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The textual similarity task, which measures the similarity between two text pieces, has recently received much attention in the
natural language processing (NLP) domain. However, due to the vagueness and diversity of language expression, only considering
semantic or syntactic features, respectively, may cause the loss of critical textual knowledge. This paper proposes a new type of
structure tree for sentence representation, which exploits both syntactic (structural) and semantic information known as the
weight vector dependency tree (WVD-tree). WVD-tree comprises structure trees with syntactic information along with word
vectors representing semantic information of the sentences. Further, Gaussian attention weight is proposed for better capturing
important semantic features of sentences. Meanwhile, we design an enhanced tree kernel to calculate the common parts between
two structures for similarity judgment. Finally, WVD-tree is tested on widely used semantic textual similarity tasks. The ex-

perimental results prove that WVD-tree can effectively improve the accuracy of sentence similarity judgments.

1. Introduction

The measurement of the similarity between a pair of sen-
tences is a fundamental and essential task in a wide range of
NLP applications, such as question and answer system
(Q&A system) [1, 2], information retrieval [3], and text
classification [4]. Because of the vagueness and diversity of
language expression, the measurement faces a certain
amount of technical challenges. For instance, a pair of
sentences with many same words may represent different
meanings, respectively.

Recently, the emergence of word embedding tech-
niques [5], which map a word into a numerical vector,
results in many methods achieving success via sentence
embeddings in textual similarity tasks [6, 7]. For example,
Tien et al. [8] encoded many features from various sets of
word embeddings into one embedding and secondly
learned similarity between sentences via the new

embedding. Xing et al. [9] made use of a word embedding
method to find high-frequency phenotypes used as input
in a sentence embedding method. The core idea behind
these works is to identify semantically related terms in
both sentences and to bring these similarities together to
aggregate an overall similarity. But the disadvantage is
that the process of calculating sentence similarity is su-
perficial and does not delve into the relationships between
words in sentence. Gradually, works have turned to model
with distributed representations and neural network ar-
chitectures. Yao et al. [10] took advantage of a con-
volutional neural network (CNN) and word embedding to
achieve sentence embeddings. Palangi et al. [3] designed a
model utilizing recurrent neural networks (RNN) with
long short-term memory (LSTM) cells to perform doc-
ument retrieval. These methods of neural network have
truly improved performance in the textual similarity task.
However, the training processes of these methods are
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often time-consuming, and the syntactic features of
sentences often cannot be fully exploited. Our research
follows some typical features with theirs: (1) it also em-
ploys word embedding technology to capture semantic
information and (2) the method also performs well on the
issues related to sentence similarity.

Moreover, some studies have added the attention weight
mechanism to further improve performance [11, 12]. Since
there are many successful applications of attention mech-
anism in machine translation [13, 14], attention mechanism
has been widely applied in the natural language processing
domain. Chen et al. [15] proposed a new network to pay
attention to the production of the hidden state of one
sentence with the help of the other sentence’s hidden states
and attention information. In this paper, we design a novel
attention weight that is more sensitive to “distance” to
improve the performance of the attention mechanism.

Another line of works that discussed tree kernels is
also associated with our work because our model encodes
syntactic-semantic information represented by tree
structures. Some attempts have proven the advantages of
tree structures that capture syntactic features of sentences
[16, 17]. Li et al. [18] proposed an algorithm based on a
syntactic structure for textual similarity, which analyzed
the sentence element and then transformed sentence
similarity into word similarity through analysis. Gao et al.
[19] presented a tree-to-tree method of Chinese machine
translation based on subtree alignment. However, these
proposed tree structures lacked semantic features con-
sideration. As for the study of the tree kernel, Aiolli et al.
[20] described an efficient algorithm for injecting posi-
tional information into a tree kernel and presented ways
to enlarge its feature space. Rieck et al. [21] proposed an
effective approximation technique for parse tree kernels.
Nevertheless, few tree kernel methods are applied to
textual similarity tasks.

