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In-depth mining and analysis of electricity data in low-voltage area are essential for the further intelligent development of power
grids. However, in the actual data collection and measurement of low-voltage area, there will be missing data, and complete
electricity data cannot be obtained. To obtain complete power data, this paper proposes a low-voltage station area missing data
complement model based on joint matrix decomposition. First, we analyse the characteristics of the low-pressure station data.
-en, a model that comprehensively considers the characteristics of the low-voltage station area data is proposed, which includes
three parts: the construction of a low-voltage station area data tensor, the joint matrix decomposition, and the completion of the
missing data, and it is named LPZ. After that, the CIM learning algorithm proposed in this paper is used to iteratively solve the
model to obtain the completed data. Finally, the method proposed in this paper is used to complement the two situations of
random loss and all-day loss of real current data in a low-voltage station area and compared with the traditional complement
method. -e experimental results show that this method is not only effective but also that the completion effect is better than that
of other completion methods.

1. Introduction

In recent years, with the continuous advancement of in-
telligent power grid construction, in-depth mining and
analysis of electricity data have become increasingly im-
portant [1, 2]. Electricity data contain a large amount of
electricity consumption data information.-rough in-depth
mining and analysis of electricity consumption data, various
advanced applications, such as electricity demand and
electricity price setting, can be realized to provide support
for the safe and efficient operation of the power grid [3–5].
As an important part of the power grid, the low-voltage
station area, in-depth mining, and analysis of its electricity
data will become the key to further intelligentization of the
power grid, which has important significance for the future
[6].

To successfully realize the in-depth mining and analysis
of the electricity data of the low-voltage station area, it is
necessary to maintain the integrity of its electricity

consumption data as much as possible. In the actual process
of the low-voltage station area, the data are missing due to
equipment damage, weather conditions and other reason,
causing a sharp fall in the quality. For example, the data in
the literature [7] have a missing rate of multiple attributes
exceeding 50%, and there are missing data almost in every
record. -erefore, in the in-depth mining and analysis of
electricity data, it is necessary to process the missing data
with the known data [8, 9].

At present, scholars at home and abroad have carried out
some researches on the methods of completing missing data.
Literature [10] attempted to complement the synchrophasor
measurement data of the synchrophasor measuring device
using the matrix filling method. However, as low-voltage
station area power data have different characteristics from
synchronized phasor measurement data, that is, the simi-
larity of the power consumption data of each user is quite
different, it is difficult to directly apply the matrix filling
theory to achieve the repair effect. Literature [11] utilized an
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adaptive neuro-fuzzy inference system model to comple-
ment and optimize the missing power data based on the
traditional single data completion method (such as inter-
polation). -e aforementioned methods require a large
amount of data for pretraining. -us, a small sample size
may lead to unsatisfactory effect of completion. Literature
[12] uses the KNN completion algorithm to complete
missing values. Although the KNN completion algorithm is
simple, intuitive, and easy to implement without the need for
prior knowledge, the accuracy of its completion depends on
the average value of the neighboring sample data. Literature
[13] based on the single-value missing data completion
method of nonlocal averaging method proposed a multi-
value missing data completion method using spatial
neighbor BP (backpropagation) mapping to achieve higher
precision data completion. However, this method does not
consider the timing of the data to be completed. Literature
[14] considered that in the actual system, a subset of the data
may have stronger relevance, and proposed a new local
tensor completion model. -is model uses the stronger local
correlation of the data to form and restore each subtensor
with a lower level to achieve accurate data recovery.
However, this method cannot achieve data completion when
there is less correlation between the data. Literature [15]
adopted the machine learning-based method to perform
missing value completion. Although this type of method
performs well in accuracy, it is necessary to learn the
complete data sequence, and it is difficult to find the
complete sequence training parameters in actual search.

Given the above problems, this paper proposes a low-
voltage station data completion method based on joint
matrix decomposition based on the characteristics of the
low-voltage station area electricity data. First, we analyse the
characteristics of the low-pressure station data. -en, a
model that comprehensively considers the characteristics of
the low-voltage station area data is proposed. -e modified
model includes three parts: the construction of a low-voltage
station area data tensor, joint matrix decomposition, and
completion of the missing data, and it is named LPZ. After
that, the CIM learning algorithm proposed in this paper is
used to iteratively solve the model to obtain the completed
data. Finally, through the verification of real current data of a
low-voltage station area, the effectiveness of the method
proposed in this paper is obtained, and compared with the
traditional complement method, the superiority of the
method in this paper is obtained.

2. Analysis of the Characteristics of Electricity
Data in Low-Voltage Area

-e low-voltage station area electricity data mainly include
the voltage, current, active power, reactive power, and other
data of each user in the station area [16]. -e data mainly
have the following characteristics:

(1) Periodicity. Generally, the power data of low-voltage
area shows periodic changes over several consecutive
working days; that is, on consecutive working days,
the electricity consumption behavior of each user

shows a similar periodic law. As shown in Figure 1,
on different working days, the current curve of a user
in the station area has a similar trend.

