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To improve the safety and effectiveness of autonomous towing aircraft aboard the carrier deck, this study proposes a velocity-
restricted path planner algorithm named as kinodynamic safety optimal rapidly exploring random tree (KS-RRT∗) to plan a
near time-optimal path. First, a speed map is introduced to assign different maximum allowable velocity for the sampling
points in the workspace, and the traverse time is calculated along the kinodynamic connection of two sampling points.*en the
near time-optimal path in the tree-structured search map can be obtained by the rewiring procedures, instead of a distance-
optimal path in the original RRT∗ algorithm. In order to enhance the planner’s performance, goal biasing scheme and fast
collision checking technique are adopted in the algorithm. Since the sampling-based methods are sensitive to their parameters,
simulation experiments are first conducted to determine the optimal input settings for the specific problem.*e effectiveness of
the proposed algorithm is validated in several common aircraft parking scenarios. Comparing with standard RRT∗ and human
heuristic driving, KS-RRT∗ demonstrates a higher success rate, as well as shorter computation and trajectory time. In
conclusion, KS-RRT∗ algorithm is suitable to generate a near time-optimal safe path for autonomous high density parking in
semistructured environment.

1. Introduction

Aircraft parking aboard the carrier deck is a carefully
planned procedure in naval operations standardization [1],
and its safety and effectiveness are essential in determining
the sortie generation capacity of air wing [2]. Currently, the
aircraft movement afloat mainly relied on manually oper-
ated towing tractor with extra personnel to ensure the safety
of parking route. However, the aircraft parking operation is
usually manpower intensive and time-consuming evolution
with low reliability, which creates a more hazard situation
for the already congested deck environment leading to
mishaps [3]. *erefore, it is imperative to introduce an
autonomous path planner that can speed up the aircraft
parking operations with major improvements in safety and
reduction in total manpower.

Path planning is both a kinematic and geometric
problem that specifies a set of configurations from one place
to another and meanwhile avoids obstacles. And it is proved

to be PSPACE-hard problem [4], especially difficult for
vehicles under nonholonomic and dynamic constraints.
Considerable efforts are devoted to solve this problem. *e
algorithms of graph searching methods [5–7] give a path
solution by discretizing the state of workspace and visiting
different states, while the state space is always so large that
evaluating every potential solution is computational costly.
*e interpolating curve-based planners [8–12] are more
suitable for local planning, but they consume too much time
when managing obstacles in real time. *e function-based
optimization methods [13, 14] can easily account for dif-
ferent constraints, but the function optimization happens in
each state of motion that usually consumes too much time.
*erefore, these methods are not suitable for quickly gen-
erating optimal path in real-time application. In contrast, the
sampling-based methods are incremental sampling and
random searching approaches by covering the workspace of
tree structure that yield good performance in practice, which
could quickly generate feasible solution in high dimensional
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state space [15]. Rapidly random tree (RRT) [16] algorithm is
a powerful sampling-based path planner, and it has been
proved to be probabilistically complete to generate a feasible
path but in no sense of being optimal. Subsequently, a
variant of RRT, called RRT∗ [17], is proposed to achieve
being asymptotically optimal by rewiring the random search
tree structure for lower cost.

Now that the RRT∗ algorithms have been widely used in
the autonomous path planning [18–23], its effectiveness in
specific problem still needs to be explored. Figure 1 shows a
common aircraft parking operation in a cluttered envi-
ronment. *e traditional sampling-based algorithm prefers
the dotted straight line between the start and goal spot across
the obstacles (black polygons). However, with consideration
for safety, following such distance-optimal path will require
much too slow speed to be safe. In this example, the true
optimal path is that the aircraft can be towed around the
obstacles (solid line) at its maximum allowable speed, which
results in a minimum parking time.

