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(is paper proposes a cooperative search algorithm to enable swarms of unmanned aerial vehicles (UAVs) to capture moving
targets. It is based on prior information and target probability constrained by inter-UAV distance for safety and communication.
First, a rasterized environmental cognitive map is created to characterize the task area. Second, based on Bayesian theory, the
posterior probability of a target’s existence is updated using UAV detection information. (ird, the predicted probability
distribution of the dynamic time-sensitive target is obtained by calculating the target transition probability. Fourth, a customized
information interaction mechanism switches the interaction strategy and content according to the communication distance to
produce cooperative decision-making in the UAV swarm. Finally, rolling-time domain optimization generates interactive in-
formation, so interactive behavior and autonomous decision-making among the swarm members are realized. Simulation results
showed that the proposed algorithm can effectively complete a cooperative moving-target search when constrained by com-
munication distance yet still cooperate effectively in unexpected situations such as a fire.

1. Introduction

In combat, search and reconnaissance are important for
providing effective information to accelerate the observe-
orient-decide-act (OODA) cycle [1–4]. Consequently, the
US military has identified wide-area target search capability
as one of the medium and long-term development goals of
unmanned aerial vehicles (UAVs) [3, 4]. UAV swarms have
excellent wide-area search capabilities affected by cooper-
ation among swarm members; that is, the collective capa-
bility is far greater than the sum of all single UAVs [5, 6].
Cooperative search planning is integral for guiding swarms
to achieve wide-area search and target acquisition and has
been widely studied [7]. To ensure cooperative search effi-
ciency, a reasonable search planning area and an efficient
cooperative strategy are needed.

To determine the area, grid [8, 9], landmark [10, 11], and
potential field [12, 13] methods are the main ones proposed.
In [8], based on rasterizing the task area, real-time path

planning was realized through an improved ant colony al-
gorithm. In [11], the task area was divided by a Voronoi
diagram, and waypoint allocation and track smoothing were
used to realize the fast planning of a search track in a static
environment. In [13], based on describing the task area using
an artificial potential field, an improved logarithmic linear
learning algorithm was proposed to reduce the risk that a
UAV may wander into a zero-potential field area.

Valente et al. [14] proposed a cooperative search method
based on a diffusion-weighted uncertaintymodel. EachUAV
is assigned a search area, and then a potential field algorithm
based on a rolling-time domain program solves each search
track, but this method can only search for a single moving
target. Zhang et al. [15] initialized the target probability
distribution map using prior target information and then
introduced the environmental uncertainty map to guide the
UAV to return to a grid that had not been searched for a long
time. (e result was a feasible scheme for long-time swarm
searches and surveillance track planning. However, only one
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kind of prior information, including the initial position of
the target, was considered, so the speed and direction of
motion were not considered. Dong et al. [16] defined a
digital pheromone map and a corresponding updating
strategy to realize UAV cooperation in a moving-target
search. In [17], a Markov chain was used to describe the
target, but it could not consider communication distance
and other constraints.

To sum up, the current research enables UAV swarms to
have certain cooperative search capabilities, but there are
still problems:

(1) (e influence of communication distance on a UAV
swarm’s cooperation is not considered

(2) (e use of a variety of prior information in amoving-
target search is not considered

(3) (e risk of collision in a UAV swarm is simplified as
a function of height layers, or it is not considered

In view of the preceding, this paper has done the fol-
lowing work:

(1) It designed a cooperative search method suitable for
dynamic communication distance

(2) It analyzed the prior information of four typical
moving targets to generate a mathematical model
that defines them in a cooperative search

(3) It provided an interface to apply to current UAV
conflict resolution results [18–21] in swarm coop-
erative search missions

2. Description of the Cooperative Moving-
Target Search Problem

2.1. Task Description. UAV swarm cooperation is usually
divided into area-coverage and target search tasks [22, 23]. (e
former is to make the UAV swarm complete a flight over a
maximum coverage area as soon as possible when prior in-
formation about themission area is difficult to obtain.(e latter
is to obtain all target information when some prior information,
such as location and quantity of targets, is known [24]. (is
paper is concerned with the second kind of task. In practice,
some prior information of enemy target distribution can be
obtained from satellite remote sensing imagery and radar de-
tection, which also provides advantages for target acquisition.

