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An analytical solution of composite curved I-beam considering the partial interaction in tangential direction under uniform
distributed load is obtained. Based on the Vlasov curved beam theory, the global balance condition of the problem has been
obtained by means of the principle of virtual work; integrating this by parts, the governing system of differential equations and
corresponding boundary conditions have been determined. Analytical expressions for the composite beam considering the partial
interaction have been developed. In order to verify the validity and the accuracy of this study, the analytical solutions are presented
and compared with other three FEM results using the space beam element and the shell element.+e deflection and the tangential
slip of the composite curved I-beam are investigated.

1. Introduction

Composite curved I-beam is a structural system developed
on the basis of I-girder and slab, which is composed of three
main parts: I-girder beam, reinforced slab, and shear con-
nectors.+emechanical properties of I-girder beam and slab
are superior to ones when I-girder beam and slab are used
alone. +erefore, the composite curved I-beam is frequently
used in bridge building and shelter construction.

As early as the 1950s, Granholm [1] deduced the
fundamental equations of one-dimensional linear-elastic
composite beam subjected to static loads. During the
same period, Newmark et al. [2] established the Newmark
model for the composite beam with partial bonding ac-
tion. After that, Goodman [3, 4] conducted the analytical
and numerical research on the relative slip between layers
of composite beam and found that the relative slip be-
tween layers had a significant effect on the overall
characteristics of the composite beam, with the reduction
of shear connectors’ stiffness. Girhammar and Gopu [5]
conducted the first- and second-order analyses for the
composite beam under the axial loading case. Liu et al. [6]

found out the solution of shearing slip for steel-concrete
composite beam under the concentrated load. Ranzi and
Zona [7] modeled the reinforced concrete slab and steel
joist using the Euler–Bernoulli and Timoshenko beam
theory (TBT).

So far, most of the existing theories mentioned are fo-
cused on the study of straight composite beams, but few
studies have been reported on curved composite beams.
+evendran et al. [8] and Shanmugam et al. [9] conducted
experiments on steel-concrete composite curved beams to
investigate the ultimate load behavior, while Giussani and
Mola [10] developed an analytical formulation for elastic
composite beams curved in-plan by assuming full interac-
tion between the steel girder and the concrete slab. Emre and
Mark [11] have proposed the finite elements for the com-
posite beams with two-layer partial interaction by FEM
(finite element method). Qin et al. [12, 13] put forward the
solution of the slip problem of composite curved beam by
using the trigonometric series method. Zhu et al. [14] used
FEM to solve the problem of composite curved beam
considering slip, torsion, distortion, shear lag, and other
factors.
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From the existing literature, the FEM has become the
main method to study the slip of composite beams. How-
ever, FEM cannot reduce the significance of the analytical
method. First, the FEM is based on the theoretical solution.
Second, the advantage of the analytical method is that the
calculation can be easily handled using general spreadsheet
software and it is easy to be accepted by engineers. To the
author’s knowledge, there was no study reported on the
accurate beam analytical solution of the composite curved
beam accounting for the partial interaction, coupling of
bending, and torsion actions. +e main objective of this
paper is therefore to present a beam analytical theory that
considers the partial interaction in the tangential direction
on the analysis of composite beams curved in-plan. +e
analytical solution has been validated by comparing with the
FEM solutions.

2. Basic Relations for the Slab and I-Girder

2.1. Basic Assumptions and Conditions. +e present analysis
of composite curved I-beam is based on the Vlasov curved
beam theory (for each part of the composite beam). Figure 1
shows a composite curved I-beam subjected to some
transverse loads. +e coordinate system is established as
shown in Figure 1 where z-direction, y-direction, and x-
direction represent tangential direction, vertical direction,
and radial direction, respectively. +e analyses are carried
out on the basis of the following simplifying assumptions.

(A1) +e shear connection between the girder and slab
is flexible in the tangential direction, and the rigidity in
the radial direction is retained. +ereby, there is a
relative tangential direction slip occurring at the in-
terface and no radial direction slip. Meanwhile, fric-
tional effects and uplift are neglected.
(A2) +e interlayer connectors located discretely are
regarded as continuous. +e connector load slip be-
havior in the tangential direction is linear-elastic with a
constant slip modulus K [N/m2] (per unit length).
(A3) Radius of curvature is constant along the beam.
(A4) +e slab and girder are different linear-elastic
materials; both cross-sections remain rigid throughout
the deformation. +e effects of shear, warping, and
distortion deformation are neglected.
(A5) +e bending deformation in the x-z plane is
neglected. +e axial force of the fully composite section
is ignored.

