mean and the variance and the principle of maximum en-
tropy [28], steepest descent method [10], and variational
iteration method (VIM). )e existence, uniqueness, and
regularity result of the solution to Airy’s and Airy’s type
differential equation based on the energy estimates using
weighted Sobolev norms was also shown [29]. However,
these methods, all, have their own limitations. )e RDTM
introduced recently by Keskin and Oturanc [1] is used to
solve fractional partial differential equations. )e RDTM
was successfully applied to solve time fractional heat
equations, time fractional wave equation, time fractional
telegraphic equations, and so on. However, nothing was
discussed about fractional order Airy’s ordinary differential
equations and time fractional order Airy’s and Airy’s type
partial differential equations by applying the RDTM in the
existing literature. To overcome these difficulties, the
reduced differential transform method [20, 30–32] in its
fractional form was proposed. In this paper, the RTDM
was proposed to find the analytical and semianalytical
approximate solutions for the fractional order Airy’s
ordinary differential equation, time fractional order Airy’s
partial differential equation, and time fractional order
Airy’s type partial differential equations defined in
(1)–(3), respectively.

)e nonclassical approaches capture the new exact so-
lutions to Airy’s partial differential equations with fractional
order [27]. Airy’s partial differential equation was solved via
the Fourier transform method, and the solution shows that
Airy equation is dispersive [33]. )e new RDTM introduced
recently by Keskin and Oturanc in [19, 20, 30] was used to
solve fractional partial differential equations. )e RDTM
was successfully applied to solve time fractional heat
equations, time fractional wave equation, and time fractional
telegraphic equations [34–36]. )e asymptotic solution for
fractional Airy differential equation (FADE) is in the con-
formable sense with the steepest descent method [10, 26, 37].
Even if fractional order Airy’s differential equations are
solved by different methods, to the best knowledge of the
researchers, nothing has been discussed about time frac-
tional order Airy’s and Airy’s type differential equations by
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applying RDTM in the existing literature. As a result, the
researchers are intended to apply RDTM to find analytical
and semianalytical solutions for the fractional Airy’s and
Airy’s type differential equations and construct its models in
certain examples with comparison of exact solutions.

2. Mathematical Formulation

In this paper, the proposed fractional order Airy’s ordinary
differential equation is given by

d2αy(t)

dt
2α − ty(t) � 0, where 0< α< 1 and 0≤ t<∞, (1)

subjected to initial conditions: y(0) � A and y′(0) � B,
where A and B are constants.

Time fractional order Airy’s partial differential equation
is defined as

z
α
u(x, t)

zt
α � β

z
3
u(x, t)

zx
3 , x ∈ R, t> 0, 0< α< 1, (2)

where β � ± 1, subjected to initial condition u(x, 0) � λ(x).
Time fractional order Airy’s type partial differential

equation is given by

z
α
u(x, t)

zt
α � u(x, t)

z
3
u(x, t)

zx
3 , x ∈ R, t> 0, 0< α< 1,

(3)

subjected to initial condition u(x, 0) � ψ(x).
)e applicability of Adomian decomposition method in

finding the approximate solution of the eigenvalue problem
of fractional order Airy’s ordinary differential equation
(FAODE) is as follows:

D
α
y(x) − λxy(x) � 0, 1< α≤ 2,

y(0) � A,

y′(0) � B, − ∞<x, y< +∞,

(4)

where λ ∈ R and Dα signifies conformable fractional de-
rivative operator of order α [38].

A class of linear and nonlinear time fractional differential
equation diffusion and Burger’s, Airy’s, KdV, gas dynamic,
and Fisher’s equations can be extended to the method of
nonclassical Lie symmetry analysis.

)e gamma function is a generalization for n> 0 of the
factorial function n! which is defined only if n is a
nonnegative integer and the gamma function, Γ(c), is a
function which is defined in elementary differential
equation as

Γ(c) � 
∞

0
e

− t
t
c− 1dt, c> 0. (5)

)e beta function, B(z, w), where the variables z,
w ∈ C , is defined by

B(z, w) �
Γ(z)Γ(w)

Γ(z + w)
. (6)

)e beta function possesses the following property:

B(z, w) � 
1

0
t
z− 1

(1 − t)
w− 1dt � 

∞

0

t
z− 1

(1 + t)
z+w dt. (7)

2.1. Some Basic Definitions, Properties, and &eorems on
Fractional Calculus. Under this section, we discuss some
basic definitions, properties, Lemmas, and theorems on
fractional calculus.

Definition 1. Let Cα(a, b) be a set of nondifferentiable
functions with the fractal dimension α for α ∈ (0, 1]. For
ψ(x) ∈ Cα(a, b), the local fractional derivative (LFD) operator
of ψ(x) of order α at x � x0 is defined as follows [36, 37]:

D
(α)ψ x0(  �

dαψ x0( 

dx
α � lim

x⟶x0

Δα ψ(x) − ψ x0( ( 

x − x0( 
, (8)

where Δα(ψ(x)) − ψ(x0) � Γ(α + 1))[ψ(x) − ψ(x0)].

Lemma 1 (see [38, 39]). Suppose that f and g are non-
differentiable functions and α ∈ (0, 1] is the order of LFD.
&en,

(i) D(α)(af + bg) � a(D(α)f) + b((D(α)g)) for
a, b ∈ R

(ii) D(α)(fg) � fD(α)(g) + gD(α)(f)

(iii) D(α)(f/g) � ((gD(α)(f) − fD(α)(g))/g2) provided
that g≠ 0

Lemma 2. Suppose that f is nondifferentiable function and
α ∈ (0, 1] is the order of LFD [38, 39]. &en,

(i) D(α)(f(x)) � 0 for all constant functions f(x) � λ
(ii) D(α)(xkα/Γ(kα + 1)) � (x(k− 1)α/Γ((k − 1)α + 1))

Some useful results and properties of Jumarie’s fractional
derivative summarized in [40] are as follows:

D
α
x[cf(x)] � cD

α
xf(x),

D
α
xx

β
�
Γ(1 + β)

Γ(1 + β − α)
x
β− α

,

(9)

where β≥ α≥ 0 , α≥ 0, andC � constant.
&e Riemann–Liouville definition of fractional derivative

is as follows [41]:

aD
α
t �

1
Γ(n − α)

d
dt

 

n


t

a

f(τ)dτ
(t − τ)

α− n+1, n − 1≤ α< n.

(10)

)e Riemann–Liouville derivative has certain disad-
vantages when trying to model real-world phenomena with
fractional differential equations [41]. )erefore, the re-
searchers used a modified differential operator c

aDα
t pro-

posed first by Caputo in his work on the theory of
viscoelasticity. Caputo’s definition can be written as
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c
aD

α
t �

1
Γ(n − α)


t

a

f
(n)

(τ)dτ
(t − τ)

α− n+1, n − 1≤ α< n. (11)

Definition 2. Let n ∈ R+.)e operator Jn
a defined on L1[a, b]

[42] is as follows:

J
n
af(x) �

1
Γ(n)


x

a
(x − t)

n− 1
f(t)dt, (12)

for a≤x≤ b is called the Riemann–Liouville fractional in-
tegral operator of order n.