(2) Sequentiality. User data all appear in the form of data
streams, which are sequentially collected, transmit-
ted, and stored at equal time intervals. -e data
analysed in this paper are based on a sampling in-
terval of 30 minutes, and 48 points of data are
collected a day. -e data graph with the sampling
interval as the time window is shown in Figure 2.

(3) Spatial Correlation. In the power system, different
users are connected through the network topology of
the station area, and the power load between dif-
ferent users has a certain correlation, especially when
a high-power electrical appliance starts or mal-
functions. -e performance will be more obvious.
-erefore, it is necessary to consider the multiuser
spatial correlation of the station area data to com-
plete the missing data of multiple users.

3. Complementary Method for Missing Data in
Low-Voltage Station Areas Based on Joint
Matrix Decomposition

3.1. Model Structure. According to the analysis of the
characteristics of low-voltage station area electricity data, we
conclude that the low-voltage station area data contain three
characteristics: periodicity, time series, and spatial correla-
tion. -erefore, we propose a model that comprehensively
considers the data characteristics of the low-voltage station
area to solve the problem of data completion in the low-
voltage station area and name it LPZ. Specifically, first, we
design the organization of electricity data. -e electricity
consumption data sequence of all users in the low-voltage
station area is organized into a tensor, which can not only
mine potentially related information from different patterns
but also ensure the original characteristics of the station area
electricity data. Next, we propose a joint decomposition
module [17] that extracts the day-time interval matrix and
the user-time interval matrix from this tensor and then
decomposes all the extracted matrices, that is, an original
matrix is expressed in the form of the product of two low-
dimensional matrices to form an expression of all users,
days, and time intervals. Furthermore, to mine the char-
acteristics of the temporality of the data, we added a local
restriction to the joint decomposition module. -e re-
striction condition we adopted here is to make the predicted
value of the target value close to the predicted value of the
adjacent time interval.

-e LPZ architecture is shown in Figure 3, including
three parts: construction of a low-voltage station area data
tensor, joint matrix decomposition, and missing data
completion. Among them, the two decomposition modules
in the joint decomposition matrix provide the characteristic
expression of users, days, and time intervals by mining
potential factors, and both decomposition modules are af-
fected by local restrictions, which makes the model consider
the period of low-voltage station data. It is also possible to
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Figure 1: Current curve of a user for 8 consecutive days.
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Figure 2: -e current size of the same user on four days in a month. (a) First day’s data. (b) Fourth day’s data. (c) Eighth day’s data.
(d) Twelfth day’s data.
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mine and utilize the temporality of data as well as spatial and
spatial relevance.

3.2. Constructing the Data Tensor of the Low-Pressure Station
Area. Based on the characteristics of low-voltage station
area electricity data, we designed the input of the model.
First, we assume that the power consumption data of user i
in time interval j on day k is ci,j,k; then, the power con-
sumption data sequence obtained by user i in chronological
order is Si � < ci,0,0, . . . , ci,j,0, ci,0,1, . . . , ci,J,1, . . . , ci,J,K > ,
where J is the number of time intervals in a day and K
represents the number of days. We fold it into K vectors, and
each vector contains the electricity consumption data of the
user at various time intervals in a day.-en, these vectors are
integrated to form a two-dimensional matrix form, as shown
in equation:

ci,0,0 ci,1,0 · · · ci,J,0

ci,0,1 ci,1,1 · · · ci,j,1

⋮ ⋮ ⋱ ⋮

ci,0,K ci,1,K . . . ci,J,K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
K×J

. (1)

Performing a folding operation on the electricity con-
sumption data sequence of I users can obtain I two-di-
mensional matrices. -en, we integrate them into a three-
dimensional tensor (user, time interval, and day) and use it
as input to the model. -is input not only maintains the
characteristics of the original data but also makes the tensor
pattern closely related to the characteristics of the low-
voltage station area electricity data.

3.3. Joint Matrix Factorization. Due to the regularity of
people’s activities, on a continuous working day, a user’s
electricity consumption data will generally show periodic
changes. To model the periodicity of user electricity data, we
extract the number of day-time interval matrix Ci from the
electricity data tensor C and learn the temporality from Ci

through matrix decomposition. -en, hidden factors are
introduced, and matrix Ci is decomposed into two low-
dimensional matrices Pi ∈ RK×F and Qi ∈ RJ×F, where F is
the number of hidden factors. In addition, each day k is
related to a vector pk ∈ RF. Similarly, each time interval j
corresponds to a vector qj ∈ RF, where the similarity be-
tween the electricity consumption data of different days or
different time intervals can be captured in a potentially low-
dimensional space. -us, the predicted value ci,j,k of the
power consumption data ci,j,k of user i in time interval j of
day k is obtained, which is represented by the inner product
pk · qj.

At the same time, the electricity consumption data series
of different users will also be correlated. -erefore, we also
decompose the user-time interval matrix Ck to explore the
spatial correlation of electricity consumption data. All users
and time intervals are mapped to a low-dimensional space.
In this latent space, Sk ∈ RI×F represents all users, and
Tk ∈ RJ×F represents all time intervals. Moreover, each user i
corresponds to a vector si ∈ RF, and each time interval j

corresponds to a vector tj ∈ RF. -us, the predicted value
ci,j,k of the power consumption data ci,j,k of user i in time
interval j of day k is obtained, which is expressed by the inner
product si · tj. To obtain more accurate prediction results,
when predicting the missing low-voltage station data, we
combine the two matrix decomposition modules to take
periodicity and spatial correlation into account at the same
time.