Figure 1 is a typical task scenario for a cooperative UAV
target search. (ere are Nt potential moving targets in the
mission area, andNu UAVs are used to search themission area.
Moving targets, such as enemymissile launch vehicles and radar
vehicles, are deployed at corresponding positions to protect key
enemy targets. Our four UAVs set out from different positions
to inspect and defeat moving enemy targets.

2.2. UAV Motion Model. If the UAV swarm that performs
the task is Us, then its motion is given by

Us � Ui | i � 1, 2, . . . , Nu􏼈 􏼉, (1)

where i is the number of the swarm members and Nu is the
scale of the swarm.

To simplify the search decision, a UAV is regarded as a
particle in space. (e task area is divided into a W × H grid
map where the two-dimensional coordinates (w, h) are used
to discretize the UAV motion range and decision set [25].
Assuming that the UAV moves in the grid every time, the
constraint of normal overload of UAVmovement is satisfied
by limiting the grid size and the maximum turning angle,
thus ensuring flyability along the planned track. (erefore,
the UAV can fly in eight directions at any time, as shown in
Figure 2.

(e state vector si(k) of Ui at k moment is

si(k) �

xi(k)

yi(k)

ψi(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (2)

where (xi(k), yi(k)) is the position of Ui at k moment in the
environmental awareness map, and ψi(k) is the flight course
of Ui at k moment, and

ψi(k) ∈ 0, 1, 2, 3, 4, 5, 6, 7{ }. (3)

(en the flight direction of Ui at k moment can be given
by

ψi(k + 1) � ψi(k) + ui(k)( 􏼁mod8, (4)

where ui(k) values are the maximum turning angle con-
straints of the UAV. (e state transition function of UAV is
then

si(k + 1) � f1 si(k), ui(k)( 􏼁, (5)

where f1(·) is the UAV state transition function determined
by Figure 2 and equation (4).

2.3. Autonomous Decision Function. When performing a
cooperative search task amid strong electromagnetic interfer-
ence, centralized decision-making can realize collaboration
among swarm members, but it depends on strict communi-
cation, which is often difficult to apply [24]. In this paper, the
distributed decision-makingmethod is adopted tomake full use
of the limited UAV communication distance so that swarm
members can make interactive decisions to improve the search
and avoid collisions.
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Figure 1: Schematic diagram of cooperative UAV swarm search.
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Rolling-time domain optimization decision-making allows
a UAV to predict a subsequent multistep decision according to
its current state vector and environmental cognitive map at a
given moment [26, 27]. (e first step prediction is the actual
decision quantity, which avoids a decline in overall search ef-
ficiency caused by a focus on only short-term search benefits.

If Ui cannot communicate effectively with other
members of the swarm at k moment, it uses the differ-
ential evolution algorithm to solve the cumulative au-
tonomous decision function according to its current state
vector and environmental cognitive map, thereby
obtaining the current decision value. (e autonomous
decision function of Ui at k moment is

J
i
ind(k) � w1J1 + w2J2 + w3J3,

s.t. k ∈ 0, Ta􏼂 􏼃; i � 1, 2, . . . , Nu,
(6)

where Ji
ind is composed of target search revenue J1, en-

vironmental search income J2, and expect probe revenue
J3; wl indicates the weight of each income in the process
of generating interactive information to satisfy wl ∈ [0, 1]

and 􏽐
3
l�1 wl � 1, l � 1, 2, 3, and values according to the

specific task requirements and engineering experience.
(e benefits of autonomous decision function are de-
scribed as follows.

2.3.1. Probability Return of Target Existence J1. Target ex-
istence probability income represents the value of possible
targets in the corresponding environmental cognitive map,
which guides the UAV to search areas that have a high pos-
sibility of targets. It is defined as

J1(k) � 􏽘
W

w�1
􏽘

H

h�1
pwh(k) − pwh(k − 1)( 􏼁, (7)

where pwh(k) indicates the probability of having a goal in
grid (w, h) at k moment that satisfies pwh ∈ [0, 1].

2.3.2. Income from Environmental Uncertainty J2.
Environmental uncertainty revenue represents the reduction
of uncertainty in the grid of the corresponding environ-
mental cognition map after the UAV has searched it. It
guides the UAV to search the task area with high uncertainty
and reduces the possibility of missing targets:

J2(k) � 􏽘

W

w�1
􏽘

H

h�1
ψwh(k + 1) − ψwh(k)( 􏼁, (8)

where ψwh(k) represents the uncertainty of grid (w, h) in the
environment cognition map, and ψwh(k) ∈ [0, 1] (see Sec-
tion 3.2 for details).