For n � 0, we set J0a � I, the identity operator.

Definition 3. )e Caputo fractional derivative of order α
[43] is defined as follows:

D
α
af(x) � J

m− α
a D

α
af(x) �

1
Γ(m − α)


x

a
(x − t)

m− α− 1
f

(m)
(t)dt, forf ∈ C

m
− 1, m − 1< α<m, x> a,

dm
f(x)

dx
m , for α � m ∈ N.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

Definition 4. For the smallest integer, m, that exceeds α, the
Caputo time fractional derivative operator of order α> 0
defined in [44] is as follows:

D
α
0∗xu(x, t) �

z
α
u(x, t)

zt
α �

1
Γ(m − α)


t

a
(t − ξ)

m− α− 1 z
m

u(x, ξ)

zξm dξ, form − 1< α<m,

z
m

u(x, t)

zt
m , for α � m ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

For the fractional derivative of order α and β such that
α, β> 0, m − 1< a≤m , and c> − 1, α≥ 0, we have the fol-
lowing properties [45]:

(i) (JαaJ
β
af)(x) � (J

β
aJαaf)(x) � (J

α+β
a f)(x)

(ii) (Jαa(t − a))c � (Γ(c + 1)/Γ(α + c + 1))(t − a)c+α

(iii) (JαaDα
af)(x) � (Jm

a Dm
a f)(x) � f(x) − 

m− 1
k�0f(k)

(a)((x − a)k/k!), x> a

Let RD denote the reduced differential transform op-
erator and R− 1

D denote the inverse reduced differential
transform operator.

Definition 5. If the function u(x, t) is analytic and con-
tinuously differentiable with respect to time variable t and
variable x in the domain of interest, then the reduced
transformed function defined in [30, 32, 46] is as follows:

RD[u(x, t)] � Uk(x) �
1

Γ(kα + 1)

zkα

ztkα u(x, t) 
t�0

, (15)

where α is a parameter which describes the order of the time
fractional derivative in Caputo sense and Uk(x) is the
transformed function of u(x, t).

Definition 6. )e differential inverse transform of Uk(x)

defined in [30, 32, 46] is as follows:

R
− 1
D � Uk(x)  � u(x, t) � 

∞

k�0
Uk(x)t

kα
. (16)

Now, combining Definitions 5 and 6, we find that

u(x, t) � 
∞

k�0

1
Γ(kα + 1)

zkα

ztkα u(x, t) 
t�t0

t
kα

. (17)

Lemma 3 (local fractional Taylor’s theorem [47, 48]. Sup-
pose that (d(k+1)α/ dx(k+1)α)y(x) ∈ Cα(a, b), for a, b ∈ R,

k � 0, 1, 2, 3, . . ., and α ∈ (0, 1] , we have

Y(x, k) �
1

Γ(kα + 1)

dkαy(x)

dxkα 
x�x0

, where a<x0 < x< b for allx ∈ (0, 1]. (18)
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Lemma 4. Suppose that (d(k+1)α/dx(k+1)α) y(x) ∈ Cα (a, b),

for a, b ∈ R, k � 0, 1, 2, 3, . . ., and α ∈ (0, 1] , we have [47, 48]

y(x) � 
∞

k�0

dkα

dx
kα y x0( 

x − x0( 
kα

Γ(kα + 1)
, where a<x0 <x< b for allx ∈ (0, 1]. (19)

Let RD denote the reduced differential transform op-
erator and R− 1

D denote the inverse reduced differential
transform operator.

Definitions 5 and 6 are the baseline for solving time frac-
tional heat equations and time fractional nonlinear evolution
equations having time fractional derivative of order α, where
0< α< 1, respectively [22, 49]. )ese definitions were also used
for solving Caputo-type time fractional order hyperbolic tele-
graph equation of order α, where 0< α≤ 2 [49]. Even though
the definitions of t-dimensional spectrum function (or the
transformed function), the inverse reduced differential trans-
form of the transformed function, and the mathematical op-
erations of reduced differential transform method in two
dimensions were not stated in [13], they were used for solving
time fractional heat equations and two-dimensional time
fractional order telegraph equations respectively.

We also discussed some basic mathematical operations
performed by using the reduced differential transform
method [19, 22, 30, 47, 50]:

(i) If w(x, t) � αu(x, t) thenWk(x) � αUk(x).
(ii) If w(x, t) � u(x, t)v(x, t), then Wk(x) � 

k
n�0 Un

(x)Vk− n(x) � 
k
n�0 Vn(x)Uk− n(x).

(iii) If w(x, t) � (zn/zxn)u(x, t), then Wk(x) �

(zn/zxn)Uk(x) for k� 0, 1, 2, 3, . . ..
(iv) If w(x, t) � u(x, t), then Wk(x) � Uk(x).
(v) If w(x, t) � (znα/ztnα)u(x, t), where k� 1, 2, 3, . . ..,

and n ∈ N , then Wk(x) � (Γ(kα + nα + 1)/
Γ(kα + 1))Uk+n(x).

(vi) If u(x, t) � xmtnw(x, t), then Uk(x) �

xmWk− n(x),∀k≥ n , and Uk(x) � 0.
(vii) If w(x, t) � u(x, t)(zm/zxm)u(x, t) , then



k

r�0
Ur(x)

z
m

zx
mUk− r(x) � 

k

r�0
Uk− r(x)

z
m

zx
mUr(x), m � 0, 1, 2, . . . , (20)

and Wk(x) � Uk+n(x) � (Γ(kα + 1)/Γ(kα+

nα + 1))[
k
r�0 Ur(x)(zm/ zxm)Uk− r(x)]. )en, for

n � 1 and m � 0, 1, 2 . . ., we obtain the following
iterative relation:

Uk+1(x) �
Γ(kα + 1)

Γ(kα + α + 1)


k

r�0
Ur(x)

z
n

zx
nUk− r(x)⎡⎣ ⎤⎦.

(21)

Definition 7. A power series expansion of the form [46] is as
follows:



∞

n�0
cn t − t0( 

nα
� c0 + c1 t − t0( 

α

+ c2 t − t0( 
2α

+ c3 t − t0( 
3α

+ · · · ,

(22)

where 0≤m − 1< α≤m and t≥ t0 are called fractional power
series (FPS) about t0, where t is a variable and cn

′s are
constants of the series.