In addition, the electricity consumption data of a certain
time interval have a strong correlation with the electricity
consumption data of the surrounding time interval.
-erefore, we introduce local constraints into the joint
matrix factorization process. In the process of decomposing
the number of day-time intervals, we also need to minimize
the difference between the predicted value of the target
electricity consumption data and the mean value of the
surrounding time interval, as shown in the following
equation:

g1 � pk · qj − c
(1)
i,j,k 

2
,

c
(1)
i,j,k �

1
2W



W

ω
pk · qj−ω + pk · qj−ω ,

(2)

where W is the window size, and ω � 1, 2, . . . , W.
Similarly, a local restriction is also added in the de-

composition process of the user-time interval matrix, as
shown in following equation:

g2 � si · tj − c
(2)
i,j,k 

2
,

c
→(2)

i,j,k �
1
2W



W

ω�1
si · tj−ω + si · tj+ω ,

(3)

where W is the window size, and ω � 1, 2, . . . , W.
In summary, the low-voltage station area data contain

three characteristics, namely, periodicity, time series, and
spatial correlation. In addition, the collected data contain a
large number of missing values, causing data sparsity
problems. -erefore, we design and use the joint matrix
decomposition module to model the periodicity and spatial
correlation, respectively. At the same time, we set local
constraints based on the spatial correlation to restrict the
joint decomposition module. In this way, the three features
can work synergistically when completing missing values.

3.4. Completion of Missing Data. -rough joint matrix de-
composition, we can obtain the hidden factor matrices Pi

and Qi of user i and the hidden factor matrices Sk and Tk of
the number of days k. Finally, we obtain four-parameter
tensors, namely, P ∈ RK×F×I, Q ∈ RJ×F×I, S ∈ RI×F×K, and
T ∈ RJ×F×K. Using these factor tensors can realize the
completion of the original incomplete matrix. Here, we use a
simple regression method to combine the two partial results
and use it as the output of the joint matrix factorization
module. -e weight β is set to control this combination
process, where the weight β represents the periodic force,
and (1 − β) represents the weight of the spatial correlation in
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the missing value prediction process. -is linear fitting
process enables LPZ to reasonably weigh the characteristics
of the low-voltage station area data, thereby obtaining a
complete low-voltage station area electricity data tensor.
-us, the prediction formula of the missing value shown in
formula (4) is obtained:

ci,j,k � βPk,:,iQ
T
j,:,i +(1 − β)Si,:,kT

T
j,:,k, (4)

where Pk,:,i ∈ RF is equivalent to pk; Qj,:,i ∈ RF is equivalent
to qj; Si,:,k ∈ RF and si are equivalent; and Tj,:,k ∈ RF is
equivalent to tj.

3.5. Objective Function and Parameter Learning. We es-
tablish the model objective function by minimizing the
square difference between the true value of the low-voltage
station area electricity data and its estimated value. Given a
low-voltage station area electricity data tensor C, this tensor
contains a large number of missing values. Our model can
mine multiple features of the low-voltage station area
electricity data and generate one and the original tensor
based on the known values in the tensor, completely esti-
mating tensors with the same shape to realize the task of
complementing low-pressure station area data.

For simplicity, we set a binary maskM; this mask tensor
corresponds to the original tensor, and its value is also
determined by the value of the element at the corresponding
position in the original tensor. In the masking tensor, the
missing element in the original low-voltage station area

electricity data tensor has a value of 1, and the observed
element position is 0; that is, through the masking tensorM,
we can clearly know the missing values in the original tensor,
and the position of the observation value is formulated as the
following equation:

mi,j,k �
1, ci,j,k missing,

0, ci,j,k known.

⎧⎨

⎩ (5)

-erefore, the missing value in the original matrix can be
expressed asM⊙C, and the observed value can be expressed
as (1 − M)⊙C. -e objective function can be defined as the
following formula:

ℓ � ‖(1 − M)⊙ (C − C)‖
2
F + λ‖θ‖

2
, (6)

where ⊙ represents the point multiplication operation, ‖ · ‖F

represents the Frobenius norm, λ‖θ‖2 represents the regu-
larization term to prevent overfitting, and θ represents all
parameter tensors.

