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With the continuous development of UAV technology, UAV has been widely used in various industries. In the flight process of
UAV, UAV often changes the given path because of obstacles (including static nonliving body and moving living body).
According to the properties of obstacles and the characteristics of UAV, standard Kalman filter is used for nonmaneuvering
targets, and sigma point Kalman filter is used for maneuvering targets. In the aspect of obstacle avoidance, the minimum search
method is used to get the initial population of local programming. .en, the improved genetic algorithm is run. Combined with
the predicted obstacle features, the local planning path can be obtained. Finally, the local planning path and global planning path
are combined to generate the planning path with new obstacles. At the end of the paper, the obstacle avoidance strategies of static
and moving obstacles are simulated. .e simulation results show that this method has fast convergence speed and good feasibility
and can flexibly deal with the obstacle avoidance and local path planning of various new obstacles.

1. Introduction

In recent years, with the continuous development of UAV
and computer technology, UAV technology is widely used in
power, agriculture, film, and other industries. In high
temperature, cold, dangerous, and other environments [1],
UAV technology can help people work.With the continuous
expansion of the application field of UAV, the performance
requirements of UAV are higher and higher, especially for
the key technologies of UAV, such as endurance, shooting,
and obstacle avoidance [1, 2]..e obstacle avoidance tech-
nology of UAV is related to the safety of UAV, so it is a hot
issue in the research of UAV.

At present, many research studies on UAV obstacle
avoidance are to obtain the two-dimensional position in-
formation of UAV height through UAV airborne radar and
construct an artificial potential field model to guide UAV to
quickly track targets and avoid air obstacles. Similar to this
obstacle avoidance method, it is more suitable for obstacle
avoidance of stationary objects and does not predict dy-
namic objects [1, 2]. In the subsequent path planning, the

optimal path cannot be obtained. In this study, the obstacles
are classified, the standard Kalman filter prediction algo-
rithm is used for nonmaneuvering targets, and the sigma
point Kalman filter method is used for maneuvering targets.
Better results can be obtained in path planning.

.ere are two common methods for obstacle avoidance
planning of UAV [3]; one is to adjust the UAV flight speed to
avoid obstacles according to the relative position and speed
between UAV and target; the other is to change the UAV
heading to avoid obstacles. Considering that the outdoor
environment is mostly static obstacles, it is difficult to meet
the obstacle avoidance requirements only by adjusting the
UAV speed, so the second method is considered.

In this paper, according to the characteristics of ob-
stacles, obstacles are divided into nonmaneuvering targets
and maneuvering targets. .e standard Kalman filter is used
to predict the maneuvering target, and the sigma point
Kalman filter is used to predict the maneuvering target.
.rough the study of these two parts, we can effectively
predict the characteristics and location of obstacles. .en,
for the predicted obstacles, the minimum search method is
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used to obtain the initial population of local programming
and run the improved genetic algorithm. Combined with the
predicted obstacle characteristics, the local planning path
can be obtained. Finally, the planning path with new ob-
stacles is generated by combining the local planning path
and the global planning path. .e simulation results show
that this method has fast convergence speed and good
feasibility and can flexibly deal with obstacle avoidance and
local path planning of various new obstacles.

2. Decision of Obstacle Avoidance Algorithm

.e sensors used for real-time obstacle avoidance in UAV
are mainly lidar, and many scholars have done a lot of
research on the use of lidar [1, 4]. However, the main starting
point of these research results is to avoid obstacles, which is
not fully based on the attributes of obstacles and the
characteristics of UAV, so as to organically combine safety
obstacle avoidance and path planning. In this paper, based
on the information obtained by UAV, combined with the
characteristics of obstacles, UAV, and preplanned global
path, local planning path is generated near the global
planning path on the basis of safe obstacle avoidance, so as to
achieve the unity of global and local path planning [5].

.e obstacle avoidance decision algorithm is shown in
Figure 1. Target recognition is based on the information
obtained by lidar. If obstacles are found beyond the safe
distance, obstacle avoidance will not be initiated. On the
contrary, obstacle avoidance is based on the results of target
recognition.

3. Prediction of Nonmaneuvering Target and
Maneuvering Target

3.1. Standard Kalman Filter Algorithm. .e filtering process
of the standard Kalman filter is calculated in a recursive way
of “prediction-revision.” First, the prediction value is cal-
culated, and then, the observed value is modified according
to the new information and Kalman gain (weighting term).
.e predicted value can be obtained from the filtered value,
and the filtered value can be obtained from the predicted
value. .e interaction between the filtering and the pre-
diction does not require any observation data to be stored,
and it can be processed in real time. .e system structure
block diagram is shown in Figure 2.