2.2. Geometry and Constitutive Relations. In this paper, the
subscripts ‘1’ and ‘2’ refer to the slab and I-girder of the cross
section, respectively. To introduce the displacement field for
each part of the composite beam, four displacement pa-
rameters defined at the coordinate systems xi, yi, and zi (i �

1, 2) are shown in Figure 2. +e coordinate origin o1 co-
incides with the shear centroid of slab.+e coordinate origin
o2 coincides with the shear centroid of the steel girder; ui is
the tangential deflections of the cross section in the zi di-
rection; w is the vertical deflections in the yi direction; ϕ is

the rigid body rotation about the zi axes. +e deflection in
the radial direction (x-direction) v is zero according to
assumption A5.+e deflections of the slab are (w, ϕ, u1). +e
deflections of the steel girder are (w, ϕ, u2). +e geometrical
relation may be written as follows.where kx1 and kx2 are the
x-direction curvatures; kz1 and kz2 are the z-direction cur-
vatures; εz1 and εz2 are the axial strain; and ky1 and ky2 are
the y-direction curvatures which are zero according to as-
sumption A5.
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ky1 � ky2 � 0, (2)

Figure 3 shows the geometric parameters defining a
cross section of a composite cured beam with two sub-
elements of different materials where r � r1 + r2. r1 is
distance from the centroid of the slab to the lower
surface. r2 is distance from the centroid of the girder to
the upper surface. Ix1 is the centroidal inertia moment of
the slab about centroid of subelement 1 (cg, 1). Ix2 is the
centroidal inertia moment of the girder about centroid of
subelement 2 (cg, 2). +e torsional constant Ji is calcu-
lated by the applying the thin-walled theory to the
transformed section which is given by (Heins and Kuo
[15]):

y
z
x

R
o

Figure 1: Model of a composite curved I-beam.
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Figure 2: Displacement parameters of the composite curved I-
beam at the centroid.
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Ji � 􏽘
1
3

bijt
3
ij􏼐 􏼑, (3)

where j is the number of rectangles for every subscripts, tij is
the thickness of the rectangle, and bij is the width of the
rectangle. +e physical relations are as follows:
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(4)

where Ni is the axial force; Ti is the torque in z-direction;
Mxi is the bending moment in x-direction; and Myi is the
bending moment in y-direction which is zero according to
equation (2).

2.3. Basic Equations for the Slab and I-Girder. Simplify stress
vectors to the shear centroid on the cross section of the slab
and I-girder, respectively, as shown in Figure 4. +e balance
equations of the slab are as follows.
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+e balance equations of the I-beam are
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where Qyi is shear force in y-direction.+e external force per
unit length along the axis of the beam is indicated by q0.
According to the assumption A5, the forces Myi, Qxi, and qxi

are neglected. Here, mxi is the distributed bending moment
produced by shear force qzi. Considering the equilibrium
condition at the interface, there are

qz1 + qz2 � 0. (9)

By eliminating qz1 + qz2 from equations (5) and (7), one
obtains

N1′ + N2′ � 0. (10)

+e analysis of the composite beams with interlayer slip
is restricted to the case of absent axial forces, that is,

N1 + N2 � E1A1
du1

dz
+ E2A2

du2

dz
� 0. (11)

2.4. Equilibrium Condition at the Interface. Figure 5 shows
the deformation conditions for the composite curved I-beam
considering the longitudinal interface slip where
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Figure 3: +e cross section of the composite curved I-beam.
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κ � 􏽒 kx1dz, r � r1 + r2. Considering the basic relations of
the beam and the deformation conditions in Figure 5, qz1
can be written as follows.

qz1 � KΔu � K u2 − u1 + κr( 􏼁 � − N1′ � N2′, (12)

where ′ � (d/dz). Taking one more derivative on both sides
of equation (12), with the geometrical relation kx1 � w″ −

(ϕ/R) and the physical relations u1′ � (N1
/E1A1) and u2′ � (N2/E2A2), the differential equation for the
equilibrium condition at the interface then becomes

E1A1u
‴
1 − α2E1A1u1′ + +K w″ −

ϕ
R

􏼠 􏼡r � 0, (13)

where ()″ � (d2()/dz2); ()′″ � (d3()/dz3); and α2 � K

((1/E2A2) + (1/E1A1)).