According to the description in the previous two
subsections, to consider the periodicity and spatial cor-
relation of the low-voltage station area data at the same
time, we designed a joint decomposition module and
added local restrictive constraints in the decomposition
process so that LPZ can consider the electricity data at the
same time. Here, we use the linear fitting method to
combine the local results of the two decomposition
models to obtain the objective function shown in the
following equations:

.
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l � β
I

i�0


J

j�0


K

k�0
Pk,:,iQ

T
j,:,i − ci,j,k 

2

√√√√√√√√√√√√√√√√√√√√√√√√
Spatial correlation

+(1 − β) 
I

i�0


J

j�0


K

k�0
Si,:kT

T
j,:,k − ci,j,k 

2

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√
Periodic

+ λ1 

I

i�0


J

j�0


K

k�0
Pk,iQ

T
j,:,i − c

(1)
i,j,k)

2
Sequentiality + λ1 

I

i�0


J

j�0


K

k�0
Si,;,kT

T
j,,,k − c

(2)
i,j,k)

2
Sequentiality + λ‖θ‖

2
,

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

⎛⎜⎜⎜⎜⎜⎝

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

(7)

S.t: P≥ 0, Q≥ 0, T≥ 0 and S≥ 0 . (8)

It should be noted that in the completion process, due to
the role of the masking tensor M, only observations are used
to train the model. However, to simplify the objective
function, in formulas (7) and (8), we omit the masking
tensor. According to formula (1), we can find that in the
original tensor, a known low-voltage station area electricity
data element will affect the four-parameter tensors. In ad-
dition, the predicted value is not only the combination of the
results of the two decomposition modules but also the
constraint of local limitation; that is, the predicted value of
the low-pressure station area data is affected by the real value
related to it and the predicted value of the surrounding time
interval at the same time. -e matrix extracted from the
original tensor has the problem of data sparsity, which can
be solved by using nonnegative matrix factorization, and its
nonnegativity ensures the interpretability of the learned
parameter tensor.

After clarifying the objective function of LPZ, we will
next introduce in detail how to estimate the parameters.
Compared with the stochastic gradient descent method [18],
the alternating least squares method is easier to adjust and
highly parallelizable [19]. -erefore, in this article, we refer
to the alternating least squares method for parameter esti-
mation. During the training process, the observations will be
used to update the model parameters iteratively until the
objective function converges. In one iteration, all samples in
the original tensor will be traversed once, and at the same
time, the four-parameter tensors will be updated with one
sample each time. Here, a known element in the tensor is a
training sample.

-e parameters to be trained are the four-parameter
tensors of the model. Here, we separately calculate the
objective function for each vector Pk,:,i,Qj,:,i, Si,:,k,Tj,:,k .
-e partial derivative and the result are shown in the fol-
lowing formulas:

zℓ
zPk,:,i

� 2β

J

j�1
Pk,:,iQ

T
j,:,i − ci,j,k  − Qj,:,i

+ 2λ1 

J

j�1
Pk,:,iQ

T
j,:,i − c

(1)
i,j,k)D(1)

j,:,i + 2λPk,:,i,

(9)

zℓ
zQj,:,i

� 2β 
K

k�1
Pk,:,iQ

T
j,:,i − ci,j,k  −Pk,:,i 

+ 2λ1 

K

k�1
Pk,:,iQ

T
j,:,i − c

(1)
i,j,k)Pk,:,i + 2λQj,:,i,

(10)

zℓ
zSi,:,k

� 2(1 − β) 

J

j�1
Si,:,kT

T
j,:,k − ci,j,k  −Tj,:,k 

+ 2λ1 

J

j�1
Si,:,kT

T
j,:,k − c

(2)
i,j,k)D(2)

j,:,i + 2λSi,:,k,

(11)

zℓ
zTj,:,k

� 2(1 − β) 
I

i�1
Si,:,kT

T
j,:,k − ci,j,k  −Si,:,k 

+ 2λ1 

I

i�1
Si,:,kT

T
j,:,k − c

T
i,j,k Si,:,k

+ 2λTj,:,k.

(12)

Among them, D(1)
j,:,i and D(2)

j,:,i are auxiliary variables. -e
tensor D(1) ∈ RJ×F×I corresponds to Q. D(1)

j,:,i ∈ RF is the
difference between the expression of time interval j and the
mean value of the surrounding time interval. Its formula is
shown in (13). Similar toD(1), the tensor D(2) is also used to
describe the difference in time interval expression, and
D(2)

j,:,k ∈ R
F. -e difference is that D(2) ∈ RJ×F×I corresponds

to T, and the time interval expression used by D(2)
j,:,k is
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generated based on spatial correlation. -e formulaic rep-
resentation is shown in (14).

D(1)
j,:,i � Qj,:,i −

1
2W



W

ω�1
Qj−ω,:,i + Qj+ω,:,i , (13)

D(2)
j,:,k � Tj,:,k −

1
2W



W

ω�1
Tj−ω,:,k + Tj+ω,:,k , (14)

whereW is the window size, and ω � 1, 2, . . . , W, that is, the
power data of a certain time interval will be affected by the
time interval before and after it.

-e process of parameter update is iterative. Referring to
the update process of the alternating least squares matrix
decomposition, we set the gradient to 0 to derive the pa-
rameter update formula, as shown in the following
equations:

Pk,:,i � βQT
i Qi + λ1D

(1)T
i D(1)

i + λI 
− 1

· β

J

j�1
ci,j,kQj,:,i

⎡⎢⎢⎣ ⎤⎥⎥⎦,
(15)

Qj,:,i � βPT
i Pi + λ1P

T
i Pi + λI 

− 1

· β 

K

k�1
ci,j,kPki,i

+ λ1 

K

k�1
c

(1)
i,j,kPk,:,i

⎡⎣ ⎤⎦,
(16)

Si,:,k � (1 − β)TT
kTk + λ1D

(2)T
k D(2)

k + λI 
− 1

· (1 − β) 