2.3.3. Comprehensive Income J3. Comprehensive income is
obtained by multiplying environmental uncertainty and
target existence probability, which is used to guide the UAV
to detect areas with high uncertainty and target existence
probability. (e detailed description is [15]

J3(k) � 􏽘
W

w�1
􏽘

H

h�1
pwh(k + 1) · ψwh(k + 1) − pwh(k) · ψwh(k)( 􏼁.

(9)

(en, the autonomous decision value u∗i (k) of Ui at k

moment can be given by the following formula:

u
∗
i (k) � argmax 􏽘

t�k+q−1

t�k

J
i
ind si(t), E

i
(t)􏼐 􏼑, (10)

where si(t) is the state vector of Ui at t moment, Ei(t) is the
environmental cognitive map of Ui at t moment, and q is the
step size of the rolling-time domain.

2.4. Interactive Decision Function. When Ui is in the com-
munication range of other swarm members, the efficiency of
cooperative search can be improved by sharing information,
but the problem of collision prevention should be consid-
ered. (e flight conflict resolution method and information
interaction method are described below.

(ere has beenmuch research on collisions inUAV swarms
in the distributed decision framework.(e literature [12] guides
UAVs to avoid conflict by establishing an artificial potential
field, which has the characteristic of a short response time and
requires only a small amount of calculation. It can realize real-
time obstacle avoidance but cannot resolve complex conflict
problems. In [18–20], the speed obstacle method broadcasts
automatic correlation monitoring to give each UAV the po-
sition and speed of the others; thus it solved the potential
problem by detecting flight conflict and determining a relief
flight path; however, the relief path can easily deviate the UAV
from the search target point, thus compromising mission ef-
ficiency. In [21], the distributed model predictive control
method is adopted, in which the collision avoidance manage-
ment unit and the interactive graph updating mechanism ad-
dress conflict resolution in multi-UAV route planning, but it
requires a large amount of computation.
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Figure 2: UAV flight decision set.
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To study cooperative strategy in the search for moving
targets, this paper introduced the artificial potential field term to
meet the basic requirements of collision prevention. In practice,
the minimum safe distance can be defined by this method. To
achieve a better anticollision effect, the previous conflict res-
olution decision method replaced the interactive decision
function within the minimum safe distance.

(e anticollision constraint J4 is defined as

J4 � lg 􏽘

j�Nu

j�1

lij

Ncomu

⎛⎝ ⎞⎠, (11)

where Ncomu represents the number of members that can
communicate with Ui (see Section 3.2) and lij indicates the
distance between Ui and the other swarm members within
the communication distance of Ui, which is given by

lij �
0, cij(k) � 0,

si(k) − sj(k)
�����

�����, cij(k) � 1,

⎧⎪⎨

⎪⎩
(12)

where cij � 0 means that Uj is not within the direct com-
munication distance of Ui at k moment; cij � 1 means that
Uj can communicate directly with Ui; ‖ · ‖ is the second
norm, which is used to calculate the distance between two
UAVs that can communicate directly. Furthermore, it is
possible to obtain the interactive decision function of Ui as

J
i
int(k) � w1 · J1 + w2 · J2 + w3 · J3 + w4 · J4, (13)

where Ji
int is composed of target search revenue J1, envi-

ronmental search income J2, expected detection income J3,
and anticollision constraint J4; wl indicates the weight of
each income in the process of generating interactive in-
formation that satisfies wl ∈ [0, 1] and
􏽐

3
l�1 wl � 1, l � 1, 2, 3, 4.
(en the interactive decision value u∗i (k) of Ui can be

given by the following formula:

u
∗
i (k) � argmax 􏽘

t�k+q−1

t�k

J
i
int si(k), E

i
inter(k)􏼐 􏼑, (14)

where si(k) is the state vector of Ui at k moment, Ei
inter(k) is

a decision-making environment cognitive map fused to the
environment map of other members acquired by Ui at k

moment (see Section 4.1), and q is the optimized step size of
the rolling-time domain.

3. Construction and Update of Environmental
Cognition Map

In a UAV swarm search, environmental cognitive maps
(target probability distribution and environmental

uncertainty maps) are used to describe the environmental
state, and swarm members interact with each other through
their own environmental cognitive maps.