3. Governing Equations and
Boundary Conditions

3.1. Principle of Virtual Work. +e governing differential
equations and boundary conditions of the composite curved
beam can be obtained by applying the principle of virtual
work. +e potential energy of the beam takes the form as
follows:

δ􏽙 � δ UM + UT + Ua + Us + λf − W􏼈 􏼉 � 0, (14)

where UM is the bending strain energy due to the internal
bending moments Mxi; UT is the torsional strain energy due
to the internal torsion moments Txi; Ua is the axial strain
energy due to the internal axial forces Nxi; Us is the strain
energy due to the connector deformations; λ is a Lagrange
multiplier; f is the equilibrium condition at the interface
corresponding to equation (13); and W is the potential
energy due to external loadings:
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Figure 4: Force conditions of the differential element for composite curved I-beam.
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where SI � E1Ix1 + E2Ix2; SJ � G1J1 + G2J2; z � Rφ; and θ is
the beam’s center angle. M, Q, and T are the total bending
moment, total shear force, and total torsion moment of the
beam, respectively. +e displacements at the equilibrium

position occur such that the potential energy of a stable
system is a minimum value according to the principle of the
minimum potential energy.
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+e coupled governing equations for the composite
beam are as follows after taking the variation:
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+e pertaining boundary conditions are

SI w″ −
ϕ
R

+
K

SI

λ􏼠 􏼡 − M􏼢 􏼣δw′
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

θ

0
� 0, (18)

SJ ϕ′ +
w′
R

􏼠 􏼡 − T􏼢 􏼣δϕ
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

θ

0
� 0, (19)

SI w
‴

−
ϕ′
R

+
K

SI

λ′􏼠 􏼡 + SJ

ϕ′
R

+
w′
R2􏼠 􏼡 − Q􏼢 􏼣δw

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

θ

0
� 0, (20)

E1A1λδu1″|
θ
0 � 0, (21)

E1A1( 􏼁
2

K
u1″ − E1A1λ′􏼠 􏼡δu1′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

θ

0
� 0, (22)

E1A1
E1A1 + E2A2( 􏼁

E2A2
u1′ + λ″ − α2λ −

E1A1

K
u
′″
1􏼒 􏼓􏼢 􏼣δu1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

θ

0
� 0.

(23)

According to equations (18)–(23), one can get
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It can be seen that Δu � − λ′ from equations (12) and (27).

3.2. Boundary Conditions. Table 1 shows the common
boundary conditions.

4. The Solution of the Composite Curved
Beam under Uniform Distributed Load

+e coupled governing equations for the composite beam
are the linear differential equations of constant coefficient
group. According to Cramer’s rule, the determinant for
equation (17) can be written as

ξ2i 1 + R
2ξ2i􏼐 􏼑

2
ξ2i SI − α2SI − Kr

2
􏼐 􏼑 � 0. (28)

+e eigenvalues ξi (i� 1, 2, . . ., 8) can be calculated as

ξ1 � − ξ2 � η �

��������

α2 +
Kr

2

SI

􏽳

,

ξ3 � ξ4 � − ξ5 � − ξ6 �
i

R
,

ξ7 � ξ8 � 0.

(29)

So, the general solution of the differential equation (17)
can be expressed as follows:
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u � Ba + up, (30) where u � w ϕ λ􏼈 􏼉
T; up � wp ϕp λp􏽮 􏽯

T
;

a � a1 a2 a3 a4 a5 a6 a7 a8􏼈 􏼉
T;

B �

cosh(ηz) sinh(ηz) cos
z

R
􏼒 􏼓 z cos

z

R
􏼒 􏼓 sin

z

R
􏼒 􏼓 z sin

z

R
􏼒 􏼓 z 1

−
1
R
cosh(ηz) −

1
R
sinh(ηz) −

1
R
cos

z

R
􏼒 􏼓 −

z

R
cos

z

R
􏼒 􏼓 +

β2
Rβ1

sin
z

R
􏼒 􏼓 −

1
R
sin

z

R
􏼒 􏼓 −

z

R
sin

z

R
􏼒 􏼓 −

β2
Rβ1

cos
z

R
􏼒 􏼓 0 0

− β3cosh(zη) − β3sinh(zη) −
2rRSJ

β1
sin

z

R
􏼒 􏼓

2rRSJ

β1
cos

z

R
􏼒 􏼓 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

β1 � Kr
2
R
2

+ 1 + R
2α2􏼐 􏼑 SJ + SI􏼐 􏼑,

β2 � − 2R SI + SIR
2α2 + Kr

2
R
2

􏼐 􏼑,

β3 �
SI 1 + R

2η2􏼐 􏼑

KrR
2 .