J

j�1
ci,j,kTj,:,k

⎡⎢⎢⎣ ⎤⎥⎥⎦,
(17)

Tj,:,k � (1 − β)ST
kSk + λ1S

T
kSk + λI 

− 1

· (1 − β) 

J

j�1
ci,j,kSi,:,k + λ1 

I

i�1
c

(2)
i,j,kSi,:,k

⎡⎢⎢⎣ ⎤⎥⎥⎦.
(18)

Specifically, in an iterative update, the tensors Q, S, and
T are fixed first, and the row vector of the tensor P is updated
according to the above formula. After updating of the P is
completed, P, S, and T are fixed to update Q row by row.
Next, S and T are updated separately in this update mode.
Obviously, because for an update of a parameter tensor, the
update between the row vectors does not affect each other,
this process is highly parallelizable, which can greatly speed
up the training speed of the model. In one iteration, the four-
parameter tensors will be updated separately according to
formulas (15)–(18) and continue until the objective function
converges. It is worth noting that this update method does
not guarantee the nonnegativity of the parameter tensors P,
Q, S, and T. Because our objective function is continuous, its
minimum value should be obtained at the point where the
gradient is 0 or the point on the boundary. In this paper, a
simple method is used to deal with negative values in the
parameter tensor. If there is a value less than 0 in the pa-
rameter tensor, set it to 0.

Figure 4 summarizes the training process of the LPZ
model. First, the original low-voltage station area electricity
data tensor is formed and used as the input of the model.
-en, the model is trained and the four-parameter tensors
are iteratively updated until the objective function converges
(lines 2–8). Finally, the results of the decompositionmodules
are averaged in a weighted manner and used as the predicted
values of the missing values (lines 9–13).

4. Experiment and Analysis

For the validity of our model, we conducted a large number
of experiments on a dataset of a certain station in a dis-
tribution network of a certain city in China. -e LPZ is
compared with three current data complementation
methods, and the experimental results show that LPZ can
obtain better prediction results than the current comple-
mentation methods. In this section, we first introduce the
dataset and experimental settings; second, we use different
parameters to evaluate the LPZ model; and finally, we
conduct comparative experiments and analyse the experi-
mental results.

4.1. Dataset and Experimental Settings. -is section first
introduces the dataset used in the experiment and then
explains the experimental parameter settings and evaluation
indicators.

4.1.1. Dataset. For the dataset of this experiment, we will use
the user current data of a certain station in the distribution
network of a certain city in China. -e station structure is
shown in Figure 5. Here, VLV22 represents the cable model,
and 4× 70 represents 4-core 70mm2. In the actual data
collected automatically, the current data of a certain month
are randomly selected as the data test set to construct the
current tensor. -e constructed current tensor contains a
total of 142650 (317×180× 25) elements, of which the
number of nonzero elements is 1209011. We randomly
selected 80% of the nonzero elements as the training set and
the remaining 20% as the test set to prove the effectiveness of
our proposed model.

4.1.2. Parameter Setting. In this section, the parameter
settings of the LPZ model are mainly discussed, and these
default settings are obtained through parameter tuning. In
the experiment, we set the default value of the number of
hidden factors F to 15; that is, we use a 15-dimensional
vector to represent users, time intervals, and days. -e
weight parameter β is used to control the combining process
of the partial results of the two subdecomposition modules,
and its default setting is 0.4. -e default window sizeW is 4;
that is, the current data of a time interval are affected by 4-
time intervals before and after it. In the local limit, λ1 is used
to control the influence of sequentiality, and the default
value is 0.1. At the same time, for the regularization term
coefficient λ, the default value is also set to 0.1.
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Figure 4: Training algorithm of the LPZ model.

25 
house
holds

25 
house
holds

25 
house
holds

30 
house
holds

No. 1 cable sub‐box No. 2 cable sub‐box

No. 3 cable sub‐box No. 5 cable sub‐boxNo. 4 cable sub‐box No. 6 cable sub‐box

building no.2building no.1

building no.6building no.5building no.4building no.3

30 
house
holds

30 
house
holds

25 
house
holds

25 
house
holds

25 
house
holds

25 
house
holds

30 
house
holds

30 
house
holds

30 
house
holds

30 
house
holds

25 
house
holds

25 
house
holds

25 
house
holds

30 
house
holds

VLV22‐4X120
80 m

Phase 
A

50 m

Phase 
C

50 m

Phase 
A

50 m

Phase 
B

30 m

Phase 
A

20 m

Phase 
A

30 m

Phase 
A

40 m

Phase 
A

20 m

Phase 
A

30 m

Phase 
A

40 m
20 m 30 m

VLV22‐4X70
110 m

VLV22‐4X120
50 m

VLV22‐4X70
60 m

VLV22‐4X70
100 m

VLV22‐4X70
80 m

VLV22‐2X50
VLV22‐
2X50

10 kV

630 kV

380 V

20 m 30 m 40 m20 m 30 m 40 m

Figure 5: Structure diagram of the low-voltage station area.
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4.1.3. Evaluation Index. In this article, we use root mean
square error (RMSE) and mean absolute error (MAE) as
evaluation indicators to evaluate the experimental results
[20, 21]. Given a sparse low-voltage station area data tensor,
N represents the total amount of missing data in this tensor,
that is, the size of the test set in this experiment. -e formula
of the evaluation index is as follows:

RMSE �

�����

1
N



I

i�1






J

j�1


K

k�1

Mi,j,k ci,j,k − ci,j,k 
2

, (19)

MAE �
1
N



I

i�1


J

j�1


K

k�1
mi,j,kci,j,k − ci,j,k, (20)

where ci,j,k represents the true value and ci,j,k represents the
predicted value. To make the evaluation more convenient,
the mask mi,j,k ∈ 0, 1{ }.