Based on the following results given in [46], we obtain
the FPS 

∞
n�0 cntnα, t≥ 0 , and the following two cases are

true:

(i) If the FPS 
∞
n�0 cntnα converges when t � b> 0, then

it converges whenever 0≤ t< b

(ii) If the FPS 
∞
n�0 cntnα diverges when t � d> 0, then it

diverges whenever t>d

Also, for the FPS 
∞
n�0 cntnα, t≥ 0, there are only three

possibilities:

(i) )e series converges only when t � 0
(ii) )e series converges for each t≥ 0
(iii) )ere is a positive real number R such that the series

converges whenever 0≤ t<R and diverges when-
ever t>R

As stated in [30], the concept of the reduced differential
transform is derived from the power series expansion. As a
result, the solution of nonlinear models, containing frac-
tional derivatives of order α about the initial time t0, has the
following form:

y(t) � 
∞

k�0
ak t − t0( 

αk
, t ∈ I, (23)

where I � (t0, t0 + r), r> 0.
Let ϕk(t) � ak(t − t0)

αk, if ∃ 0< c< 1 such that
‖ϕk+1(t)‖≤ c‖ϕk(t)‖, then the series solution 

∞
k�0 akϕk(t)

Mathematical Problems in Engineering 5



defined above in (23) converges ∀k≥ k0 and for some
k0 ∈ N.

3. Main Results

In this part, the general solutions of the equations (1)–(3)
corresponding to certain conditions were obtained. )e
convergence of the method when applying to these equa-
tions was proved, and the main results are elaborated and
illustrated by examples.

3.1. RDTM for Solving Fractional Order Airy’s Ordinary
Differential Equations (FAODE). Let us consider the fol-
lowing fractional order Airy’s ordinary differential equation
(1) with its corresponding initial condition:

d2αu(t)

dt
2α − tu(t) � 0, where 0< α< 1 and 0≤ t<∞,

(24)

subjected to the initial conditions

u(0) � A,

u′(0) � B, whereA andB are constants.
(25)

In order to obtain the solution of (24) and (25) let us go
through the following three steps:

Step 1: applying the reduced differential transform on
both sides of equations (24) and (25),

RD[y(0)] � RD[A]. And hence, Y(k) � (1/Γ(kα + 1))

[dkαy(t)/dtkα]t�0.
For k � 0, Y(0) � (1/Γ(1))[y(t)]t�0 � y(0) � A.
Again, RD[y1(0)] � RD[B] is in similar way; Y(1) � B.
Hence, the reduced differential transforms of the initial
conditions are as follows:

Y(0) � A,

Y(1) � B.
(26)

It is easy to see that the given equation cannot be solved
completely with the given two conditions, rather one
more condition is needed. A new condition can be
found by setting t � 0 in the original problem. So, we
have

Y(2) �
1

Γ(2α + 1)

d2αy(t)

dt2α
 

t�0

�
1

Γ(2α + 1)
[β ty(t)] t�0 � 0.

(27)

)erefore,

Y(2) � 0. (28)

Applying the reduced differential transform on both
sides of (24), we obtain following recurrence relation:

Y(k + 2) � Y(k − 1)
Γ(kα + 1)

Γ(kα + 2α + 1)
 , for n � 2 and k � 1, 2, 3, . . . . (29)

Step 2: substituting (26) into (29) yields the following
iterated values:
For k � 1,

Y(3) � Y(0)
Γ(α + 1)

Γ(3α + 1)
� A
Γ(α + 1)

Γ(3α + 1)
. (30)

For k � 2,

Y(4) � Y(1)
Γ(2α + 1)

Γ(4α + 1)
� B
Γ(2α + 1)

Γ(4α + 1)
. (31)

For k � 3,

Y(5) �
Γ(3α + 1)

Γ(5α)
Y(2) �
Γ(3α + 1)

Γ(5α)
(0) � 0. (32)

For k � 4,

Y(6) � Y(3)
Γ(4α + 1)

Γ(6α + 1)
� A
Γ(α + 1)Γ(4α + 1)

Γ(3α + 1)Γ(6α + 1)
.

(33)

For k � 5,

Y(7) � Y(4)
Γ(5α + 1)

Γ(7α + 1)
� B
Γ(2α + 1)

Γ(4α + 1)

Γ(5α + 1)

Γ(7α + 1)
.

(34)

For k � 6,

Y(8) � Y(5)
Γ(6α + 1)

Γ(8α + 1)
� (0)
Γ(6α + 1)

Γ(8α + 1)
� 0. (35)

For k � 7,

Y(9) � Y(6)
Γ(7α + 1)

Γ(9α + 1)
� A
Γ(α + 1)Γ(4α + 1)

Γ(3α + 1)Γ(6α + 1)

Γ(7α + 1)

Γ(9α + 1)
.

(36)

For k � 8,

Y(10) � Y(7)
Γ(8α + 1)

Γ(10α + 1)
� B
Γ(2α + 1)

Γ(4α + 1)

Γ(5α + 1)

Γ(7α + 1)

Γ(8α + 1)

Γ(10α + 1)
.

(37)

Step 3: by using the inverse differential transforms of
Y(k), we obtain
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y(t) � 
∞

k�0
Y(k)t

kα

� [Y(0) + Y(1) + Y(2) + Y(3) + · · ·]t
kα

� At
0α

+ Bt
α

+ A
Γ(α + 1)

Γ(3α + 1)
t
3α

+ B
Γ(2α)

Γ(4α + 1)
t
4α

+ A
Γ(α + 1)Γ(4α + 1)

Γ(3α + 1)Γ(6α + 1)
t
6α

+ B
Γ(2α + 1)

Γ(4α + 1)

Γ(5α + 1)

Γ(7α + 1)
t
7α

+ A
Γ(α + 1)Γ(4α + 1)

Γ(3α + 1)Γ(6α + 1)

Γ(7α + 1)

Γ(9α + 1)
t
9α

+ B
Γ(2α)

Γ(4α + 1)

Γ(5α + 1)

Γ(7α + 1)

Γ(8α + 1)

Γ(10α + 1)
t
10α

+ · · ·

� A 1 +
Γ(α + 1)

Γ(3α + 1)
t
3α

+
Γ(α + 1)Γ(4α + 1)

Γ(3α + 1)Γ(6α + 1)
t
6α

+
Γ(α + 1)Γ(4α + 1)

Γ(3α + 1)Γ(6α + 1)

Γ(7α + 1)

Γ(9α + 1)
t
9α

+ · · · 

+ B t
α

+
Γ(2α + 1)

Γ(4α + 1)
t
4α

+
Γ(2α + 1)

Γ(4α + 1)

Γ(5α + 1)

Γ(7α + 1)
t
7α

+
Γ(2α + 1)

Γ(4α + 1)

Γ(5α + 1)

Γ(7α + 1)

Γ(8α + 1)

Γ(10α + 1)
t
10α

+ · · · .

(38)

It implies that

y(t) � A + 

∞

k�1

Γ(α + 1) × Γ(4α + 1) × · · · × Γ((3k − 2)α + 1)

Γ(3α + 1) × Γ(6α + 1) × · · · × Γ(3kα + 1)
t
3kα⎡⎣ ⎤⎦

+ B t
α

+ 
∞

k�1

Γ(2α + 1) × Γ(5α + 1) × · · · × Γ((3k − 1)α + 1)

Γ(4α + 1) × Γ(7α + 1) × · · · × Γ((3k + 1)α + 1)
t
(3k+1)α⎡⎣ ⎤⎦.