Assume that the state equation and measurement
equation of the system are, respectively,

Xk � Ak/k−1Xk−1 + BkWk,

Zk � CkXk + Vk,
(1)

where Xk is the n-dimensional state vector at time k. .at is
to say, the estimated vector Ak/k−1 is n∗ n-dimensional state
transition matrix. Xk−1 is the n-dimensional state vector at
time k-1. Bk is the dynamic noise matrix n∗ n. Wk is n-
dimensional dynamic noise. Zk is the observation vector at
time K. Ck is k-time measurement matrix n∗ n. .e m-
dimensional observation noise at time Vk is k. And, dynamic
noiseW and observation noiseK are uncorrelated zero mean

white noise sequences. .at is to say, for all k and j,
EWk � 0, EVk � 0. .en,

Cov Wk, Wj  � EWkWj
T

� Qkδkj, (2)

Cov Vk, Vj  � EVkVj
T

� Rkδkj, (3)

Cov Wk, Vj  � EWkVj
T

� 0, (4)

where δkj is Kronecker symbolic function,

δkj �
0, k≠ j,

1, k � j,
 (5)

and Qk is the variance of dynamic noise. In the Kalman filter,
it is required to be a known nonnegative fixed array. Rk is the
observation noise variance matrix. In the Kalman filter, it is
required to be a known nonnegative fixed array. .at is to
say, there is noise in each measurement component.

Using the minimum variance to deduce the Kalman
filter, we can obtain the following.

Forecast estimate Xk/k−1 is

Xk/k−1 � Ak/k−1Xk−1. (6)

Filter estimation Xk is

Xk � Xk/k−1 + Kk Zk − CkXk/k−1( , (7)

where Kk is the best gain matrix.
Measured prediction Zk/k−1 is

Zk/k−1 � CkXk/k−1. (8)

New information prediction εk is

εk � Zk − Zk/k−1. (9)

Prediction error covariance matrix Pk/k−1 is

Pk/k−1 � Ak/k−1Pk−1A
Τ
k/k−1 + Bk−1Qk−1B

Τ
k−1. (10)

Filtering error covariance matrix Pk is

Pk � I − KkCk( Pk/k−1. (11)

Optimal gain matrix Kk is

Kk � Pk/k−1C
Τ
k CkPk/k− 1C

Τ
k + Rk 

− 1
. (12)

3.2. Prediction of Uniform Linear Motion with Standard
Kalman. In this paper, the target mathematical model

x � ut + x0
y � vt + y0

 of uniform linear motion is predicted, where u

and v are the velocity component of the target in x and y

coordinate axes, which are constant parameters. x0 and y0
are the displacement of the target at the initial time, and they
are also constant parameters:

Xk � AXk−1 + BWk, (13)

where the state variable Xk is
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Xk � xk x yk y . (14)

.e state transition matrix A and dynamic noise matrix
B are

A �
I2 TI2

02 I2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

B �

T
2

2
 I2

TI2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(15)

Sampling time T � 1 s. Wk is the mean value, its value is
zero, and the dynamic variance is the dynamic noise of Q.
.e value of dynamic variance Q is as follows:

Q �
5 0

0 5
 . (16)

.e observation equation of the system is as follows:

Zk � CkXk + Vk, (17)

where C is the observation matrix,

C � 1 0 1 0 , (18)

and Vk is the mean value, its value is 0, and the dynamic
variance is the dynamic noise of R. .e value of dynamic
variance R is as follows:

R �
5 0

0 5
 . (19)

.e initial state X0 and the initial covariance matrix P0
are as follows:

X0 � 0 40 0 20 
Τ
,

P0 �

5 0 0 0

0 5 0 0

0 0 5 0

0 0 0 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(20)

.e prediction results of nonmotorized obstacles using
the standard Kalman are shown in Figures 3 and 4. .e
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Figure 1: Structure diagram of UAV obstacle avoidance planning.
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Figure 2: Standard Kalman filter system block diagram.
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simulation results show that the prediction effect is
satisfactory.