Based on the inheritance of existing tree structure, tree
kernel calculation method, and attention mechanism, this paper
develops a novel sentence modeling approach that incorporates
semantic and syntactic information. To obtain a sentence
representation with multiple features, we propose a structure
called WVD-tree, which treats the sentence pairs as input
objects. WVD-tree integrates the word vector information into
the tree structure. Moreover, Gaussian attention weight is
proposed to assign a weight value to each word for better
highlighting the important semantic features of sentences. To
estimate the similarity between structure trees, we design an
enhanced tree kernel tailored for WVD-tree. Our method is
tested on STS tasks and gets satisfactory performances. Our
method’s advantages are the following: (1) it can be used as a
general architecture because more powerful techniques can
replace the integration techniques; (2) it avoids time-consuming
training, different from some neural network methods.

In summary, this paper’s main contributions are as fol-
lows: (1) In this paper, the WVD-tree is proposed to connect
semantic and syntactic information, which can be viewed as
sentence representation. (2) Considering that the features of
different words in a sentence should be treated differently, we
design a novel Gaussian attention weight for better capturing
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semantic information. (3) For similarity judgment, the en-
hanced tree kernel is proposed based on the traditional tree
kernel and calculates the tree structures’ common fragments.

In the remainder of this paper, Section 2 describes
several main techniques used in the architecture. Section 3
introduces the proposed model. Section 4 shows the ex-
perimental results. Section 5 analyzes the experiments. Fi-
nally, Section 6 summarizes the conclusions.

2. Background

This section briefly reviews several main techniques to fa-
cilitate understanding of this paper’s model, including word
embedding, attention mechanism, dependency tree, and tree
kernel.

2.1. Word Embedding. At present, continuous vectors are
often used to capture the hidden semantic features of
sentences. Generally, this technique is known as word
embedding [22]. We can map a word into a numerical vector
called word vector. If words have a similar meaning, they will
be mapped to a similar vector space position. For example,
“good” and “great” are close to each other, whereas “good”
and “apple” are distant. The above phenomenon means that
the word embedding technique can be directly applied to
measure the semantic similarity for word pairs or find the
word that is most similar to the target word. However,
people focus more on studies of the similarity between two
sentences or passages. The sentences are embedded via word
embedding technique to determine the similarity between
texts. Precisely, we can compute the cosine similarity be-
tween numerical vectors of words. Then we add up the
results and take the average. Finally, we get the similarity
between the sentences. The process of semantic similarity
computation is shown in Figure 1. In the correlation matrix
graph, a word pair has a high correlation if the color between
them is dark. It means the words are closer to each other. For
example, the similarity score between “boy” and “child” is
0.6, while that between “boy” and “hitting” is 0.083. This
phenomenon illustrates that “boy” and “child” have a rel-
atively similar vector space position. The final similarity
score can be calculated as follows:

1 1(s1)1(s2) wy; - wz;

l( )+l 52 ,:21 Z w11w2]

Jj=1

SIMs,, s, = (1)

where s; and s, are sentence one and sentence two, re-
spectively; wy; and w, ; are the i and j™ word vectors of s,
and s,, respectively; and I (s;) and I (s,) are lengths of s, and
s,, respectively.

2.2. Attention Mechanism. The aim of introducing the at-
tention mechanisms [11] for the sentence similarity mea-
surement is to pay more attention to some critical words
instead of each word being treated equally in the processing
of sentence features. So far, much research has proven that
the attributes of words affect human reading efficiency [23].
Therefore, researchers believe that different words should be
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FIGURe 1: The process of computing semantic similarity between sentences.

assigned different weights. To propose a new attention
weight based on traditional attention weight value, we in-
troduce TF-IDF [24] to obtain the original attention weights
of words. The original weight value can be calculated as
follows:

TF - IDF = tf,»,]- X log(%), (2)

where f; ; means the number of occurrences of the word i in
document j; df; means the number of documents con-
taining the word i; N means the total number of documents
in a corpus.