4.2. Experimental Results and Analysis. We consider that in
the case of random missing electricity data in low-voltage
area and long-term missing data due to faults, this paper is
verified by analysing the performance of the proposed
method under different time granularities and different
training set sizes and the results of long-term missing data
completion. Based on the effectiveness of the proposed
method and comparing the method in this article with three
missing current data complementation methods, it is con-
cluded that the method proposed in this article is better than
other methods.

4.2.1. Random Missing Data Completion. To verify the
performance of our model, the time interval size was set to 5
minutes, 10 minutes, and 15 minutes, and the experimental
results at different time granularities were obtained, as
shown in Table 1.

It can be seen from the table that as the time interval
increases, the evaluation indicators (RMSE and MAE) of
the proposed model show a downward trend, and the
complement effect continues to improve. -is is because
as the time interval increases when predicting missing
values, more users’ power consumption conditions are
taken into account, and the prediction effect will be
better.

In addition, we also changed the size of the training set
for experiments. Taking Δt� 15 minutes as an example, we
randomly selected 30%, 50%, 70%, and 90% of the original
training set as the new training set for experimentation. -e
experimental results are shown in Table 2. It can be seen
from the table that the complete performance of the pro-
posed model increases with the increase of the training set.
-is is because the larger the training set is, the more the
available samples can be used to mine user current data
information, thereby obtaining more information and
leading to accurate completion results. -erefore, the
method in this paper can effectively complete data com-
pletion in practice.

4.2.2. Completion of Missing Data throughout the Day. A
serious failure may occur during the collection or trans-
mission of the power data by the smart meter, which cannot
be recovered in a short time, and the user power data may be
lost for a whole day [22]. -is paper verifies the effectiveness
of the proposed method by randomly discarding current
data for several days.

Figure 6(a) shows the actual data and completion results
when a user’s data are missing for 7 days throughout the day.
It can be seen from the figure that the two curves basically
overlap, indicating that the completion effect is better.
Figure 6(b) is the area chart of the difference between the
complement value and the actual value when the entire day
is missing for 7 days. It can be seen from the figure that the
missing data can still be prepared for the missing data in the
entire day.

Table 3 shows the performance data of this method
under different missing days. It can be seen from the table
that the changes in RMSE and MAE increase with the in-
crease in missing days. When the number of missing days is
less than 12 days, both RMSE and MAE are relatively small,
indicating that the method proposed in this paper can
compensate for the missing days. -e entirety is still valid,
and the fewer the missing days there are, the better the
completion effect. In practice, the missing data will generally
be repaired within a week, and the lack of more days rarely
happens. -erefore, the method in this article is also more
applicable in practice.

4.2.3. Experimental Comparison. -e method in this article
is compared with three missing current data completion
methods (cubic spline interpolation [23], Kalman filtering
[24], and tensor completion [25]). Figure 7 shows that the
31-day use of the dataset in the station area is the original
complete data. -e average absolute error and root mean
square error trend are set at 40%–100%. It can be seen from
the figure that the completion errors of all methods decrease
with the increase of the dataset used. In addition, the ac-
curacy of the station data completion of different methods is
also different. -e completion error curves (RMSE and
MAE) of the three methods of Kalman filtering, cubic in-
terpolation, and tensor completion are all above the joint
matrix decomposition completion error curve. -at is, when
the joint matrix factorization and completion method has
the same dataset size, its complete accuracy is higher than
that of the other three methods. It is worth noting that the
two types of errors are complemented by the joint matrix
factorization method; when the dataset size is 50% of the
original complete dataset, the error is only approximately
equal to 10% of the error of other methods, indicating that
the joint matrix factorization method is complementary.
Compared with other methods, the whole method is more
suitable for the completion of high-deficiency cases.

Figure 8 shows the variation trend of the root mean
square error and the mean absolute error of the 31-day data
of randomly missing all days in the station area from 1 to 12
days. It can be seen from the figure that the errors of all-day
missing data completion of all the completion methods
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increase with the increase of the number of missing days,
and the two error curves of the joint matrix decomposition
completion are both below those of cubic interpolation,
Kalman filtering, and tensor compensation. -e full bottom,

that is, the precision, of joint matrix factorization is higher
than that of other methods.

-rough the comparison, it can be seen that the joint
matrix factorization completion method has better

Table 1: Experimental completion error at the same time granularity.

Time granularity Δt (min) RMSE/A MAE/A
5 0.3615 0.2238
10 0.3447 0.2065
15 0.3365 0.1975

Table 2: Experimental completion errors under different training set sizes.