*erefore, this study presents a variant of RRT∗, called
Kinodynamic Safety RRT∗ (KS-RRT∗), which adopts a speed
map to assign different reference safety velocities in the
searching space and introduces a time-based metric to de-
termine an optimal path for aircraft parking operation. In
addition, to quickly generate a near optimal trajectory as the
time critical nature of deck operations requires, the primitives
of the RRT∗ algorithm are also modified, including goal bias
sampling and expansion-based fast collision checking strate-
gies. *e effectiveness of KS-RRT∗ is estimated in multiple
common aircraft parking scenarios and compared with stan-
dard RRT∗ and a human driving heuristic.

*e remainder of this study is organized as follows.
Section 2 introduces occupancy cost map combined with a
speed map, describes the development of the tractor-aircraft
dynamics, and proposes the modified RRT∗ algorithm.
Section 3 evaluates the algorithm through a set of scenarios
and interprets the simulation results. Section 4 concludes the
paper.

2. Methods

2.1. Speed Combined Cost Map. *e autonomous tractor is
expected to steer the aircraft to an available parking spot.
Figure 2(a) shows the operating environment as a 2D oc-
cupancy grid, including available and occupied parking
spots, deck markings, and obstacles such as other aircraft
(black polygons). *is paper assumes such map is fully
known by a flight deck monitor system [24].

For considering the safety velocity restrictions and
maintaining safe clearance for the tractor-aircraft maneu-
vering in close-quarters, a speed map is generated for
assigning different maximum allowable velocity in the en-
vironment (Figure 2(b)). According to the naval operations
standards [2], we confine different velocities in the obstacle
areas (vobs), the safety velocity (vsafe) in the buffer contour d
around the obstacle (making sure the towed aircraft can be
slowed to an immediate stop), and the maximum velocity
(vmax) in the sparseness areas that there are no obstacles in
the vicinity.

2.2. Tractor-Aircraft Kinematics. Figure 3 shows a non-rod
tractor that directly attaches to the front wheel of an aircraft,
creating a tractor-aircraft articulated system.*e kinematics
functions of such two-body system [25] can be written as
follows:

_xa � vcos θa,

_ya � vsin θa,

_θa �
v

la
tan φ,

_xb � vcos θb cos θa − θb( 􏼁,

_yb � vsin θb cos θa − θb( 􏼁,

_θb �
v

lb
sin θa − θb( 􏼁,
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(1)

where (xa, ya) is the tractor’s mass position that lies in the
middle of its rear wheel axle and θa is the orientation of the
tractor; v denotes the linear velocity of the tractor; _xa and _ya

are the horizontal and vertical linear velocity, respectively;
and _θa is the angular velocity of the tractor. Similarly, the
aircraft’s state is presented as (xb, yb, θb). And la and lb are the
wheelbases of the tractor and aircraft; f is the tractor’s
steering angle, and it cannot exceed its maximum rotation
angle |φmax|, which leads to a minimum turning radius rmin.
Notice that the moving speed is limited by safety velocity
vmax, and the inertial effect that brings the slipping of wheels
can be ignored.

2.3. KS-RRT∗ Algorithm. In order to improve the safety and
effectiveness, we propose a velocity-restricted KS-RRT∗ al-
gorithm to plan a near time-optimal path in the semi-
structured cluttered environment.