2.3. Dependency Tree. The foundational feature of the de-
pendency tree [25, 26] is that we view sentence structure in
terms of the dependency relation. A sentence is represented
as a tree with words at leaf nodes and their dependency-
relation tags at the nonterminal nodes. Internal nodes are
labeled by the nonterminal category, while leaf nodes are
labeled by the terminal category. A simple explanation is that
a sentence can be represented as a dependency tree. Each leaf
node represents a word in a sentence, while each nonter-
minal node represents a dependency relation between two
words. Every node in the dependency tree can be classified as
a root node, a branch node, a nonbranch node, or a leaf
node. Within a dependency tree, there is only one root node.
A branch node links two or more other nodes. A nonbranch
node links only one node. A leaf node is a terminal node that
does not control other nodes. For example, in the sentence
“A boy is hitting a baseball,” firstly, Figure 2(a) displays the
dependency-relation of a sentence; subsequently, Figure 2(b)
shows the traditional dependency tree constructed by the
Stanford parser tool. Some abbreviations are listed in
Table 1.

2.4. Tree Kernel. A representative tree kernel, known as a
partial tree kernel (PTK) [27], is used to fully exploit de-
pendency trees. The kernel that can be considered represents
trees in terms of their substructures (fragments). Tree kernel
aims to measure the number of common substructures
between a pair of trees T, and T, without taking into ac-
count the whole fragment space. The tree kernel can ef-
fectively and automatically extract meaningful fragments. A
general tree kernel function framework has been designed to
compute the common fragments as follows:

K(T,,T,) = Z Z A(m,ny), (3)

m €Ny m,ENT,

where Ny and Ny are the sets of nodes in the tree T'; and
tree T',; n; and n, are two nodes from two trees, respectively.
A(ny,n,) function enriches the diversity of kernel space
because it can be designed to achieve different performance.

The kernel detects whether a tree subset (common to
both trees) belongs to the feature space that PTK intends to
produce. For this purpose, the desired substructures need to
be described. For syntactic parse trees, each node with its
children is related to a grammar production rule. The tree
kernel in turn generates a tree subset composed of each node
and its child nodes according to grammar production rule.
Then tree kernel function requires to calculate the similarity
between two subsets from different trees. The evaluation of
the common substructures rooted in nodes 1, and n, needs
the selection of the shared child subsets of the two nodes; for
example, [VP [V DT NP]] and [VP [DT NP NP]] have [VP
[NP]] (2 times) and [VP [DT NP]] in common.

The PTK computes common fragments that are shared
between the two trees. The considered fragments are called
partial trees (PTs) in the calculation of structure tree sim-
ilarity. PTs refer to a node with its partial children (subtree
structure can be incomplete, meaning that partial children
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FIGURE 2: The dependency-relation and the dependency tree (DT). (a) Dependency-relation of a sentence. (b) An example of a dependency

tree.

TaBLE 1: Abbreviation explanations in the dependency tree.

Dependency-relation abbreviations Explanations Part-of-speech tags abbreviations Explanations

nsubj Nominal subject NN/N Noun

dobj Direct object DT/D Determiner

aux Auxiliary VBZ Verb, past tense

det Determiner VBG Verb, gerund or present participle

are allowed). For example, Figure 3 displays a tree with its 10
PTs. PTs can be generated by the partial production rule of
the grammar. Consequently, [NP [D]] and [NP [N]] are
valid PTs. If we follow the production rule that the chain of
fragments structure cannot be broken, sequentially, [NP[D
[a]], NP[N[cat]]] is the whole valid fragment. Owing to the
partial production rule, PTK processes more fragments than
other tree kernel methods when calculating similarity.
Specifically, some common fragments rooted at the n; and »,
nodes, and the A (n,,n,) function on the partial tree can be
calculated as follows.

If the node labels of n, and n, are different, then
A(ny,n,) =0.