.e standard Kalman filter can achieve good results in
predicting the state of nonmaneuvering target. For ma-
neuvering target, its motion is unknown, so the standard
Kalman filter cannot accurately describe its motion state. In
this paper, the sigma point Kalman filter is used to realize the
state estimation of the maneuvering target. Its core idea is
unscented transformation, which propagates a finite number
of sigma points by using nonlinear state and observation
equations. .en, weighted sum is used to get the mean and
variance of the state probability distribution.

3.3. SigmaPointKalmanFilteringAlgorithm. UKF, the sigma
point Kalman filter algorithm, is based on UT transfor-
mation and adopts the Kalman filter framework..e specific
sampling form is deterministic sampling. .e number of
discrete points (called sigma points) sampled by UKF is
small, and the specific number depends on the selected
sampling strategy. .e most commonly used is 2n+ 1 sigma
point symmetric sampling.

According to the state estimates xk−1 and Pk−1 at time
k−1, the realization process of obtaining the state estimates
xk−1 and Pk−1 at time k is given.

First, according to xk−1 and Pk−1, the sigma point χi
k−1,

i � 1, . . . , 2n, is constructed according to the sigma point
sampling formulas (5)–(31):

χi �

x, i � 0,

x +(
�������
(n + λ)P


)i, i � 1, . . . , n,

x +(
�������
(n + λ)P


)i i � n + 1, . . . , 2n.

⎧⎪⎪⎨

⎪⎪⎩
(21)

.en, predict the sigma point and mean:

χi
k|k−1 � fk χi

k−1 , (22)

x � 
2n

i�0
W

(m)
i χi

k|k−1, (23)

Pk|k−1 � 

2n

i�0
W

(c)
i χi

k|k−1 − xk|k−1  χi
k|k−1 − xk|k− 1 

Τ
+ Qw,k, (24)
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Correction (measurement update):

Y
i
k|k−1 � g χi

k−1 , (25)

y � 
2n

i�0
W

(m)
i Y

i
k|k−1, (26)

Py,k � 
2n

i�0
W

(c)
i Y

i
k|k−1 − yk|k−1  Y

i
k|k−1 − yk|k− 1 

Τ
+ Rv,k,

(27)

Pxy,k � 
2n

i�0
W

(c)
i χi

k|k−1 − xk|k−1  Y
i
k|k−1 − yk|k− 1 

Τ
, (28)

Kk � Pxy,kP
−1
y,k, (29)

xk � xk|k−1 + Kk yk − yk|k−1 , (30)

Pk � Pk|k−1 − KkPy,kK
T
k . (31)

3.4. Maneuvering Target Prediction Simulation. In order to
verify the prediction of the movement of obstacles with
mobility by the sigma point Kalman filter method, this paper
constructs the state equation and observation equation of
obstacle movement:

x � 0.2x + 0.01x
2

+ 8 cos(1.2∗ (k + 1)) + sqrt(10)∗ randn,

y � x
2

+ 0.1randn.

(32)

Take the initial state of x as x � 1, the estimated value of
the initial state is x � 0.5, the process state covariance Qis
Q � 10, the measurement noise covariance R is R � 0.01, and
the initial estimated variance P is P � 1000..e prediction of
maneuverable obstacle motion using the sigma point Kal-
man filter is shown in Figures 5 and 6. From the simulation
results, it can be seen that the method has achieved good
prediction effect on the mobility movement.

4. Obstacle Avoidance Operator in Local
Planning Based on the Minimal
Search Method

For local path planning, fast obstacle avoidance is the primary
issue under the condition of safety assurance, so it is necessary
to consider how to improve the planning speed. Perform local
planning between the abovementioned starting point and
ending point. First of all, it is necessary to find the initial
population that can be used for fast local planning, so this
paper designs an obstacle avoidance operator.

Obstacle avoidance operator: by performing obstacle
avoidance operations on the starting point and ending point
of the path through the obstacle, a new local initial path can
be obtained. .en, the local path is planned through genetic

algorithm and then returned to the originally planned path.
If the new obstacle is a triangle ABC, extrapolate the in-
tersection of the global planning path and the obstacle to a
safe distance and get the starting and ending points of the
local path as P and Q. As shown in Figure 7. .e ABC three-
point coordinates can be substituted into PQ line equation,
and the point with one end (such as point a) can be de-
termined by symbols, and R point is generated near point a,
where r-point coordinate is one of (xa +Δx, ya +Δy),
(xa −Δx, ya +Δy), (xa +Δx, ya −Δy), and (xa −Δx,
ya −Δy). If neither PR line nor QR line segment intersects
with triangle ABC, the r-point coordinate is accepted as a
point in the path. Such a problem can be reduced to the
solution of the minimum value. .e most common algo-
rithm is the steepest descent method. .e steepest descent
method searches according to the inverse direction of the
gradient of the multivariate function. It still needs to find the
partial derivative and select a step size. .e convergence rate
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of this method is linear and becomes very slow after the first
few steps.