3.1. Target Probability Distribution Map Initialization and
Update. In a cooperative search, the existence probability of
the target in grid (w, h) at k moment can be expressed as
pwh(k) ∈ [0, 1]. Among them, pwh(k) � 0 expresses no
target in grid (w, h) at k moment, whereas pwh(k) � 1 ex-
presses targets in grid (w, h) at k moment. Now, the target
probability distribution diagram of Ui at k moment can be
expressed as

Pi(k) � p
i
wh(k) | w � 1, 2, . . . , W, h � 1, 2, . . . , H􏽮 􏽯. (15)

In order to make full use of the prior information of the
moving target, we divide the target in the cooperative search
task into four types, as shown in Table 1.

3.1.1. Unknown Target Position and Speed Information.
At this time, the probability distribution of targets in the task
area is uniform, and the probability density function of any
target in the task area can be expressed as

f(x, y) �
1

(W · H)
. (16)

3.1.2. 8e Initial Position of the Target Is Known, but the
Velocity Information Is Unknown. Assume that the task area
has N2 targets that have type 2 prior information, and
(xn2

tar, yn2
tar) is used to represent its initial position. Each such

target can be considered to obey a two-dimensional normal
distribution N(xn2

tar, yn2
tar, δ

2
0, δ

2
0, ρ), because the distribution

of x, y is independent of each other and ρ� 0. Without
losing generality, assuming that the initial position distri-
bution of each target is independent, the total probability
distribution density of the second target can be expressed as

f(x, y) � 􏽘

N2

n2�1

1
2π δ20

· exp− x− xn2
tar( )

2/2δ20+ y−yn2
tar( )

2/2δ20( 􏼁
. (17)

After t0 time, the target moves from the initial po-
sition in an independent, incremental process [16] as
described by the Wiener stochastic process:
xn2
tar(t)∼N(0, δ2e t0), yn2

tar(t)∼N(0, δ2et0). (e distribution
density probability of the second kind of target at t0 time
is

f(x, y) � 􏽘

N2

n2�1

1
2π δ20 + δ2e t0􏼐 􏼑

· exp− x− xn2
tar( )

2/2 δ20+δ2e t0( )+ y−yn2
tar( )

2/2 δ20+δ2e t0( )( 􏼁
. (18)
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3.1.3. 8e Initial Position and Velocity of the Target Are
Known, but the Moving Direction Is Unknown. Assume that
the task area has N3 targets having type 3 prior information,
and each initial position is expressed by (xn3

tar, yn3
tar) and speed

size is represented by vn3. Since the speed of the target is fixed
after t0 the probability density of the grid (w, h) is trans-
ferred from the probability distribution of the arc region of
the vn3t0 radius by (w, h), namely,

f(x, y) �
1

2πvn3t0
· 􏽚

L
f0 x0, y0( 􏼁ds, (19)

where L is an arc region with center (x0, y0) and the radius
vn3t0. By transforming using the first curve integration, the
probability distribution of the third-class target area can be
obtained as

f(x, y) � 􏽘

N3

n3�1

1
2πδ0( 􏼁

2 􏽚
2π

θ�0
exp− x+vn3t0 cos θ− xn3

tar( )
2/2δ20+ y+vn3t0 sin θ−xn3

tar( )
2/2δ20( 􏼁dθ. (20)

3.1.4. 8e Initial Position, Velocity Direction, and Size of the
Target Are Known. Assume that the task area has N4 targets
with type 4 prior information. (e initial position is
(xn4

tar, yn4
tar), speed size is vn4, and θn4 ∈ [0, 2π] represents the

speed direction. After t0, the target position offset is
(vn4t0 cos(θn4), vn4t0 sin(θn4)), and the probability distri-
bution density of the fourth target can be expressed as

f(x, y) � 􏽘

N4

n4�1

1
2π δ20

· exp− x+vn4t0 cos θn4( )− xn4
tar( )

2/2δ20+ y+vn4t0 sin θn4( )−yn4
tar( )

2/2δ20( 􏼁
. (21)