Else,

L
A(HI’HZ) =HU AZ * Z Ap (Cnl’CnZ) > (4)
p=1

where y and A are two decay factors; ¢, and c,, refer to list of
children nodes of n, and ny; 1, =min{length(c,),
length (an)}§ A, (+) refers to the number of common sub-

sequences whose length is p; and »n, = n, means that the
labels of n; and n, are the same.

3. Model Description

The WVD-tree of a sentence is constructed based on
knowledge integration of word vector, attention mechanism,
and dependency-relations. This type of tree can be viewed as
semantic-syntactic sentence representation, which contains
information about the weight distribution of words in a
sentence. For a sentence pair, they are firstly transformed

into two WVD-trees. Subsequently, an enhanced tree kernel
(improves based on the existing partial tree kernel) is
designed to calculate the similarity between two structure
trees. The process of the WVD-tree similarity calculation is
shown in Figure 4.

3.1. Gaussian Attention Weight. The traditional attention
mechanism calculates the original attention weight value.
However, it cannot capture the local structure of texts. This
problem is improved with a Gaussian probability. Our
method is inspired by the following observation: the
neighboring words tend to have a higher semantic
contribution to the central word than distant words.
However, the traditional attention mechanism is not very
sensitive to distance.” This phenomenon means that the
same words at different distances are treated almost
equally. As shown in Figure 5, there are two “new” words
in the sentence “I bought a new book with a new friend,”
but only the first “new” is meaningful for the current
word “book.” However, the traditional attention mech-
anism assigns the same weight to the two “new” words, as
shown in Figure 5(a). This paper’s idea is that the at-
tention mechanism should be encouraged to provide
greater weight to neighboring words around the central
word. For example, in Figure 5, the central word is “book”
because it has the highest weight value in a sentence.
Therefore, the original weight value calculated by the
traditional attention mechanism should multiply
Gaussian distribution according to the adjacent position,
as shown in Figure 5(b). The weight distribution of the
original attention weight is changed to capture the
sentence’s semantic information more effectively, as
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FIGURE 4: The process of WVD-tree similarity calculation.

shown in Figure 5(c). This new attention mechanism is
called Gaussian attention weight. Experiments prove that
Gaussian attention weight works better than the tradi-
tional attention mechanism.
For simplicity, this paper uses the standard normal
distribution whose probability density function is G(d) =
" where d is the random variable. d is 0 when the word
has the highest weight value. This paper introduces a scalar
variable w to Gaussian probability function to loosen the
restriction, calculated as equation (5). This paper also
presents a parameter b to the weight of the central word
attending itself, which can be calculated as in equation (6).
Thus, the corrected Gaussian attention weight value G

can be calculated as in equation (7): weight
G(d) = e 9%, 5)

G(d) = e—|wdz+b|, ©

Geight = TF - IDF x softmax (G (d)), 7)

where | - | represents the absolute value; w > 0 and b < 0 are
scalar parameters; TF-IDF can refer to equation (2);
softmax (-) is a normalized function.

3.2. WVD-Tree. The new way of sentence representation is
similar to the traditional dependency tree in some ways; for
example, (1) it also has only one root node; (2) the internal
nodes are labeled by some abbreviations, for instance, “DT”

and “NN”; and (3) every leaf node includes a word from the
sentence. The change is that all leaf nodes in the WVD-tree
also include two other factors: one is a word vector and the
other is the Gaussian attention weight value. The process of
constructing a WVD-tree has several essential steps. Firstly,
every word in the sentence is assigned a “part of speech”; for
example, the word “boy” is classified as “noun,” and the
word “hitting” is classified as “verb.” Secondly, the word
vector of the corresponding word is obtained from the
pretrained word embedding; meanwhile, each word is given
a Gaussian attention weight to distinguish its importance
with others. Thirdly, it is also essential to analyze the re-
lationships among nodes. For example, in the sentence “A
boy is hitting a baseball,” “direct object” is the relationship
between “hitting” and “baseball”; “determiner” is the rela-
tionship between “a” and “baseball.” Finally, all relations
among nodes are connected to form a complete structure. As
such, we can obtain the WVD-tree, as shown in Figure 6.