*e primitives of KS-RRT∗ algorithm include goal bias
sampling, kinodynamic local steering, expansion-based fast
collision checking, and time-based rewiring procedures.
Algorithm 1 outlines the KS-RRT∗ algorithm. At first, a
single vertex is initialized in the tree graph as G (V, E). For
each iteration of generating random sample nodes, a node
xrand in free configuration space is sampled. *en, the xrand
chooses the nearest vertex in the tree. Along the edge E
(xnearest, xrand) by local steering curve with a step size, a
potential new node xnew is generated. Now a collision check
is performed to examine whether the xnew is obstructed. If
not, the newly generated edge E (xnearest, xnew) is added to the
tree. Next, the rewiring procedure works as an optimization
process, by connecting from xnew to each potential parent
nodes set Xnear within a radius r. Comparing different routes
from start position qstart to xnew, the path with minimum
time cost is selected as the newly added edge. Finally, the
iteration stops when a new node has reached the goal region
qgoal. *e details and modifications of the algorithm are
described below.
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Figure 2: A notional aircraft carrier flight deck layout (a) and its corresponding speed map (b). Blue colour represents the velocity in the
obstacle area; green colour represents the safety velocity in the buffer contour around the obstacle area; warm toned colour (yellow to
orange) represents the maximum velocity in the sparseness area.
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Figure 1: An illustration of aircraft parking scenario. *e dotted line is an optimal path without considering safety. *e solid line is an
approximate time-optimal solution with respect of safety.
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Figure 3: Two-body tractor-aircraft towing system. *e motion of the tractor-aircraft towing system is described by equation (1).
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2.3.1. Goal Bias Sampling. Sampling is the first step in ex-
ploring the workspace of the tree structure. *e sampling-
based algorithm originally adopts uniform sampling scheme
that evenly extends towards outside. However, uniform
sampling scheme may result in lower sampling chances in
narrow regions of cluttered environment. *us, we adopt a
goal biasing scheme to explore the state space. A probabi-
listic threshold Pgoal ∈ (0, 1) is set, and each time before
sampling, a random number Prand ∈ (0, 1) is generated. If
Prand < Pgoal, the goal region is set to be the next sample
point; else if Prand ≥ Pgoal, a random sampling is made in the
free space. Such sampling scheme has been proved to have
better performance than the dense distribution [26].

2.3.2. Kinodynamic Local Steering. In the original algo-
rithm, the subsequent way points are connected by
straight lines, which may bring trouble for nonholonomic
vehicles performing stationary turns due to the vehicle’s
turning radius constraints. Since the tractor-aircraft
system can move both forwards and backwards, Reeds-
Shepp curves [8] is chosen as the local connection between
two sampling poses, as it has been proven to be kino-
dynamically feasible withholding the small-time local
controllability property to reach any place in the map.
However, it would generate 46 types of curves for each
connection, resulting in a high cost to test every possible
connection at each iteration Step [5]. *us, we put a limit
on the curvature of steering (as shown in Figure 4), where
the initial and final curvature of the steering is set as zero.
Such method can eliminate many connection possibilities
meanwhile guaranteeing the continuous smoothness of
successive curve connection. *is becomes beneficial
especially considering real-time implementation, as the
computational complexity is significantly reduced.

2.3.3. Expansion-Based Fast Collision Checking. Collision
checking is usually considered as the bottleneck of sampling-
based planners [27]. Here we use the expansion-based fast
collision checking method [28]. In such context, the vehicle
is usually approximated as a circumscribed circle, while the

obstacles are expanded by a buffer, checking whether the
circle lies on the expanded grid. However, such approxi-
mation leaves too much redundancy for path planning in
cluttered environment; thus, an approximation algorithm
[29] is implemented by covering the tractor-aircraft with
multiple overlapping circles. *en the collision checking is
simply performed by checking if these circles lie in the
expanded grid. As shown in Figure 5, the shape of the
aircraft towing system is approximate by 6 equal overlapping
solid circles, and the obstacles (dark blue) are expanded
(light blue) by a safety clearance δ.

2.3.4. Time-Based Rewiring. Before the rewiring procedure
begins, the algorithm searches Xnear, which is a vertices set
within a ball of radius from xrand, to find its potential time-
optimal parent node. Once the path from xinitial to xrand with
the least time cost is assured, xrand is added to the tree. If the
steering from xrand has lower cost than current path, then its
parent xnear is substituted by xrand. Algorithm 2 shows the
pseudocode of rewiring procedure.

*e path traversing time in the tree is calculated as
follows.

Figure 6 shows one of the path segments in the tree-
structured map, where s is the arc length connecting the two
nodes and v is the maximum allowable speed with respect of
the speed map.