3.2. Initialization and Update of Environmental Uncertainty
Map. (e environmental uncertainty in the grid (w, h) at k

moment can be expressed as ψwh(k) ∈ [0, 1], where
ψwh(k) � 1 represents the information of the grid (w, h) that
is completely uncertain at k moment and ψwh(k) � 0 rep-
resents the information of the grid (w, h) that is completely
obtained by a UAV at k moment. (e environmental un-
certainty diagram of Ui at k moment can be expressed as

ψi(k) � ψi
wh(k) | w � 1, 2, . . . , W, h � 1, 2, . . . , H􏽮 􏽯. (22)

(e initial environmental uncertainty map is defined as
an all-1 matrix. With the increasing number of UAV
searches, the grid uncertainty continues to decline. (e
specific update method is

ψwh(k) � ηδn
· ψwh(k − 1), (23)

where η ∈ [0, 1] indicates the attenuation factor of envi-
ronmental uncertainty [28]. It is used to characterize the
amount of information obtained by the UAV after searching
the corresponding grid once; δn ∈ N is the number of the
grid (w, h) that is searched at k moment.

4. Swarm Cooperation Strategy

Under the distributed cooperative search architecture, when
Ui reaches the communication range of other members of

the swarm, it is possible to avoid searching the searched grids
repeatedly through information interaction, thus improving
the efficiency of the swarm cooperative search. When
making interactive decisions under distributed architecture,
the decision of a UAV does not depend on the state in-
formation of other UAVs or the operation of central nodes.
(erefore, this interactive decision-making method can be
applied to a strong confrontation environment that has
dynamic changes of effective communication distance.

4.1. Interactive Information Fusion Method. When per-
forming the cooperative search, the target probability maps
of all members can be considered to be updated synchro-
nously because the prior information of the target is com-
pletely shared. However, the state of the environmental
uncertainty map changes in real time with the search, which
requires interaction in the cooperative search. (e envi-
ronmental cognitive map of Uj after realizing information
interaction is then defined as

E
j

inter(k) � ψj

inter(k), Pj(k)􏽮 􏽯, (24)

where the target probability distribution map Pj(k) is
updated according to the task execution time and target
prior information formulas (16)–(21); ψj

inter(k) indicates the
interactive environment uncertainty map. If the information

Table 1: Classification of prior information of targets.

Target initial
position

Target speed
size Target speed direction

Type 1 × × ×

Type 2 √ × ×

Type 3 √ √ ×

Type 4 √ √ √
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interaction between Ui and Uj is taken as an example, the
interaction mode can be given by

ψi
inter(k) � ψj(k) · ⌈ψi(k) − ψj(k)⌉ + ψi(k) · ⌈ψj(k) − ψi(k)⌉,

(25)

where ⌈⌉ is an upward rounding function; ψi(k) is the
environment uncertain map carried by UAV that can
communicate with Uj at k moment.

4.2. Swarm Communication Topology. When UAVs send
messages to each other in the form of a swarm broadcast, the
distance between Ui and Uj at k moment can be expressed as

dij(k) �

�����������������������������

xi(k)
2

− xj(k)
2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + yi(k)
2

− yj(k)
2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱

. (26)

(e finite set of UAVs that can communicate with Ui at k

moment can be expressed as

Ci(k) � Uj(k) | cij(k) � 1􏽮 􏽯 � Uj(k) | Uj ∈ Us ∩dij(k)≤R(k)􏽮 􏽯,

(27)

where cij(k) represents the communication state between Ui

and Uj and R(k) is the effective communication distance
among swarm members at k moment.

4.3. Algorithm Flow. (e pseudocode of a UAV swarm
moving-target search algorithm with communication dis-
tance constraint is shown in Algorithm 1, and the specific
steps are described as follows:

Step 1: environmental awareness map and parameter
initialization. (e environmental cognitive map is
initialized according to the prior information of four
kinds of moving objects. (e rolling-time domain
optimization step of the UAV is q; the initial effective
communication distance is R(0); the scale of the UAV
swarm is Nu; and the initial state, course, and weight
coefficient of the autonomous decision and interactive
decision functions of the UAV are set.
Step 2: autonomous decision. According to the UAV’s
own independent decision function and environmental
cognitive map, the differential evolution algorithm is
used to solve the problem and make real-time route
planning.
Step 3: information interaction. When the UAV rea-
ches the communication range of the other members of
the swarm, the interactive information of the other
members is fused by formula (25), and the cognitive
map of its own decision environment is updated.
Step 4: interactive decision. After updating the self-
knowledge map of the environment according to the
interactive decision function in formula (11), the dif-
ferential evolution algorithm is used to track in real
time.
Step 5: update the target probability map. In the co-
operative search process of a UAV swarm, according to
UAV decision information and the target probability

map updating method, the target probability distri-
bution map is updated by formula (16) to formula (21),
and the environment uncertain map is updated by
formula (23).
Step 6: repeat step 2 to make the next decision based on
the updated environmental cognitive map.