3.3. Enhanced Tree Kernel. As mentioned before, the tree
kernel is used to compute the similarity between structured
trees. The newly designed tree kernel is inspired by the
traditional partial tree kernel. Like the previous tree kernel, a
generic function framework is used (refer to equation (1)).
The change is that vec; and vec, (word vectors of nodes n,
and n,) and wt, and wt, (Gaussian attention weights of
nodes n, and n,) are added to the A (n,,n,) function of tree
kernel. The traditional tree kernel computation method
considers the syntactic information of nodes but does not
explore semantic information. Unlike the traditional tree



6 Mathematical Problems in Engineering

0.2
0.15
0.1

0.05

I brought a new book with a new friend

0.15

0.1

0.05

0.25

0.2

0.15

0.1

0.05

I brought a new book with a new friend

(©

FIGURE 5: Attention weight values are corrected by Gaussian probabilities. (a) presents a traditional attention mechanism. The word “new”
that appeared in different positions acquired the same contribution to sentence, which is inconsistent with our experience that adjacent
words should be more critical. (b) describes the Gaussian distribution of the x-axis. (c) shows the attention value corrected by the Gaussian
distribution, where the first “new” is more critical compared to the second “new.”

kernel, we calculate the semantic similarity of leave nodes just like equation (4). The recursive function Agpg (1, n,) of
separately, instead of using the same function for all nodes,  enhanced partial tree kernel is defined as follows:

0, n, or n, is not leaf node, and n, #n,,

Attyeigne X SIM (vec;, vec,), 1,1, are leaf nodes,
Agrg (my,my) = ! (8)

wl A2+ z A,(cur¢p) |s otherwise,
=l

Attweight = Wy X Wy, 9)

where ¢c,, ¢, l(m), g, and A have the same meaning It remains to account for the way of calculating A, (-)
mentioned in equation (4); SIM (-) function is designed to according to the enhanced partial tree kernel. For the sake of
measure the cosine similarity between vectors; n;#n,  understanding, consider ¢, =saandc, =s,b(aandb are
means that the labels of n; and n, are different. For ex-  the last children; s, and 52 are subsequences of ¢, and c,,
ample, a label with a node of “NN” and a label with a “VP” respectlvely) A, (cy5c,,) can be solved by developlng a
do not match. “recursive’ functlon as follows:
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A, (s1a,5,b)
[s1] |52 . .
= A(a,b) Z(/\IS‘F’HSZ'” X(Apfl(sl[lz i],s,[1: ]]))),

i=1 j=1

(10)

where s, [1: i] (resp., s,[1: j]) is the subsequence of s, (resp.,
s,) ranging from 1 to i (resp., from 1 to j); |s,| (resp., |s,|) is
the length of s, (resp., s,). Note that, here, A(a,b) is cal-
culated using equation (8), while Apy (+) is recursively
calculated using equation (10), and the recursive process
stops when it reaches the leaf node.

4. Results

4.1. Datasets. Following prior studies, the experiments are
also conducted on semantic textual similarity (STS) datasets
(2012-2015). These datasets cover various domains, for
example, news, web forums, images, glosses, and Twitter.
Statistics of STS datasets are sorted by year as shown in
Table 2 (datasets with the same name have different data in
different years).