Training set size (%) RMSE/A MAE/A
30 0.6615 0.2725
50 0.4647 0.2038
70 0.3065 0.1315
90 0.1005 0.0538
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Figure 6: Complete map of the experiment with 7 days missing all day. (a) Completion curve when seven days are missing in the whole day.
(b) -e area of the difference between the true value and the complement value when the entire day is missing for seven days.

Table 3: Experimental completion error under different missing days.

Missing days/d RMSE/A MAE/A
1 0.8615 0.1725
4 1.2047 0.6438
8 1.7765 1.2315
12 2.3605 2.2238
16 4.8725 2.6318
20 6.3215 4.3159
24 7.2638 5.1245
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completion effects than the cubic interpolation, Kalman
filter, and tensor completion methods in the case of random
missing data or all-day missing data.

4.3. Model Parameter Tuning. In this section, the influence
of important parameters on the performance of the model is
evaluated, and the experimental results are analysed under
different parameter values. In our model, the main focus is
on two decomposition modules and local restrictions.
-erefore, the main parameters of our research include the

number of hidden factors (F), periodic weight parameters
(β), and window size (W) and local restriction weight (λ1).

Figures 9(a) and 9(b) respectively show the changes of
RMSE and MAE with the number of latent factors F. RMSE
and MAE gradually decrease with the increase of F. -is is
because the vector in the high-dimensional space can better
reflect the influence relationship between different modes.
However, when F is too large, the performance of the model
begins to degrade. -is is because the number of redundant
parameters that the model learns is too large due to limited
observations, causing the model to overfit. In addition, it can
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Figure 7: Error comparison results of different dataset sizes. (a) Root mean square error. (b) Mean absolute error.
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Figure 8: Error comparison results under different missing days. (a) Root mean square error. (b) Mean absolute error.
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be seen that the optimal value of RMSE is obtained when
F � 15.

In order to explore the influence of the periodic weight
parameter β on the model, the value of β is gradually
changed from 0 to 1, while the step size is 0.1. -e exper-
imental results are shown in Figure 10. A larger value of β
contributes to stronger influence of the relationship between
the day and the time interval in the model at this time and
better performance of the model. -erefore, as β increases,
RMSE and MAE gradually become smaller. However, when
the value of β exceeds 0.4, the performance of the model
begins to gradually decline. -is is because the relationship
between the day and the time interval is overemphasized in
the forecasting process, while the relationship between the
user and the time interval is ignored. Here, it is worth noting
that β � 0 means that only periodicity plays a role; when
β � 1, only spatial correlation is used. From Figure 10, we

can find that the performance of LPZ can be significantly
improved by considering both periodicity and spatial
correlation.

In addition, the value of the window sizeW is changed to
observe its influence on the model performance. -e ex-
perimental results are shown in Figure 11. In general, the
performance of the model will be improved as W increases,
because increasingWmeans that more samples can be used
to learn temporality. However, RMSE and MAE begin to
gradually decrease, when W is greater than 4. -is phe-
nomenon is caused by the characteristics of timing, that is,
the correlation between low-voltage station data at different
time intervals will be weakened as the distance increases.
-erefore, the time span should be selected appropriately to
predict the low-pressure station data at a certain time in-
terval. Too large or too small time granularity of the division
will affect the accuracy of the model’s prediction results.
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Figure 10: -e influence of the weight parameter β on the experimental results. (a) RMSE. (b) MAE.
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Finally, the performance of the model is analysed under
different local restriction weights. As shown in Figure 12, the
model performs obviously worse at λ1 � 0 than λ1 � 0.1,
because no local restriction is added to the decomposition
module at λ1 � 0. -is shows that introduction of the time
dependency of the relative travel time to the model can
improve the performance of the model. When λ1 is greater
than 0.1, the model evaluation index increases with the
continuous increase of λ1. -is indicates that we cannot pay
too much attention to the timing. It can be seen from
Figures 11 and 12 that simultaneous consideration of the
periodicity, spatial correlation, and timing of low-voltage
station data can improve the performance of LPZ in the task
of missing value completion.

5. Conclusions

-is paper proposes a model that jointly considers the
periodicity, time series, and spatial correlation of the elec-
tricity data in the low-voltage station area for the problem of
the lack of supplementary power consumption data in the
low-voltage station area. -e model proposed in this paper
can reasonably estimate unknown data based on the ob-
servation value of limited low-voltage station area electricity
data. Aiming at the characteristics of the electricity data in
the low-voltage station area, we fold and stack the electricity
data sequence into a three-dimensional tensor form and use
it as the input of the joint matrix decomposition module. In
the decomposition module, we not only model the
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Figure 12: -e influence of the local limit parameter λ1 on the experimental results. (a) RMSE. (b) MAE.
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Figure 11: -e influence of window size W on experimental results. (a) RMSE. (b) MAE.
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periodicity and spatial correlation but also add local re-
strictions to make it subject to timing constraints. To verify
the effectiveness of the model, we conducted many exper-
iments on a real dataset and compared LPZ with traditional
completion methods (cubic interpolation, Kalman filtering,
and tensor completion methods). Experiments show that
LPZ can not only complement the missing power data but
also that the effect of the complement is better than that of
traditional complement methods.