*e kth arc length is sk, with initial and final velocity of vk

and vk+1. Assuming the movement from configuration qk to
configuration qk+1 is uniform acceleration (or deceleration)
process, the traverse time along the path can be calculated
based on the following equation:

sk � 􏽚
k+1

k
vdt⇒ t �

2sk

vk + vk+1
, ⇒ t �

2sk

vk + vk+1
(2)

and the time-based cost function Ctime from initial node to
the k node is calculated by

Ctime � 􏽘
k−1

0
tk. (3)

Input: occupancy cost map, start and goal configuration
Output: time-optimal path connecting qstart and qgoal
(1) Vertex←{xinitial}; Edge←∅;
(2) for i� 1 to n do
(3) xrand← Goalbias_Samplingi;
(4) xnearest←Nearest_Connect (G� (V, E), xrand);
(5) xnew←Kinodynamic_Steering (xnearest, xnew);
(6) if Collision_free (xnew, xnearest) then
(7) Tree.add_vertex (xnew)
(8) Tree.add_edge (xnew, xnearest)
(9) xnear←Nearest_Neighbors (Tree, xnew, ri)
(10) for all (xnear, Xnear) do
(11) Time-based_Rewiring (xnear, xnew)
(12) return G� (V, E);

ALGORITHM 1: Kinodynamic safety RRT∗.
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*e benefit of the proposed algorithm is shown in the
following example (Figure 7). *e proposed algorithm
generates a σ′ path (solid line) while the standard RRT∗
generates a σ path (dashed line). Comparing the paths
generated by the two planners, it can be noted that σ′ path
(solid line) is longer but safer as the aircraft does not enter
the expanded contour δ region. Following σ′ path with
maximum allowable speed can reach the goal spot faster
than that of σ path with much slower speed across the safety
buffer contour.

3. Simulation and Results

In order to assess the effectiveness of KS-RRT∗, the simu-
lation experiments are analyzed through several scenarios
representing common parking patterns aboard (as shown in
Figure 8).

*e tractor-aircraft parameters are listed in Table 1,
which are defined referencing to the naval operations
standardization [1].

A 300m× 80m occupancy grid with a resolution of
0.5m is used to represent the flight deck environment.
Table 2 lists the parameters of the cost map and the reference
speed map, referenced to the naval operations standardi-
zation [1].

Since the efficiency of sampling-based algorithm is heavily
influenced by its resolution parameters, different parameter
settings are first tested to find the suitable values that result in
less computation time and better trajectory qualities. *en
several parking scenarios are analyzed by comparing with
standard RRT∗ and human driving heuristic. *e simulation
platform is a virtual carrier deck operations simulator we
previously developed [30], as shown in Figure 9, whose input
device is Logitech driving suite that can control tractor towing
aircraft in the virtual environment. All the simulations are
performed on a*inkPad T450 computer (2.60GHz Intel i7-
5600U core CPU, 4GB RAM, Microsoft Windows 10 64 bit
operating system).

3.1. KS-RRT∗ Parameters. Since sampling-based planners
are sensitive to their embedded parameters, many param-
eters in the algorithm can be customized to improve their

performances. Figure 10 shows the distribution results. We
give 30 independent runs for each testing to eliminate the
randomized causes of sampling-based technique.

KS-RRT∗ is an asymptotically optimal algorithm; thus;
the convergence property of the algorithm is first investi-
gated. For each scenario, the planner was run from 1000 to
20,000 iterations, and the results were averaged for analysis.
Figure 10(a) shows as expected that in all three scenarios, the
trajectory time will converge to optimal value as the iteration
increases, but with increased computation time. By pairwise
comparison of iterations 5000 and 20000, the computation
time expenses increase more than five times with less than
1% improvements in trajectory cost. Hence a run for the
planner of 5000 iterations is compromised to result in a near
optimal solution with least computation cost.

*en we test different step size values that influence the
quality of generated trajectory (Figure 10(b)). *e planner
starts with a step size of 1m. *e average computation time
reduces as the step size enlarges. *is is because larger steps
are capable of covering more free configuration space.
However, the path quality will be lowered as the step size
increases. A step size of 5 meters is suitable as it compensates
the solution quality with exploration speed.