(39)

3.2. RDTM for Solving One-Dimensional Time Fractional
Order Airy’s and Airy’s Type Partial Differential
Equations

3.2.1. Time Fractional Order Airy’s Partial Differential
Equation (FAPDE). Consider one-dimensional time frac-
tional order Airy’s equation (2) in Caputo sense:

z
α

zt
α u(x, t) � β

z
3

zx
3 u(x, t), x ∈ R, t> 0, 0< α< 1,where β � ± 1,

(40)

subjected to initial condition

u(x, 0) � λ(x). (41)

To obtain the solution of equations (40) and (41) using
the RDTM, the following steps are used:

Step 1: applying the RDTM to both sides of equations
(40) and (41), we obtain

RD

z
α

zt
α u(x, t)  � RD β

z
3

zx
3 u(x, t) , (42)

RD[u(x, 0)] � RD[λ(x)]. (43)

Applying certain properties on the left-hand side of
(42) for n � 1, as well as the right-hand side, we obtain
the following recurrence relation:

Uk+1(x) � β
Γ(kα + 1)

Γ((k + 1)α + 1)

z
3

zx
3Uk(x) , x ∈ R and k � 0, 1, 2 . . . . (44)

And from (41), we have
U0(x) � λ(x), x ∈ R. (45)

Step 2: substituting (45) into (44) yields the following
iterated values:
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For k � 0, U1(x) � (β/Γ(α + 1)) [(z3/zx3)U0(x)] �

(β/Γ(α + 1))[(z3/zx3)λ(x)].
For k � 1, U2(x) � β(Γ(α + 1)/Γ(2α + 1))[β(z3/
zx3)U1(x)] � (β2/Γ(2α + 1))[(z6/zx6)λ(x)].
For k � 2, U3(x) � β(Γ(2α + 1)/Γ(3α + 1))[β2(z3/
zx3)U2(x)] � (β3/Γ(3α + 1))[z9/zx9λ(x)].
Step 3: the inverse differential transforms of Uk(x) give
us

u(x, t) � 
∞

k�0
Uk(x)t

kα
, t> 0,where k � 0, 1, 2, . . . .

(46)

3.2.2. Time Fractional Order Airy’s Type Partial Differential
Equation. Consider one-dimensional time fractional order
Airy’s type partial differential equation (3) described in
Caputo sense:

z
α
u(x, t)

zt
α � u(x, t)

z
3
u(x, t)

zx
3 , x ∈ R, t> 0, 0< α< 1,

(47)

subjected to the initial condition

u(x, 0) � ψ(x). (48)

To obtain the solution of equations (47) and (48) using
the RDTM, the following steps are used:

Step 1: applying the RDTM to both sides of equation
(47) and (48), we obtain

RD

z
α

zt
α u(x, t)  � RD u(x, t)

z
3
u(x, t)

zx
3 , (49)

RD[u(x, 0)] � RD[ψ(x)]. (50)

In a similar way, applying certain properties on the left-
hand side of (50) for n � 3, as well as on the right-hand
side, we obtain the following recurrence relations:

Uk+1 �
Γ(kα + 1)

Γ((k + 1)α) + 1


k

r�0
Ur(x)

z
3

zx
3Uk− r(x)⎡⎣ ⎤⎦, (51)

U0(x) � ψ(x). (52)

Step 2: substituting (52) into (51), we obtain the fol-
lowing iterative values:
For k � 0, U1(x) � (1/Γ(α + 1))[U0(x) (z3/zx3)

U0(x)].
For k � 1, U2(x) � (Γ(α + 1)/Γ(2α + 1)) [U0(x)

(z3/zx3)U1(x) + U1(x)(z3/zx3)U0(x)].
For k � 2, U3(x) � (Γ(2α + 1)/Γ(3α + 1))[U0 (x)

(z3/zx3)U2(x) + U1(x)(z3/zx3)

U1(x) + U2(x)(z3/zx3)U0(x)].
Step 3: the inverse differential transforms of Uk(x) give
u(x, t) � 

∞
k�0 Uk(x)tkα, t> 0.

3.3. Convergence Analysis and Error Estimate. )e conver-
gence is analyzed by applying the method of RDTM solve
FAODE equation (24) with initial conditions (25).

Let us consider the solution obtained in equation (39):

y(t) � A 1 + 
∞

k�1

Γ(α + 1) × Γ(4α + 1) × · · · × Γ((3k − 2)α + 1)

Γ(3α + 1) × Γ(6α + 1) × · · · × Γ(3kα + 1)
t
3kα⎡⎣ ⎤⎦

+ B t
α

+ 
∞

k�1

Γ(2α + 1) × Γ(5α + 1) × · · · × Γ((3k − 1)α + 1)

Γ(4α + 1) × Γ(7α + 1) × · · · × Γ((3k + 1)α + 1)
t
(3k+1)α⎡⎣ ⎤⎦.

(53)

Now, since the solution obtained by using this method is
in the form of fractional power series, we apply the ratio test
for fractional power series stated in [44] as follows:

ak � A
Γ(α + 1) × Γ(4α + 1) × · · · × Γ((3k − 2)α + 1)

Γ(3α + 1) × Γ(6α + 1) × · · · × Γ(3kα + 1)
t
3kα

,

bk � B
Γ(2α + 1) × Γ(5α + 1) × · · · × Γ((3k − 1)α + 1)

Γ(4α + 1) × Γ(7α + 1) × · · · × Γ((3k + 1)α + 1)
t
(3k+1)α

,

(54)

so that y(t) � A + Btα + 
∞
k�1 ak + 

∞
k�1 bk, and

ak+1

ak




�

A 1 + 
∞
k�1((Γ(α + 1) × Γ(4α + 1) × · · · × Γ((3k − 2))α + 1 × tΓn((3(k + 1) − 2)α + 1))/(Γ(3α + 1) × Γ(6α + 1) × · · · × Γ(3kα + 1) × Γ(3(k + 1)α + 1)))t

3(k+1)α
 

A((Γ(α + 1) × Γ(4α + 1) × · · · × Γ((3k − 2)α + 1))/(Γ(3α + 1) × Γ(6α + 1) × · · · × Γ(3kα + 1)))t
3kα





�
Γ((3k + 1)α + 1)

Γ((3k + 3)α + 1)
t
3α




.

(55)

8 Mathematical Problems in Engineering



Limk⟶∞|ak+1/ak| � limk⟶∞|Γ((3k + 1)

α + 1)/Γ((3k + 3)α + 1)t3α| � 0t3α � 0, which implies that

∞
k�1 ak converges for all t in the domain. )e ratio test is

applied since 0< 1.
Again,

bk+1

bk




�

B((Γ(2α + 1)∗ Γ(5α + 1) × · · · × Γ((3k − 1)α + 1) × Γ((3(k + 1) − 1)α + 1))/(Γ(4α + 1) × Γ(7α + 1) × · · · × Γ((3k + 1)α + 1) × Γ((3(k + 1) + 1)α + 1)))t
((3(k+1)+1)α

B((Γ(2α + 1) × Γ(5α + 1) × · · · × Γ((3k − 1)α + 1))/(Γ(4α + 1) × Γ(7α + 1) × · · · × Γ((3k + 1)α + 1)))t
(3k+1)α





�
Γ((3k + 2)α + 1)

Γ((3k + 4)α + 1)
t
3α




.