5. Comparative Analysis of Simulation

In this section, concerning the moving-target search scene
with four types of prior information, the UAV swarm co-
operative search was simulated numerically, with the impact
of introducing prior target information. In the cooperative
search, the task was simulated and analyzed, and the ef-
fectiveness of the algorithm in the strong confrontation
environment was verified, such as the dynamic change of the
communication distance, the damage of some members of
the swarm, and other emergencies.

5.1. Task Assumption and Parameter Setting. (e recon-
naissance mission area is a 30× 40 km rectangle divided into
1× 1 km grids. (e initial distribution, speed direction, and
performance constraints of a UAV swarm are shown in
Table 2, and the parameters of autonomous decision-making
and interactive decision-making are shown in Table 3 and
Table 4, respectively. Set the simulation time to 6000 s and
the rolling-time domain optimization step to 30 s. (e
simulation time is divided into 600 planning steps with an
interval of 10 s. (e initial effective UAV communication
distance is set at 3 km. According to the predetermined prior
information, the initial target location distribution is shown
in Figure 3, the speed of the target is 10 km/h, and the target
probability distribution generated by the UAV swarm
according to the prior information is shown in Figure 4.

5.2. Planning Results of Moving-Target Cooperative Search.
Given a limited communication distance, the numerical
simulation of a cooperative moving-target search is carried
out using the number of captured targets as an evaluation
index. (e simulation results are shown in Figure 5.

Figure 5(a) shows that the swarm captured two type 4
targets after 1000 s based on prior information and another
target had moved out of the task area, so the target prob-
ability distribution is concentrated. It attracted the attention
of the UAV swarm and was then captured. In Figure 5(b),
after the swarm captured the category 4 targets, it quickly
carried out a cooperative search in the center of the task area
where other target categories were concentrated. According
to Figures 5(c) and 5(d), when the task was executed at
6000 s, the swarm completed coverage of the task area and
captured 1 type-1 target, 1 type-2 target, 2 type-3 targets, and
3 type-4 targets. Because prior information of the type-1
moving target was unknown, it was difficult to capture, but
the swarm captured other moving targets by making full use
of prior information: the richer the prior information, the
higher the capture probability.
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5.3. Search Path Planning under Dynamic Communication
Conditions. Electromagnetic interference (EMI) is a regular
means of attack in a strong confrontation environment, and
it has a severe influence on battlefield communication. To
verify the applicability of the algorithm in this paper to a
complex communication environment, this section simu-
lated and analyzed the cooperative search of a UAV swarm
under a dynamically changing effective communication
distance. (e total simulation time (6000 s) was divided into
600 planning steps at an interval of 10 s. (e effective initial
intermachine communication distance was 20 km. After
1500 s, the distance was reduced to 10 km and restored to
2000 s.(e effective communication distance was reduced to
0 km when the task was executed at 3500 s and was restored
at 4500 s.

To further demonstrate the applicability of the algorithm
in a dynamic communication environment, this section took
environmental uncertainty as the main goal guiding the
swarm and used the search coverage rate of the task area as
the evaluation index to carry out a numerical simulation. At
this time, the algorithm simulation parameters were updated
(Tables 5 and 6).

(e left half of Figure 6 shows that when the search went
to 1500 s because of decreased effective communication
distance, the frequency of information interaction among
the UAVs also decreased, but after communication was
restored at 2000 s, the number of information interactions
was quickly restored. From the right half of Figure 6, when
the search went for 3500 s, the distance between computers
decreased, which led to slow growth in the area-coverage
rate.(is was caused by the repeated searching of some grids
after interference led to the loss of information interaction.

At 4500 s, communication and interactive decision-making
were restored, and search coverage gradually improved,
which shows that interactive decision-making can improve
cooperative efficiency but that a UAV can still perform
scheduled tasks autonomously when communication con-
ditions are not guaranteed.