To sum up, the completionmethod based on joint matrix
decomposition proposed in this paper is not only suitable to
solve the problem of data missing in low-voltage stations but
also other data missing problems. With a wide range of
application prospects, this method has the advantage of
being less affected by the length of the missing data and the
location of the missing data. To a certain extent, improving
the accuracy of data completion can contribute to higher
accuracy of data mining and analysis. Data completion is
essential for data mining and analysis and is also of practical
value for load forecasting in the power grid and even for
power generation forecasting such as photovoltaic power
generation and wind power generation.
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-e experimental data are obtained by Python simulation,
and the experimental result diagram is obtained by
MATLAB.

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] Y. Wadhawan, A. AlMajali, and C. Neuman, “A compre-
hensive analysis of smart grid systems against cyber-physical
attacks,” Electronics, vol. 7, no. 10, p. 249, 2018.

[2] Y. Zhang, Y. Ting, and M. Guangyu, “Review and prospect of
ubiquitous power Internet of things in smart distribution
system,” Electric Power Construction, vol. 40, no. 6, pp. 1–12,
2019.

[3] G. Zhang and J. Guo, “A novel method for hourly electricity
demand forecasting,” IEEE Transactions on Power Systems,
vol. 35, no. 2, pp. 1351–1363, 2020.

[4] S. Oprea, “Data framework for electricity price setting in
competitive environment,” Journal of Physics: Conference
Series, vol. 1297, 2019.

[5] M. Zhou, Y. Li, M. J. Tahir, X. Geng, Y. Wang, and W. He,
“Integrated statistical test of signal distributions and access
point contributions for Wi-Fi indoor localization,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 5,
pp. 5057–5070, 2021.

[6] J. Wang, X. Wang, C. Ma, and L. Kou, “A survey on the
development status and application prospects of knowledge
graph in smart grids,” IET Generation, Transmission & Dis-
tribution, vol. 15, no. 3, pp. 383–407, 2021.

[7] H. Yang, Y. De Ng, and Z. Liu, “Study on electric load
forecasting with historical bad data,” Dianli Xitong Baohu yu
Kongzhi/Power System Protection and Control, vol. 45, no. 15,
pp. 62–68, 2017.

[8] M. Gurusamy and P. Vijayakumar, “An efficient cloud data
center allocation to the source of requests,” Journal of Or-
ganizational and End User Computing, vol. 32, no. 3,
pp. 23–36, 2020.

[9] Q. Liu, X. Li, and H. Cao, “Two-dimensional localization: low-
rank matrix completion with random sampling in massive
MIMO system,” IEEE Systems Journal, vol. 15, 2020.

[10] P. Gao, M. Wang, and S. G. Ghiocel, “Missing data recovery
by exploiting low-dimensionality in power system synchro-
phasor measurements,” IEEE Transactions on Power Systems,
vol. 31, no. 2, pp. 1006–1013, 2015.

[11] M. Yang, Y. Sun, and G. Mu, “Data completing of missing
wind power data based on adaptive neuro-fuzzy inference
system,” Automation of Electric Power Systems, vol. 38, no. 19,
pp. 16–21, 2014.

[12] G. Tutz and S. Ramzan, “Improved methods for the impu-
tation of missing data by nearest neighbor methods,” Com-
putational Statistics and Data Analysis, vol. 90, 2015.

[13] H. Gu, T. Wang, Y. Zhu, C. Wang, D. Yang, and L. Huang, “A
completion method for missing concrete dam deformation
monitoring data pieces,” Journal of Applied Sciences, vol. 11,
no. 1, 2021.

[14] M. Zhou, Y. Long, W. Zhang et al., “Adaptive genetic algo-
rithm-aided neural network with channel state information
tensor decomposition for indoor localization,” IEEE Trans-
actions on Evolutionary Computation, vol. 25, no. 5,
pp. 913–927, 2021.

[15] L. Li, J. Zhang, and Y. Wang, “Missing value imputation for
traffic-related time series data based on a multi-view learning
method,” IEEE Transactions on Intelligent Transportation
Systems, vol. 20, no. 8, pp. 2933–2943, 2018.

[16] V. Salerno and G. Rabbeni, “An extreme learning machine
approach to effective energy disaggregation,” Electronics,
vol. 7, no. 10, p. 235, 2018.

[17] F. Meng, Q. Ji, H. Zheng, H. Wang, and D. Chu, “Modeling
and solution algorithm for optimization integration of express
terminal nodes with a joint distribution mode,” Journal of
Organizational and End User Computing, vol. 33, no. 4,
pp. 142–166, 2021.

[18] V. Gandikota, D. Kane, and R. K. Maity, “Vqsgd: vector
quantized stochastic gradient descent,” in Proceedings of the
International Conference on Artificial Intelligence and Sta-
tistics, pp. 2197–2205, San Diego, CA, USA, April 2021.

[19] H. Duan, X. Xiao, J. Long, and Y. Liu, “Tensor alternating least
squares grey model and its application to short-term traffic
flows,” Applied Soft Computing, vol. 89, p. 106145, 2020.
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