(56)

Limk⟶∞|bk+1/bk| � limk⟶∞ � |Γ((3k + 2) α + 1)/Γ
((3k + 4)α + 1) t3α| � 0t3α � 0, which implies that 

∞
k�1 bk

converges for all t in the domain. )e ratio test is applied
since 0< 1.

)us, ∞k�1 ak + 
∞
k�1 bk converges for all t in the domain,

and hence y(t) � A + Btα + 
∞
k�1 ak + 

∞
k�1 bk converges for

all t in the domain.
)erefore, the convergence of the method RDTM ap-

plied to equation (1) is proved.
In order to see the convergence of the method RDTM in

solving fractional order Airy’s and Air’s type partial dif-
ferential equations, since the solutions have the form
u(x, t) � 

N
m�0 Um(x)tmα, we have the following theorem.

Theorem 1. Suppose that Dkα
t u(x, t) ∈ C([0, L] × [0, T])

for k � 0, 1, 2, 3, . . . , N + 1, where 0< α< 1 , then
u(x, t) � 

N
m�0 Um(x)tmα.

Moreover, there exists a value ξ, where 0≤ ξ ≤ t , so that
the error term EN(x, t) has the form

EN(x, t)
����

���� � Supt∈[0,T]

D
(N+1)α

u(x, ξ)

Γ((N + 1)α + 1)
t
(N+1)α




. (57)

Proof. For 0< α< 1,

J
mα

D
mα

u(x, t) − J
(m+1)α

D
(m+1)α

u(x, t)

� J
mα

D
mα

u(x, t) − J
α
D

α
D

mα
u(x, t)( ( 

� J
mα

u(x, 0) using the above property

�
D

mα
u(x, 0)

Γ(mα + 1)
t
mα

� Um(x)t
mα

.

(58)

Using definition, we obtain

Um(x)t
mα

� J
mα

D
mα

u(x, t) − J
(m+1)α

D
(m+1)α

u(x, t).

(59)

Now, the Nth order approximation for u(x, t) is



N

m�0
Um(x)t

mα
� 

N

m�0
J

mα
D

mα
u(x, t) − J

(m+1)α
D

(m+1)α
u(x, t) 

� u(x, t) − J
(N+1)α

D
(N+1)α

u(x, t)

� u(x, t) −
1

Γ((N + 1)α)


t

0

D
(N+1)α

u(x, τ)

(t − τ)
(1− (N+1)α)

dτ

� u(x, t) −
D

(N+1)α
u(x, ξ)

Γ((N + 1)α)


t

0

1
(t − τ)

(1− (N+1)α)
dτ applying integralmean value theorem

� u(x, t) −
D

(N+1)α
u(x, ξ)

Γ((N + 1)α + 1)
t
(N+1)α

.

(60)

)erefore, u(x, t) � 
N

m�0
Um(x)t

mα
+

D
(N+1)α

u(x, ξ)

Γ((N + 1)α + 1)
t
(N+1)α

. (61)
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Consequently, the error term

EN(x, t)
����

���� � u(x, t) − 
N

m�0
Um(x)t

mα

���������

���������

�
D

(N+1)α
u(x, ξ)

Γ((N + 1)α + 1)
t
(N+1)α

���������

���������
.

(62)

)is implies that ‖EN(x, t)‖ �

Supt∈[0,T]|(D(N+1)αu(x, ξ)/Γ((N + 1)α + 1))t(N+1)α|.
As N⟶∞, ‖EN‖⟶ 0. Hence, u(x, t) can be ap-

proximated as follows:

u(x, t) � 
∞

m�0
Um(x)t

mα
� 

N

m�0
Um(x)t

mα
. (63)

□

3.4. Physical and Geometrical Properties of the Model.
Previously, we obtained the recurrence relation and con-
vergence of RDTM in solving the governing equations. In
this section, we describe certain physical and geometrical
applications of the method by considering test examples of
fractional order Airy’s ordinary differential equations and
fractional order Airy’s and Airy’s type partial differential

equations illustrating on 2- and 3-dimensional spaces to
show the reliability, efficiency, and accuracy of the method.

Example 1. Let us consider the following initial value
problem of fractional order Airy’s ordinary differential
equation:

d2αy(t)

dt
2α � ty(t), x ∈ R, t≥ 0,

y(0) � y′(0) � 1.

(64)

As for special case (α � 1) [50], the following is the exact
analytical solution of the problem

y(t) � 1 + 
∞

k�1

1 × 4 × · · · ×(3k − 2)

(3k)!
t
3k

+ t

+ 
∞

k�1

2 × 5 × · · · ×(3k − 1)

(3k + 1)!
t
3k+1

.

(65)

Solution: by substituting the values of A and B (the initial
conditions A � B � 1), the general solution obtained in (39)
resulted the following:

y(t) � 1 +
Γ(α + 1)

Γ(3α + 1)
t
3α

+
Γ(α + 1)Γ(4α + 1)

Γ(3α + 1)Γ(6α + 1)
t
6α

+
Γ(α + 1)Γ(4α + 1)

Γ(3α + 1)Γ(6α + 1)

Γ(7α + 1)

Γ(9α + 1)
t
9α

+ · · · 

+ t
α

+
Γ(2α + 1)

Γ(4α + 1)
t
4α

+
Γ(2α + 1)

Γ(4α + 1)

Γ(5α + 1)

Γ(7α + 1)
t
7α

+
Γ(2))

Γ(4α + 1)

Γ(5α + 1)

Γ(7α + 1)

Γ(8α + 1)

Γ(10α + 1)
t
10α

+ · · · .

(66)

)erefore, the general solution of the problem is

y(t) � 1 + 
∞

k�1

Γ(α + 1) × Γ(4α + 1) × · · · × Γ((3k − 2)α + 1)

Γ(3α + 1) × Γ(6α + 1) × · · · × Γ(3kα + 1)
t
3kα

+ t
α

+ 
∞

k�1

Γ(2α + 1) × Γ(5α + 1) × · · · × Γ((3k − 1)α + 1)

Γ(4α + 1) × Γ(7α + 1) × · · · × Γ((3k + 1)α + 1)
t
(3k+1)α

.

(67)

Specially for α � 1,

y(t) � 1 + 
∞

k�1

1 × 4 × · · · ×(3k − 2)

(3k)!
t
3k

+ t + 
∞

k�1

2 × 5 × · · · ×(3k − 1)

(3k + 1)!
t
3k+1

ory(t) � 1 + 
∞

k�1

1
(2)(3)(5)(6)(7) × · · · ×(3k − 1)(3k)

t
3k

+ t + 
∞

k�1

1
(3)(4)(6)(7) × · · · ×(3k)(3k + 1)

t
3k+1

,

(68)
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which is the same result within [51] about t0 � 0.
)e 2D plots of approximate solution up to the 11th

iteration of Example 1 for some alpha values are shown in
Figure 1.