Goal biasing ratio takes the similar analysis. It can be
seen from Figure 10(c), for scenario 1 and 3, increasing the
goal biasing ratio accelerates reaching the goal, but for
scenario 2 it takes much more computation time. *is is
because scenario 2 creates a high density of narrow passage;
thus, the larger goal biasing ratio will behave like greedy
algorithm that falls into circumnavigate obstacles. Increasing
biasing ratio from 10% to 90% provides hardly no im-
provements in trajectory time. Hence, bias ratio of 10% is
considered as a better biasing scheme.

3.2. Numerical Experiments. For comparing the perfor-
mance of the KS-RRT∗ with both standard RRT∗ and
human driving heuristic, the algorithm is implemented in
the virtual deck operations simulator [30] as noted above.
A human expert steers the tractor in the simulation to
reach goal spot quickly meanwhile maintain the same
safety protocols as human driving heuristic. Once suc-
cessfully parked the aircraft to the designate spot, the total

qI

qG

Figure 4: An illustration of a zero-angled curve path for one of a Reeds-Shepp family curves. Here, qI is the initial pose and qG is the final
pose.
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driving time from start will be recorded as the trajectory
time. Driving the same scenario for 30 times will get the
average trajectory time.

First, the planner is executed for 5000 iterations with a
step size of 5 meters and 10% goal biasing ratio, which is the
optimal parameters of previous section. Every setting runs
for 30 times. *e results are compared with the standard
RRT∗ and human driving heuristic in all three scenarios.

Scene 1 is considered as easy case of sparseness envi-
ronment. Aircraft starts at the bow area and is towed aft to
the fantail. *e average trajectory time is 156 seconds.
Figure 11 shows one of the 30 running results. As shown in
Table 3, all the three algorithms get similar results, this is
because the aircraft can be towed at its maximum speed
towards goal spot without obstacles.

Since narrow passages can cause difficulty for sam-
pling-based path planners, Scenario 2 aims to test the
algorithm in a much more congested environment of
hangar deck spotting. As shown in Figure 12, the start
position is at the left top and the goal position is in the

right bottom. One resulting path is given in Figure 12. *e
aircraft first moves slowly through the narrow passage,
until it nears the final spot, and it gets back into an interim
spot and then finally moves forward into the goal spot. As
shown in Table 4, the human driving takes longer time due
to maneuvering in close-quarters with less sensing
accuracy.

Scene 3 represents the prelaunch status with many
aircraft waiting to take off on the flight deck, where an
aircraft tries to get to a launch spot of catapult 1 through
congested street area. Figure 13 shows the result of two
different homotopy types of trajectories. *e KS-RRT∗ finds
the safety time-optimal trajectory that bypasses the six-pack
congested area (Figure 13(a)). In contrast, the standard
RRT∗ prefers the shortest distance passing through the six-
pack area (Figure 13(b)), without considering safety speed
limits. Statistical results (Table 5) show that such a path
generated by the standard RRT∗would require unacceptably
slow speeds to be safe, consuming more time than that
generated by the KS-RRT∗.

(1) for each xnear ∈Xnear do
(2) xnew←Kinodynamic_Steering (xrand, xnear);
(3) if Time_Cost (xrand) +Time_Cost (xnew)<Cost (xnear) then
(4) xparent←Parent (xnear);
(5) E←(E\{(xparent, xnear)}) ∪ {(xrand, xnear)};
(6) return G� (V, E);

ALGORITHM 2: Time-based rewiring procedure.

Obstacle

Obstacle

Figure 5: Collision checking model. *e obstacle is shown in dark blue and the expanded contour is shown in light blue. *e shape of the
tractor-aircraft system is approximated as a circumscribed circle (dotted circle) and multiple overlapping circles (solid circles).

(qk,vk)

s

(qk+1,vk+1)

Figure 6: An illustration of the kth segment connecting configuration qk and qk+1. s is the arc length and v is the velocity.
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*roughout the experiments, the KS-RRT∗ shows its ability
of generating a robust safety time-optimal trajectory, despite the
complexity of the environment. Compared to the standard
RRT∗, the KS-RRT∗ has faster computation and trajectory time
and a higher success rate in a congested environment without

the need for further speed profile generation. Besides, it also
outperforms the human driving heuristic in terms of safety
trajectory time with a dramatic reduction in total manpower.
Hence, the KS-RRT∗ is more suitable for automated aircraft
towing in the carrier deck environment.