5.4. SearchRoutePlanningWhenSomeMembers of the Swarm
Are Damaged. Compared with the preplanning method
(referring to the related documents of preplanning), the
dynamic planning method can effectively reduce the risk
that the enemy can predict and attack the track and adapt to
unexpected situations such as the failure of some members.
In this section, the parameters of target probability distri-
bution (Tables 3 and 4) and environmental uncertainty
(Tables 5 and 6) guide the swarm and take the number of
captured targets and the coverage rate as evaluation indexes
for the numerical simulation. In this scenario, UAV1 and
UAV3 failed at 1500 s and 3500 s, respectively, and stopped
executing tasks.

From Figures 7(a)–7(c), when UAV1 and UAV3, re-
spectively, stop performing tasks due to faults, UAV2 and
UAV4 still performed effectively and achieved higher re-
gional coverage because in the distributed decision-making
architecture each UAV does not depend on other members
to make decisions. When the swarm is large, the efficiency of
a cooperative search can be improved through interactive
decision-making. It can be seen from Figure 7(d) that when
some members are damaged, which leads to a decline in
swarm size, a UAV can still carry out search tasks through
autonomous decision-making, which has good robustness.

main program
(1) Initialize algorithm parameters, environment map, UAV position, and heading
(2) for tar � 1: Ntar
(3) if tar in class 1
(4) Initialize the environmental cognitive map according to formula (16);
(5) . . .

(6) if tar in class 4
(7) Initialize the environmental cognitive map according to formula (21);
(8) end if
(9) end for
(10) for k � 0: kmax
(11) Update the target probability distribution map according to equations (16)–(21);
(12) for Ui � 1: Nu

(13) According to formula (26), judge whether to make an independent decision;
(14) According to formula (11), a differential evolution algorithm is adopted to make a real-time decision;
(15) for Uj � 1: Nu

(16) Determine the interactive member set according to formula (27);
(17) Complete information interaction and fusion according to formula (25);
(18) end for
(19) According to formula (14), the differential evolution algorithm is adopted to make real-time decisions;
(20) Update the UAV position according to formula (5);
(21) Update your own environmental cognition map according to formula (23);
(22) end for
(23) end for

ALGORITHM 1: Algorithm pseudocode.
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Figure 8 shows that, driven by prior information, the
UAV swarm searches for and quickly captures type-4 targets
according to prior information. It can be seen from the
whole search process from Figures 8(a)–8(d), even after
UAV1 and UAV3 quit at 1500 s and 3000 s, UAV2 and
UAV4 still searched effectively.

5.5. Influence of Communication Distance on Search
Efficiency. On the basis of completing the path planning of
the cooperative moving-target search using the coverage rate
as the main evaluation index, the efficiency under different
communication distances was analyzed by using the control
variable method. Five groups of simulations having a 10 km

communication interval over 6000 s were carried out and the
results are shown in Figure 9.

According to the simulation results, information
interaction avoided the repeated search of the same grid,
and the cooperative efficiency of the UAV swarm im-
proved. With the increase in communication distance,
the cooperative search efficiency gradually increases, but
when the communication distance was greater than
30 km the efficiency no longer increased. (e results
showed a positive correlation in the nonlinear relation-
ship of communication distance to cooperative search
efficiency. In practice, the minimum effective commu-
nication distance can be preliminarily determined by the
simulation to achieve better task cooperation.

Table 2: Initial states and performance constraints of UAV.

UAV serial number Initial coordinates Initial direction Fixed flight speed Maximum turning angle
1 (5, 0) 0° 20 45°
2 (35, 28) 0° 20 45°
3 (5, 29) 180° 20 45°
4 (35, 0) 180° 20 45°

Table 3: Independent decision-making parameters.

Parameter w1 w2 w3 q

Value 0.3 0.3 0.4 3

Table 4: Interactive decision parameters.

Parameter w1 w2 w3 w4 q

Value 0.2 0.2 0.2 0.4 3

Number of information interaction:0

Number of targets captured:0
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Figure 3: Initial position distribution of targets.
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Figure 5: Continued.
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Number of information interaction:4146

Number of targets captured:6
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Figure 5: Cooperative search planning of moving targets: (a) 1000 s, (b) 2000 s, (c) 4000 s, and (d) 6000 s.

Table 5: Independent decision-making parameters.