As we can see from the solution graphs in Figure 1, as the
fractional order approaches 1 from the left (α⟶ 1− ), the
graph of the approximate solutions of fractional order
AODE converges to the graph of exact solution (α � 1).

Example 2. Let us consider the following initial value
problem of fractional order Airy’s differential equation of
one variable:

d2αy(t)

dt
2α � ty(t), x ∈ R, t≥ 0,

y(0) � 1,

y′(0) � 0.

(69)

From the general solution of FAODE, we have

y(t) � A 1 + 
∞

k�1

Γ(α + 1) × Γ(4α + 1) × · · · × Γ((3k − 2)α + 1)

Γ(3α + 1) × Γ(6α + 1) × · · · × Γ(3kα + 1)
t
3kα⎡⎣ ⎤⎦

+ B t
α

+ 

∞

k�1

Γ(2α + 1) × Γ(5α + 1) × · · · × Γ((3k − 1)α + 1)

Γ(4α + 1) × Γ(7α + 1) × · · · × Γ((3k + 1)α + 1)
t
(3k+1)α⎡⎣ ⎤⎦

� 1 +
Γ(α + 1)

Γ(3α + 1)
t
3α

+
Γ(4α + 1)Γ(α + 1)

Γ(6α + 1)Γ(3α + 1)
t
6α

+
Γ(7α + 1)

Γ(9α + 1)

Γ(4α + 1)Γ(α + 1)

Γ(6α + 1)Γ(3α + 1)
t
9α

+ · · · .

(70)

Because A� 1 and B� 0,

y(t) � 1 + 

∞

k�1

Γ(α + 1) × Γ(4α + 1) × · · · × Γ((3k − 2)α + 1)

Γ(3α + 1) × Γ(6α + 1) × · · · × Γ(3kα + 1)
t
3kα

.

(71)

Specially for α � 1,

y(t) � 1 +
1
3!

t
3

+
1 × 4
6!

t
6

+
1 × 4 × 7

9!
t
9

+ · · ·

� 1 + 
∞

k�1

1 × 4 × 7 × · · · ×(3k − 2)

(3k)!
t
3k

,

(72)

which is the solution of the usual Airy ODE about t � 0 with
initial conditions y(0) � 1 and y′(0) � 0 and the same result
with the exact solution in [52].

)e 2D plots of approximate solution up to the 11th
iteration of Example 2 for some alpha values are shown in
Figure 2. As we can see, when α⟶ 1− , the graph of the
approximate solutions for different values of α converges to
the graph of the exact solution (α � 1).

Example 3. Consider the space time fractional Airy’s partial
differential equation for β � 1:

z
α
u(x, t)

zt
α �

z
3
u(x, t)

zx
3 , 0< α≤ 1, x ∈ R, t≥ 0, (73)

with the initial condition

u(x, 0) �
1
6
x
3
. (74)

Solution: applying the RDTM to both sides of equation
(73), we obtain the following recurrence relation:

Uk+1(x) �
Γ(kα + 1)

Γ(kα + α + 1)

z
3
Uk(x)

zx
3 . (75)

Again, by applying the RDTM on both sides of (74), we
obtain

U0(x) �
1
6
x
3
. (76)

By combining (75) and (76), we obtain the next iterative
results, i.e., for k � 0,

U1(x) �
Γ(1)

Γ(α + 1)

z
3

zx
3

1
6
x
3

  �
1
Γ(α + 1)

. (77)

For k� 1, U2(x) � (Γ(kα + 1)/ Γ(2α + 1))(z3/zx3)

((1/6)(Γ(1 + 3)/Γ(α + 1))) � 0.
For k� 2, U3(x) � 0, . . . , or Uk � 0 for all k> 1.
Now, the fractional inverse differential transform of

Uk(x) gives

u(x, t) � 
∞

k�0
Uk(x)t

kα
�
1
6

x
3

+
Γ(3 + 1)

Γ(α + 1)
t
α

  �
1
6
x
3

+
1
Γ(α + 1)

t
α
.

(78)

)e results obtained by using the present method are the
same as those obtained by using the Adomian decompo-
sition method in [53].

Specially for α � 1,

u(x, t) �
1
6
x
3

+ t. (79)

)e 3D plots of the approximate solution of Example 3
for some alpha values are shown in Figure 3.

From Figure 3 of Example 3, one can simply observe that
when α⟶ 1 from the left, the graph of the approximate
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solutions for different values of α converges to the graph of
exact solution when α � 1.

Example 4. Consider the following one-dimensional time
fractional order Airy’s partial differential equation for β � 1:

z
α
u(x, t)

zt
α �

z
3
u(x, t)

zx
3 , x ∈ R, t≥ 0, 0< α≤ 1, (80)

subjected to the initial condition

u(x, 0) � cos(πx) + e
πx

. (81)
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Figure 1: )e 2D plots of approximate solution of Example 1 for α � 1, α � 0.95, α � 0.85, α � 0.75, α � 0.65, α � 0.55, α � 0.45, α � 0.35,
and α � 0.25 and t ∈ [0, 3].
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Figure 2: )e 2D plots of approximate solution of Example 2 for α � 1, α � 0.95, α � 0.85, α � 0.75, α � 0.65, α � 0.55, α � 0.45, α � 0.35,
and α � 0.25 and t ∈ [0, 3].
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Solution: applying the RDTM to both sides of equation
(80), we obtain the following recurrence relation:

U(x)k+1 �
Γ(kα + 1)

Γ(kα + α + 1)

z
3

zx
3Uk(x) , k � 0, 1, 2, . . . .

(82)

Again, applying the RDTM to the initial condition (81),
we obtain

U0(x) � cos(πx) + e
πx

. (83)

Using equations (82) and (83), we obtain the following
Uk(x) values successively:

U1(x) �
π3 sin πx + e

πx
( 

Γ(α + 1)
,

U2(x) �
− π6 cos πx − e

πx
( 

Γ(2α + 1)
,

U3(x) �
− π9 sin πx − e

πx
( 

Γ(3α + 1)
, . . . .

(84)

Now, the fractional inverse differential transform of
Uk(x) gives

u(x, t) � 
∞

k�0
Uk(x)t

kα
� U0(x) + U1(x)t

α
+ U2(x)t

2α
+ U3(x)t

3α
+ · · ·

u(x, t) � cos(πx) + e
πx

+
π3 sin πx + e

πx
( t

α

Γ(α + 1)
−
π6 cos πx − e

πx
( t

2α

Γ(2α + 1)
−
π9 sin πx − e

πx
( t

3α

Γ(3α + 1)
+ · · · .