(31)

+e constants (a1 · · · a8) depend on the boundary
conditions. It is easy to find a particular solution when a
curved beam is subject to a uniform load.

wp � −
kR

2

2SI

qz
2
,

ϕp � −
(1 + k)qR

3

SI

+
KqR

3
r
2

S
2
Iη

2 ,

λp �
qrR

2

SIη
2 ,

(32)

where k � (SI/SJ). +e coefficients are given in Appendix for
a statically indeterminate composite curved I-beam with
rigid torsion constraints in both ends. For other loads, one
can solve the corresponding problem as long as one finds the
special solution and the general solution according to the
common boundary conditions in Table 1.

5. Numerical Examples

A steel-concrete composite curved I-beam subjected to a
uniform load is taken as a numerical example. +e central
angle of the beam is θ � (π/6), and the curvature radius is
24m. Overall height of the steel girder b21 � 358mm, a
flange width b22 � 300mm, a flange thickness t22 � 16mm,
and a web thickness t21 � 10mm. +e material properties of
steel are the modulus of elasticity Es � 206GPa and Pois-
son’s ratio is μs � 0.3. +e concrete slab width
b11 � 1000mm, and thickness t11 � 100mm. +e material
properties of concrete are the modulus of elasticity Ec �

35GPa and Poisson’s ratio μc � 0.2. +e mass density of the
steel material is 7850 (kg/m3) and that of concrete material is

2400 (kg/m3) which produce a total distributed vertical load
of 3400 (kN/m) along the beam.

+ree different finite element models of the steel-con-
crete composite curved I-beam were investigated to deter-
mine the validity of the analytical solution. In the first model,
both the concrete slab and steel girder are modeled as space
beam element (Figure 6(a)). +e second model is based on
the research of Yazdan Majdi et al. [16]. +e concrete slab is
idealized as quadrilateral shell element with six degrees of
freedom, and the steel girder is modeled as space beam
element (Figure 6(b)). In the third model [17], both the
concrete slab and the steel girder are modeled as shell el-
ements (Figure 6(c)).

In all three FEM models, the connection between the
plate and beam is modeled by applying two rigid links as
shown in Figure 6. +e multiple-point constraints (MPCs)
are adopted to keep the connection between the rigid link of
the slab and the rigid link of the girder through interface
nodes. And the spring elements are used in tangential di-
rection to allow the possibility of moving along the tan-
gential direction. Coupling degrees of freedom w are used to
prevent uplifting. Coupling degrees of freedom v are used to
prevent the slip in the radial direction.

+e finite element program ANSYS is used to model the
described beam. +e beam is a statically indeterminate with
rigid torsion constraints in both ends as shown in Figure 7.
+e vertical deflection w, radial deflection u, radial direction
deflection v, as well as torsional deflection ϕ are restrained to
satisfy the rigid torsion constraints at both ends. Beam4,
shell63, and MPC184 are chosen as the space beam element,
shell element, and multiple-point constraints element, re-
spectively. Here, COMBIN14 is used when considering
tangential slip. Table 2 shows the number of the elements for
the three different finite element models.
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+e K � 0 interaction case was investigated first.
According to the coefficient in Appendix, the solution de-
generates into the classic solution of Vlasov curved beam
when the stiffness in the tangential direction (K � 0) is zero.
Figures 8–10 show the vertical deflection, torsional angle,
and tangential slip obtained by the finite element method
and the results using the proposed method, respectively.
From Figures 8–10, we can see that the results are quite close.

Figures 11 and 12 show the midspan vertical deflection
and the midspan torsional angle when the stiffness of the

shear connecter is changed, respectively. +e results show
that the performance of the curved composite I-beam be-
comes significantly rigid when the shear connector’s stiffness
is increased from 105 to 109. +e reduction of shear con-
nectors’ stiffness between layers has a significant effect on the
midspan vertical deflection and torsional angle.

As shown in Figures 11–12, the calculation results of
three finite element models are obtained. At the x-axis
coordinate point 1 in Figure 11, the relative errors are
− 0.26%, 2.4%, and 3.48% between this paper and shell,

r1

r2

1

2

κr1 κr2u2 – u1

κ r

z

y

∆u

Figure 5: Deformation conditions of the differential element for the composite curved I-beam in y-z plan.

Table 1: Common support conditions.