Table 1: Tractor-aircraft parameters.

Parameter Value
Minimum turning radius (r) 12m
Length (l) 15.3m
Wheel base (L) 8m
Width (w) 6m
Maximum velocity (v) 1.5m/s
Maximum acceleration (a) 2m/s2

Maximum steering angle (φmax) π/4

Table 2: *e map parameters.

Parameter Value
Map size 300m× 80m
Cell resolution 0.5m
Goal tolerance 0.5m
Hard obstacle margin 0.2m
Safety buffer δ 1.5m
vfree/vsafe/vobs 1.5/0.2/0m/s

σ

xfree

xobs

xobs
σ .

Figure 7: An illustration of the advantage of inducing velocity constraint in the algorithm. Our proposed algorithm generates a σ′ path
(solid line), while standard RRT∗ generates a σ path (dashed line).

Start

Goal

(a)

Start

Goal

(b)

Start

Goal

(c)

Figure 8: Path planning in three autonomous parking scenarios, where each scenario highlights a challenging parking situation within the
cyclic flight operations afloat in congested environment. (a) Postflight parking. (b) Hangar deck parking. (c) Preflight parking.
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(a) (b)

(c)

Figure 9: *e carrier deck operation simulator environment. (a) *e Logitech driving input device. (b) *e simulated 3D tractor towing
aircraft. (c) *e tractor-aircraft movement and path generated (green line).
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Figure 10: Simulation results of parameter comparison in different scenarios. (a) Convergence test. (b) Step size test. (c) Goal bias test. *e
solid lines represent the cost of trajectory time (left vertical axis) and the dashed lines represent the computation time (right vertical axis).

Start

Goal

Figure 11: One sample result of aircraft-tractor foot print with respect to the planned route in Scenario 1. Start and goal spots are shown as
blue and yellow colour, respectively.
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4. Conclusions

In this paper, a modified version of RRT∗ algorithm was
proposed to quickly generate a near time-optimal safe path
for tractor-aircraft parking in cluttered onboard environ-
ments. *e proposed method integrates a safety speed map
in the configuration space, which allows for rewiring the tree
structure in the algorithm by calculating minimum travel-
ling time cost. *e proposed KS-RRT∗ path planner is
validated through numerical experiments. *e experimental
results also show that the KS-RRT∗ algorithm performs
better than the standard RRT∗ and human driving heuristic.
However, the spotting operations aboard might be operated
concurrently in the real-world situations, which will be
multirobot motion planning problem that leads to new
problems such as interference of different moving body,
towing sequence, arising more serious safety issues. In the
near future, our planner can be fit from single query to more

complicated scenarios, such as the multirobot collaboration
problem that makes them cooperate to optimize the overall
traffic.
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Table 3: Simulation statistical results of Scenario 1.

Simulation Success rate (%) Average computation time (s) Average trajectory time (s)
KS-RRT∗ 100 2.6 156
RRT∗ 100 4.2 165
Human driving 100 — 160

Start

Goal

Figure 12: One sample result of Scenario 2. Start and goal spots are shown as blue and yellow colour, respectively.

Table 4: Simulation statistical results of Scenario 2.

Simulation Success rate (%) Average computation time (s) Average trajectory time (s)
KS-RRT∗ 100 2.3 213
RRT∗ 84 7 231
Human driving 95 - 255

Start

Goal

(a)

Start

Goal

(b)

Figure 13: One simulation result of Scenario 3. (a) A near time-optimal trajectory generated by the KS-RRT. (b) A solution found by the
standard RRT. Start and goal spots are shown as blue and yellow colour, respectively.

Table 5: Simulation statistical results of Scenario 3.

Simulation Success rate (%) Average computation time (s) Average trajectory time (s)
KS-RRT∗ 100 1.5 122
RRT∗ 97 2.2 166.7
Human driving 100 - 145
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