(85)

0

100

200

x−axis

α = 0.25

t−axis 0
5

10

0

5

10

x−axis
t−axis

0

100

200

α = 0.5

u−
ax

is

0
5

10

0

5

10

0

100

200

α = 0.75

x−axis
t−axis

5
0

10

0

5

10
0

100

200

α = 1

u−
ax

is

u−
ax

is
u−

ax
is

x−axis
t−axis 0

5
10

0

5

10

Figure 3: )e 3D plots of approximate solutions of Example 3 for α � 0.25, α � 0.5, α � 0.65, α � 0.75, α � 0.85, and α � 1 and t ∈ [0, 10].
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Specially for α � 1, u(x, t) becomes

u(x, t) � cos(πx) + e
πx

+
π3 sin πx + e

πx
( t

1!

−
π6 cos πx − e

πx
( t

2

2!
−
π9 sin πx − e

πx
( t

3

3!
+ · · · .

(86)

)e 3D plots of approximate solutions for Example 4 for
some α values are shown in Figure 4.

From Figure 4, we can observe that when α⟶ 1− , the
graph of approximate solutions converges to the graph of the
exact solution.

Example 5. Consider the next one-dimensional time frac-
tional order Airy’s partial differential equation with its initial
conditions, where β � − 1:

z
α
u(x, t)

zt
α � −

z
3
u(x, t)

zx
3 , (87)

with the initial condition

u(x, 0) � sin x. (88)

Solution: by following the steps of the RDTM stated in
this section and applying the RDTM to both sides of
equations (87) and (88), we obtain the following recurrence
relations:

Uk+1 � (− 1)
Γ(kα + 1)

Γ(kα + α + 1)

z
3

zx
3Uk(x)  , k � 0, 1, 2 . . . ,

(89)

with the initial condition

U0(x) � sin(x). (90)

By using k− values, k � 0, 1, 2, . . ., and substituting (90)
in (89), we obtain the following iterations.

For k � 0,

U1(x) � (− 1)
− cos(x)

Γ(α + 1)
�

cos(x)

Γ(α + 1)
. (91)

For k � 1,

U2(x) � −
Γ(α + 1)

Γ(2α + 1)

sin(x)

Γ(α + 1)
� −

sin(x)

Γ(2α + 1)
. (92)

For k � 2,

U3(x) � −
Γ(2α + 1)

Γ(3α + 1)

cos(x)

Γ(2α)
� −

cos(x)

Γ(3α + 1)
. (93)

For k � 3,

U4(x) � −
Γ(3α + 1)

Γ(4α + 1)
 

− sin(x)

Γ(3α + 1)
  �

sin(x)

Γ(4α + 1)
. (94)

For k � 4,

U5(x) � −
Γ(4α + 1)

Γ(5α + 1)

− cos(x)

Γ(4α + 1)
  �

cos(x)

Γ(5α + 1)
. (95)

For k � 5,

U6(x) � −
Γ(5α + 1)

Γ(6α + 1)

sin(x)

Γ(5α + 1)
� −

sin(x)

Γ(6α + 1)
. (96)

Taking the inverse RDT of Uk(x),

u(x, t) � 
∞

k�0
Uk(x)t

kα
� U0(x) + U1(x)t

α
+ U2(x)t

kα
+ Uk(x)t

kα
+ · · · ,

u(x, t) � sin(x) +
cos(x)

Γ(α + 1)
t
α

−
sin(x)

Γ(2α + 1)
t2α −

cos(x)

Γ(3α + 1)
t
3α

+
sin(x)

Γ(4α + 1)
t
4α

+
cos(x)

Γ(5α + 1)
t
5α

−
sin(x)

Γ(6α + 1)
t
6α

−
cos(x)

Γ(7α + 1)
t
7α

+ · · · ,

u(x, t) � sin(x) 1 −
1

Γ(2α + 1)
t
2α

+
1

Γ(4α + 1)
t
4α

−
1

Γ(6α + 1)
t
6α

+ · · · 

+ cos(x)
1
Γ(α + 1)

t
α

−
1

Γ(3α + 1)
t
3α

+
1

Γ(5α + 1)
t
5α

−
1

Γ(7α + 1)
t
7α

+ · · · .

(97)
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Specially for α � 1,

u(x, t) � sin(x) 1 −
t
2

2!
+

t
4

4!
−

t
6

6!
+ · · · 

+ cos(x) t −
t
3

3!
+

t
5

5!
−

t
7

7!
 

� sin(x)cos(t) + cos(x)sin(t).

(98)

)e 3D plots of approximate solutions up to the 3rd iter-
ation of Example 5 for some α values are shown in Figure 5.

From the graph in Figure 5, one can observe that, when
α⟶ 1, the solution graph converges to the graph of the
exact solution. For β � − 1, the efficiency and reliability of the
method are confirmed again.

Example 6. Consider one-dimensional time fractional order
Airy’s type partial differential equation given as follows:

z
α
u(x, t)

zt
α � u(x, t)

z
3
u(x, t)

zx
3 , x ∈ R, t> 0, 0< α≤ 1,

(99)

with the initial condition

u(x, 0) � (1 − x)
(1/2)

. (100)

Solution: applying the RDTM to both sides of equation
(99), we obtain the following recurrence relation:

Uk+1 �
Γ(kα + 1)

Γ((k + 1)α + 1)


k

r�0
Ur(x)

z
3

zx
3Uk− r(x)⎡⎣ ⎤⎦, (101)

and from the initial condition (100), we have

U(x, 0) � U0(x) � (1 − x)
(1/2)

. (102)

We obtain the following values of Uk(x) successively:
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Figure 4: )e 3D plots of approximate solution of Example 4 for α � 0.25, α � 0.5, α � 0.75, and α � 1 and x, t ∈ [0, 5].
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U0(x) � (1 − x)
(1/2)

,

U1(x) �
(− 3/8)

Γ(α + 1)(1 − x)
2,

U2(x) �
− (3/8)

2
(63)

Γ(2α + 2)(1 − x)
(9/2)

,

U3(x) �
− (3/8)

3 26964Γ2(α + 1) − 64Γ(2α + 1) 

Γ2(α + 1)Γ(3α + 1)(1 − x)
7 .

(103)

)us, the fractional differential inverse transform of
Uk(x)gives

u(x, t) � (1 − x)
(1/2)

+
(− 3/8)

Γ(α + 1)(1 − x)
2t

α
+

− (3/8)
2
(63)

Γ(2α + 1)(1 − x)
(9/2)

t
2α

+
− (3/8)

3 26964Γ2(α + 1) − 64Γ(2α + 1) 

Γ2(α + 1)Γ(3α + 1)(1 − x)
7 t

3α
+ · · · .

(104)

Specially for α � 1, u(x, t) becomes

u(x, t) � (1 − x)
(1/2)

+
(− 3/8)

1!
 

1
(1 − x)

2 t +
− (3/8)

2

2!
 

63
(1 − x)

(9/2)
 t

2
+

− (3/8)
3

3!
 