In this paper, a minimum search method is proposed to
find the minimum extremum of R point. .e minimum
search method is a simplified model, which can solve the
problem of n-dimensional space in practice. In order to
illustrate the problem conveniently, take two-dimensional
space as an example.

In this paper, the symmetry axis of conic is used to
estimate the minimum extremum value of R point. First of
all, the problem can be attributed to a function of one
variable f(x). We consider the minimal value problem of
f(xa − Δx), f(xa), and f(xa + Δx) on a diagonal. Since
these three points can determine a conic curve, the mini-
mum value R point can be estimated by using the known
f(xa − Δx), f(xa), and f(xa + Δx).

Suppose the quadratic function is h(x) � ax2 + bx + c,
and it coincides with f(x) at three known points; according
to the undetermined coefficient method, the equations are
obtained:

f xa + Δx(  � a xa − Δx( 
2

+ b xa − Δx(  + c,

f xa(  � axa
2

+ bxa + c,

f xa + Δx(  � a xa + Δx( 
2

+ b xa + Δx(  + c.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(33)

For the symmetric axis of h(x) at −b/(2a), the equation
system can be solved:

−
b

2a
� xa +

f xa − Δx(  − f xa + Δx( 

2 f xa − Δx(  − 2f xa(  + f xa + Δx(  
Δx.

(34)
Because the axis of symmetry of h(x) is near xa and Δx is

small enough, whenf(x0 − Δx) − 2f(x0) + f(x0 + Δx)> 0,
h(x) is a concave function and the minimum value is taken
at −b/(2a).

From equation (34), the estimation point R of the ul-
timate minimum value can be obtained. .e search process
of R point is shown in Figure 7.

.e P and Q points are reserved as the starting and
ending points, and the initial population is generated near
the PRQ so that the local optimal path can be quickly
searched.

5. Local Planning Path Simulation

As mentioned above, the global planning path is shown in
Figure 8(a). In the simulation, the obstacles are represented

by multilateral type and segmented by triangles. .e starting
point of the path is (0, 0), and the target point of the path is
(20, 0). If new obstacles appear on the planned path, the type
of new obstacles needs to be determined through target
identification. Here, we mainly discuss the case that the new
obstacle is an inanimate body.

Firstly, the obstacle avoidance operator subroutine is
run to obtain the initial population of local planning.
.en, run the improved genetic algorithm to get the local
planning path. Finally, the local planning path is com-
bined with the global planning path to generate the
planning path with new obstacles. .e simulation is
programmed in Matlab platform, and genetic operation is
realized by genetic algorithm toolbox function of Sheffield
University. .e initial cross rate was 0.9, the initial var-
iation rate was 0.2, and the genetic algebra was 1000. .e
simulated annealing process is set to 100 times and the
simulated annealing temperature is set to 1000 by using
binary number coding.

5.1. 9e New Obstacles Are Inanimate Objects at Rest. If the
above targets are identified, the new obstacles are inanimate
objects at rest (mountains, buildings, etc.), as shown in
Figure 8(b). .e obstacle coordinates are (11.3, −3.1), (14.2,
−2), and (12.1, −0.7). .e wind speed is vwindy � 0.1m/s.

Figure 8 shows the combination of local path planning
and global path planning on the basis of global path
planning. As shown in Figure 8(a), if new obstacles are found
on the planned path, local planning is carried out by the
improved genetic algorithm mentioned above. Combining
with the original optimal path, the path planning results of
the combination of local path planning and global path
planning are obtained. Most of the paths maintain the global
path planning results. .e new obstacle part is local path
planning, as shown in Figure 8(b). .e path points include
(0, 0), (4, −1.8), (10.2, −1.4), (12.2, −0.7), (14.2, −1.2) (16.1,
−1), and (20, 0). As can be seen from Figure 8(b), the UAV
bypasses the obstacle in the downstream direction. Figure 9
shows the error curve of local programming. .e genetic
algebra converges at about 200. .e simulation results show
that the convergence speed of local programming is fast.