Type +e boundary conditions Type +e boundary conditions

R

�e free end

λ � 0
Q � 0
M � 0
T � 0

R

Rigid torsion constraints
end

w � 0
ϕ � 0
M � 0
λ � 0

R

Fixed end

w � 0
ϕ � 0
λ′ � 0
w′ � 0

R

With hinged end

w � 0
T � 0
M � 0
λ � 0

Space
beam element

(a) beam model

Rigid link
Shell elements

(b) beam-shell model (c) shell model

Space
beam element Shell elements

Rigid linkRigid link

Interface node and shear connector

Figure 6: +ree finite element models for the composite curved I-beam with partial interaction in the radial direction: (a) beam model;
(b) beam-shell model; (c) shell model.
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beam-shell, and beam models, respectively. In Figure 12,
the relative errors are 0.28%, 1.69%, and 2.68% between
this paper and shell, beam-shell, and beam results, re-
spectively. +e beam finite element model and beam-shell
finite element model are simplified models of the

composite curved I-beam. So, these two finite element
model results are not as accurate as shell model results. It
can be seen that the results of this paper are closest to the
shell model. +us, this paper model is sufficient for
practical purposes.

(a) (b) (c)

Figure 7: ANSYS constraint condition for the three composite beam models at one end: (a) beam model; (b) beam-shell model; (c) shell
model.

Table 2: +e number of the elements for the different finite element models.

Type/number Beam4 Shell63 MPC184 COMBIN14
Beam model 120 0 122 60
Beam-shell model 60 3000 122 60
Shell model 0 4800 1342 671
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Figure 8: Vertical deflection for the steel-concrete composite curved I-beam with K � 0.
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Figure 10: Tangential slip for the steel-concrete composite curved I-beam with K � 0.
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6. Conclusions

An analytical solution of composite curved I-beam is pre-
sented based on both the Vlasov curved beam theory and the
principle of linearized virtual work considering the partial
interaction in tangential direction. +e following issues
concerning the new analytical solution deserve attention:

(a) Comparisons between three FEM numerical results
and the analytical solutions indicate that the de-
veloped equations are efficient and accurate to de-
scribe the mechanical behavior of the composite
curved I-beam with slip in the tangential direction

(b) +e results of the shear connection variation ex-
ample show that the curved composite I-beam be-
comes significantly rigid when the shear connecter’s
stiffness is increased

(c) +e partial interaction between the slab and girder
should be taken into consideration since the full
interaction assumption may significantly overesti-
mate the stiffness of the curved composite I-beam

7. Recommendations

+e established beam theory is the theory that two composite
materials are combined by elastic connection. +erefore, it
provides a theoretical idea for the related research of some
functionally graded composite beams [18, 19] and some
sandwich structures [20]. In addition, only a relative tan-
gential direction slip is considered in this paper. As a matter
of fact, radial direction slip is not zero if the shear connection
between the girder and slab is flexible but remains stiffness in
the radial direction. +erefore, a formulation for the elastic
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Figure 12: Torsional angle at midspan when the stiffness of the shear connecter is change of the shear connecter change.
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Figure 11: Vertical deflection at midspan when the stiffness of the shear connecter is change of the shear connecter change.
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analysis of composite curved I-beam with the tangential
direction slip and the radial direction slip needs to be de-
veloped in the future work.

Appendix

a1 �
Kqr

2
R
4

S
2
Iη

2 1 + R
2η2􏼐 􏼑

2,

a2 �
− Kqr

2
R
4tanh(Rηθ/2)

S
2
Iη

2 1 + R
2η2􏼐 􏼑

2 ,

a3 �
− q(1 + 2k)R

4

SI

+
KqR

6
r
2 2 + R

2η2􏼐 􏼑

S
2
I 1 + R

2η2􏼐 􏼑
2 ,

a4 �
q(1 + k)R

3 tan(θ/2)

2SI

−
Kqr

2
R
5 tan(θ/2)

2S
2
I 1 + R

2η2􏼐 􏼑
,

a5 �
qR

4sec2(θ/2)((1 + k)θ − 2(1 + 2k)sin θ)

4SI

+
KqR

4
r
2sec2(θ/2) 2R

2 2 + R
2η2􏼐 􏼑sin(θ) − R

2 1 + R
2η2􏼐 􏼑θ􏼐 􏼑

4S
2
I 1 + R

2η2􏼐 􏼑
2 ,

a6 �
− q(1 + k)R

3

2SI

+
Kqr

2
R
5

2S
2
I 1 + R

2η2􏼐 􏼑
,

a7 �
qkR

3θ
2SI

,

a8 �
q(1 + 2k)R

4

SI

−
Kqr

2
R
4

S
2
Iη

2 ,

(A.1)

where k � (SI/SJ).
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