26836
(1 − x)

7 t
3

+ · · · . (105)
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Figure 5: )e 3D plots of approximate solutions of Example 5 for α � 0.25, α � 0.5, α � 0.75, and α � 1 and taking up to the 3rd iteration,
x ∈ [0, π].
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)e 3D plots of solution of Example 6 for some alpha
values are shown in Figure 6.

Here, Example 6 is an application of fractional order
Airy’s type partial differential equation. )e graphs of the
approximate solutions obtained by taking up to the 3rd it-
eration also confirm the convergence of the approximate
solutions to the exact solution when α⟶ 1− as previous
results.

Example 7. Consider the following time fractional order
Airy’s type differential equation:

z
α
u(x, t)

zt
α � u(x, t)

z
3
u(x, t)

zx
3 , x ∈ R, t≥ 0, 0< α≤ 1,

(106)

subjected to the initial condition

u(x, 0) � e
(− x/3)

. (107)

Solution: applying the RDTM on both sides of equation
(106), we obtain the following recurrence relations:

Uk+1 �
Γ(kα + 1)

Γ(kα + α + 1)


k

r�0
Ur(x)

z
3

zx
3Uk− r(x)⎡⎣ ⎤⎦. (108)

Again applying the RDTM on initial condition (107), we
obtain

U(x, 0) � U0(x) � e
(− x/3)

, (109)

where the t-dimensional spectrum function Uk(x) is the
transform function. Using recurrence relation on (108) and
(109), we obtain the following values of Uk(x) successively:

U1(x) � −
e

(− 2x/3)

27Γ(α + 1)
,

U2(x) �
e

− x

81Γ(2α + 1)
,

U3(x) �
− e

(− 2x/3) 252Γ2(α + 1) + 8Γ(2α + 1) 

1968Γ2(α + 1)Γ(3α + 1)
, . . . .

(110)

)us, the inverse transform of Uk(x) gives

u(x) � 
∞

k�0
Uk(x)t

kα
� U0(x) + U1(x)t

α
+ U2(x)t

2α
+ U3(x)t

3α
+ · · · ,

u(x) � U0(x) + U1(x)t
α

+ U2(x)t
2α

+ U3(x)t
3α

+ · · · ,

u(x) �
1

e
(x/3)

−
(1/27)

Γ(α + 1)e
(2x/3)

t
α

+
(1/81)

Γ(2α + 1)e
xt

2α
−

(1/19683) 252Γ2(α + 1) + 8Γ(2α + 1) 

Γ2(α + 1)Γ(3α + 1)e
(4x/3)

t
3α

+ · · · .

(111)

Specially for α � 1,

u(x, t) �
1

e
(x/3)

−
(1/27)

e
(2x/3)

t +
(1/81)

2!e
x t

2
−

(1/19683)(268)

3!e
(4x/3)

t
3

+ · · · .

(112)

)e 3D plots of solution of Example 7 for some α values
are shown in Figure 7.

Figure 7 is the graph of approximate solutions taking up
to the third iteration for different values of α. Also, the graph
reveals the rapid convergence of the solution to the exact
solution, as in previous examples.

4. Discussion

In this paper, we used the RDTM as a useful semianalytical
tool for solving FAODE, FAPDE, and FATPDE. To start
from the first result of these findings, the general form of
solutions of equations (1)–(3) was solved using the RDTM.
)en, we also discussed the convergence of solutions ob-
tained by using the RDTM. For instance, the convergence of
the method in obtaining the general solutions of the three

cases was illustrated.)e other points we can see under these
findings were the physical and geometrical applications that
are obtained from the seven examples considered, which
were grouped into three cases. )e first two examples
(Examples 1 and 2) were examples of FAODE, the second
three examples (Examples 3–5) were examples of FAPDE,
and the last two examples (Examples 6 and 7) were examples
of fractional order Airy’s type partial differential equations.
)eir graphical computations were shown in 2- and 3-di-
mensional spaces.

)rough the first two aforementioned examples, the
RDTM was successfully applied to the FAODE. From the
solutions of those examples, we can observe that the RDTM
does not involve any lengthy computation, which is the main
demerit for the perturbation methods. )e RDTM does not
require computations of solution’s coefficient differently
unlike ADM and using power series. Moreover, for special
case when α � 1, the result obtained by this method was
similar to the exact analytical solution in
[33, 51, 52, 54–58, 59–61]. On the other hand, as we can see
from the solution graphs in Figures 1 and 2, both the graphs
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Figure 6: )e 3D plots of solution of Example 6 for for α � 1, α � 0.75, α � 0.5, and α � 0.25 and x, t ∈ [0, 1].
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Figure 7: )e 3D plots of solution of Example 7 for α � 1, α � 0.75, α � 0.5, and α � 0.25 and x, t ∈ [0, 100].
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show that when α⟶ 1, the solution graphs for different
values of α converge to the graphs of the exact solutions
when α � 1− . During numerical computations, only
eleven iterations were considered. However, it is
evident that, by using more terms, the accuracy of the
results can be improved and the errors converge to zero as
α⟶ 1− . )is indicates the efficiency and reliability of
the RDTM.

Regarding Examples 3–5 considered by FAPDE with
coefficient β � ± 1, the solutions of equations (73), (75),
and (87) with their corresponding initial conditions (74),
(76), and (88), respectively, have been illustrated using
very short and simple steps without any complicated
calculations and computations of many symbols, and the
obtained results were similar to the results of ADM in
[49]. )e approximate solutions of the graphs are illus-
trated in Figures 6 and 7. Concerning the graphs of so-
lutions of those examples in similar character with
Figures 3–5 observed as the values of α⟶ 1− , the so-
lution graphs on each graph exactly match with the exact
solution. )e reliability and accuracy of the method were
compared by its convergence to the exact solution when
α⟶ 1− . )is property of RDTM greatly reduces the
volume of computation and improves the efficiency of
method in solving fractional order Airy’s and Airy’s type
differential equations.

5. Conclusion

In this paper, we investigated analytical and semi-
analytical approximate solutions of fractional order Airy’s
and Airy’s type differential equations using the RDTM.
)e RDTM reveals its coefficients obtained with an easily
computable straightforward procedure. )e result shows
that the RDTM needs small size of computation compared
with the classical differential transform method, Adomian
method, and homotopy perturbation method. )is result
reveals that, by applying the RDTM, the complexity in-
volved in evaluating some special integrals in solving
fractional Airy’s and Airy’s type differential equations is
resolved. It also remarks that no symbolic computation is
required, which can be difficult especially in nonlinear
cases. )e convergence of RDTM when applied to frac-
tional order Airy’s and Airy’s type differential equations
was shown analytically and graphically, which indicates
the reliability and efficiency of the method. )e physical
and geometrical interpretations have been shown by il-
lustrating certain examples, and their graphs reveal the
exact solutions within certain approximation errors.
)erefore, the reduced differential transform method is a
powerful, reliable, and efficient method for finding the
analytical approximate solutions for Airy’s and Airy’s type
fractional order differential equations.
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