If there are large static inanimate obstacles on the
original global planning path, as shown in Figure 10(a), the
coordinates of the new obstacles are (4.8, −0.7), (7.1, −3.2),
and (10.2, −2), and the wind speed is vwy � 0.1m/s. .e
simulation results are shown in Figure 10(a). .e
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P(xp, yp)
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B(xb, yb)

C(xc, yc)

Q(xq, yq)

A(xa, ya)

R(xq, yq)

A(xa, ya)

Q(xq, yq)

C(xc, yc)

y y

x x

Figure 7: Diagram of the obstacle avoidance operator.
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Figure 8: Path planning combining local path planning with global path planning. (a) Global path planning. (b) Local path planning based
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Figure 10: Path planning combining local path planning with global path planning for large obstacles. (a) Local path planning based on
global planning; (b) local path planning error curve.
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combination path of global and local planning is (0, 0), (4,
−1.8) (7.2, −3.4), (16.1, −1), and (20, 0).

From the simulation results, the local path part is not
planned along the wind speed direction because if it is
planned along the wind speed direction, the UAV will enter

the obstacle dense area, so it is difficult to realize the local
path planning. Figure 10(b) shows the error curve of local
programming. .e genetic algebra converges about 600
times. .e simulation results show that the convergence
speed of local programming is fast.
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Figure 11: Path planning of uniformmoving obstacles with local and global combination. (a) Local path planning based on global planning;
(b) local path planning error curve.

0 2 4 6 8 10 12 14 16 18 20
-8

-6

-4

-2

0

2

4

X-axis of the path (10 m)

Y-
ax

is 
of

 p
at

h 
(1

0 m
)

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4
×1013

iteration times

er
ro

r c
ha

ng
es

(b)

Figure 12: Path planning of local and global combination for accelerating moving obstacles. (a) Local path planning based on global
planning; (b) local path planning error curve.
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5.2. 9e Obstacle Is a Moving Nonliving Body (Aircraft).
On the path of global path planning shown in Figure 7(a),
after target recognition, new obstacles of moving inanimate
body appear.

If the new obstacle moves at a constant speed, as shown
by the dotted line in Figure 11(a), the new obstacle is
represented as a triangle. Among the new obstacles, vx �

−0.2m/s and vy � 0. .e wind speed is vwindy � 0.1m/s. .e
motion of the obstacle can be estimated by the Kalman filter.

In Figure 11(a), due to the low speed of the obstacle and
the small cross-sectional area of the obstacle, the local
planning path completes the local motion planning along the
short direction of the obstacle detour path and returns to the
global planning path after the local path planning.

Figure 11(b) shows the error curve of local program-
ming, and the genetic algebra converges around 150. .e
simulation results show that the local programming con-
verges fast.

If the new obstacles are uniformly accelerated, as shown
by the dotted line in Figure 12(a), the new obstacles are
represented as triangles. Among new obstacles, vx � 0,
vy � 0.2m/s, and ay0 � 0.2m/s2. .e wind speed is
vwindy � 0.1m/s..emotion of the obstacle can be estimated
by the Kalman filter.

It can be seen from the simulation results in Figure 12(a)
(the planned path is represented by a thick line) that the local
planned path is divided into two parts: bypassing obstacles
and returning. Due to the acceleration of the new obstacles,
the part around the obstacles and the return part are both
curves. .e part around the obstacles starts the obstacle
avoidance planning in advance to ensure the safety. .e
return part quickly returns to the global planning path,
achieving the unity of local planning and global planning.
Figure 12(b) shows the error curve of local planning. .e
genetic algebra converges around 400..e simulation results
show that the convergence speed of local planning is fast.

6. Conclusions

When UAV flies on the planned path, new obstacles appear
on the planned path. In different cases, the local path
planning method will be determined according to the UAV
obstacle avoidance decision. On the basis of obstacle target
recognition, such as fully considering the type characteristics
of obstacles, the influence of wind speed, and the influence of
yaw angle change rate, the Kalman filter, prediction, and its
improved algorithm are used to estimate the target motion
parameters [6–8]. .e local approximate obstacle avoidance
path is planned by the obstacle avoidance operator of
minimum search method, and the local initial population is
generated. On this basis, the improved genetic algorithm is
used to plan the local obstacle avoidance path. .e starting
point and ending point of local planning are all on the global
planning path, which achieves the unity of global path
planning and local path planning from the method and
implementation. .e simulation results show that the
method has fast convergence speed and good feasibility and
can flexibly deal with the obstacle avoidance and local path
planning of various new obstacles.
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