Parameter w1 w2 w3 q

Value 0 1 0 3

Table 6: Algorithm parameters.

Parameter w1 w2 w3 w4 q

Value 0 0.5 0 0.5 3
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Figure 6: Coverage change under communication restriction.
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Figure 7: Coverage track planning under the condition of partial member damage: (a) 1000 s, (b) 2000 s, (c) 4000 s, and (d) 6000 s.
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Figure 8: Track planning of moving-target search after damage to some members: (a) 1000 s, (b) 2000 s, (c) 4000 s, and (d) 6000 s.
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6. Conclusion

(1) (is algorithm simulated the cooperative search
decision-making of a UAV swarm at a limited
communication distance and improved its robust-
ness in a strong countermeasure environment by
establishing autonomous and interactive decision-
making

(2) (e mathematical models and updating methods of
prior information of the four types of moving targets
were established so that a UAV swarm could make
full use of prior information to carry out a coop-
erative search

(3) Using a distributed control architecture in an ex-
perimental simulation, the algorithm in this paper
proved that a cooperative search task can still be
completed effectively when some members fail

(e algorithm did not consider the influence of com-
munication delay and packet loss on the cooperative search
efficiency, but it could in subsequent research to improve the
cooperative search algorithm of the UAV swarm.

Data Availability

(e data that support the findings of this study are available
from the corresponding author upon reasonable request.

Conflicts of Interest

(e authors declare that there are no conflicts of interest.

Authors’ Contributions

Ning Wang, Zhe Li, and Feihu Zhao were responsible for
conceptualization, methodology, software, and validation;
Ying Li and Feihu Zhao performed data curation. Ning
Wang, Xiaolong Liang, and Ying Li prepared the original
draft and reviewed and edited the manuscript. All authors
have read and agreed to the published version of the
manuscript.

Acknowledgments

(is work was funded by the National Natural Science
Foundation of China, Grant no. 61703427.

References

[1] Office of the Secretary of Defense,Unmanned Aircraft Systems
Roadmap 2005-2030, Department of Defense, Washington,
DC, USA, 2005.

[2] Office of the Secretary of Defense,Unmanned Aircraft Systems
Roadmap 2007-2032, Department of Defense, Washington,
DC, USA, 2007.

[3] Office of the Under Secretary of Defense, Defense Science
Board Study on Unmanned Aerial Vehicles and Uninhabited
Combat Aerial Vehicles, Office of the under Secretary of
Defense for Acquisition, Technology, and Logistics, Wash-
ington, DC, USA, 2004.

[4] Y. Alshuler, A. Pentland, and M. B. Alfred, Swarms and
Network Intelligence in Search, Springer International Pub-
lishing, Cham, Switzerland, 2018.

[5] Y. Q. Hou, X. L. Liang, Y. L. He, and J. Q. Zhang, “Time-
coordinated control for unmanned aerial vehicle swarm co-
operative attack on ground-moving target,” IEEE Access,
vol. 7, pp. 106930–106939, 2019.

[6] C. C. Cheng, G. H. Bai, Y. A. Zhang, and J. Y. Tao, “Resilience
evaluation for UAV swarm performing joint reconnaissance
mission,” Chaos, vol. 5, 2019.

[7] N. Nigam, S. Bieniawski, I. Kroo, and J. Vian, “Control of
multiple UAVs for persistent surveillance: algorithm and
flight test results,” IEEE Transactions on Control Systems
Technology, vol. 20, no. 5, pp. 1236–1251, 2012.

[8] Z. Zhen, Y. Chen, L. Wen, and B. Han, “An intelligent co-
operative mission planning scheme of UAV swarm in un-
certain dynamic environment,” Aerospace Science and
Technology, vol. 100, Article ID 105826, 2020.

[9] Z. Lv, L. Yang, Y. He, Z. Liu, and Z. Han, “3D environment
modeling with height dimension reduction and path planning
for UAV,” in Proceedings of 9th International Conference on
Modelling, Identification and Control, pp. 734–739, Kunming,
China, July 2017.

[10] S. Medeirosfll, “Computational modeling for automatic path
planning based on evaluations of the effects of impacts of
UAVs on the ground,” Journal of Intelligent & Robotic Sys-
tems, vol. 61, no. 1, pp. 181–202, 2011.

[11] P. Stodola, J. Drozd, J. Nohel, J. Hodický, and D. Procházka,
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