4.2. Experimental Settings

4.2.1. Word Embedding Setting. This paper compares the
most commonly used word embedding techniques,
word2vec [21] and glove [27], for choosing high-quality
word vectors. Here, WVD-tree uses the simple version of
the enhanced tree kernel by setting Aff, i, =1, p =0.1,
and A =0.1 in equation (8). Considering that the numerical
vector’s key parameter is the vector dimension, which is set
to 50, 100, 200, and 300, the compared results tested on the
answers-forums dataset are shown in Figure 7. It can be
found that dimension 300 gains the best performance.
Based on this analysis, the number of dimensions in word

embeddings is set as 300 throughout the experiment
process. Meanwhile, it can be clearly seen that WVD-
treeyordovec (use Gaussian weight word2vec-embedded
dependency tree) performs better than WVD-treegoy. (use
Gaussian weight glove-embedded dependency tree). Thus,
WVD-treeyordavec (With its vector dimension being 300) is
selected as the better method to conduct experiments on all
STS datasets (2012-2015).

4.2.2. Impact of p and L. The enhanced tree kernel function
is related to two parameters, A and . This section studies the
impact of the two parameters on the accuracy of WVD-tree.
Here, we use the simple version of enhanced tree kernel by
setting Aff, .y, in equation (8). Firstly, we set A = 0.1 by
default while studying the parameter y. As shown in
Figure 8(a), u = 0.3 gets the best performance. Then, we set
u =0.3 while studying the parameter A. As shown in
Figure 8(b)), A = 0.2 gets the best performance.

4.2.3. Impact of w and b. 'The enhanced tree kernel function
is also related to two other parameters, w and b. The two
parameters are derived from equation (6). They play an
essential role in assigning Gaussian attention weight to each
word. Firstly, we set b = —0.1 by default while studying the
parameter w. As shown in Figure 9(a), w = 0.06 gets the best
performance. Then we set w = 0.06 while studying the pa-
rameter b. As shown in Figure 9(b), b = —0.3 gets the best
performance.

4.2.4. Other Settings. Following previous research, the term
frequency-inverse document frequency (TF-IDF) is intro-
duced to produce original attention weights before being
corrected by Gaussian probabilities. For calculation, each
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TaBLE 2: Statistics of the provided datasets for the SemEval semantic textual similarity tasks (2012-2015).

STS'12 STS'13 STS'14 STS'15

Dataset Sentence pairs Dataset Sentence pairs Dataset Sentence pairs Dataset Sentence pairs
MSRpar 750 Headlines 750 Deft-forum 450 Answers-forums 375
MSRvid 750 OnWN 561 Deft-news 300 Belief 375
SMTeuroparl 459 FNWN 189 Headlines 750 Images 750
OnWN 750 Images 750 Headlines 750
SMTnews 399 OnWN 750

Tweet-news 750

70

65
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FIGURE 7: The performance of varying word embedding.
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FIGURE 8: Varying y and A on the answers-forums dataset.
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FIGURE 9: Varying w and b on the answers-forums dataset.
TaBLE 3: Comparison results of the proposed method and other state-of-the-art methods on the STS tasks (2012-2015).
Year Dataset Compared methods The method
Glove Word2vec RNN LSTM iRNN WYVD-tree
MSRpar 47.8 49.2 18.6 16.1 43.5 64.3
MSRvid 63.8 65.6 66.5 71.3 73.3 80.6
2012 SMTeuroparl 46.2 451 40.9 41.8 47.2 51.7
OnWN 55.3 55.9 63.1 65.2 70.2 68.8
SMTnews 50.3 52.3 51.3 51.0 58.3 53.2
Headlines 63.9 65.5 59.5 57.4 72.7 78.1
2013 OnWN 49.1 52.4 54.6 50.4 69.3 80.6
FNWN 34.3 37.9 30.9 38.4 45.2 50.3
Deft-forum 27.2 38.7 41.5 46.1 49.1 49.4
Deft-news 68.3 69.3 53.7 39.1 72.3 74.1
2014 Headlines 59.8 63.8 57.5 50.9 70.3 71.7
Images 61.2 61.7 67.6 62.8 78.3 74.2
OnWN 58.3 57.4 67.7 61.5 78.7 85.5
Tweet-news 51.1 534 58.0 48.3 76.7 73.5
Answers-forums 30.7 32.3 32.8 51.4 67.2 70.2
2015 Belief 40.7 42.3 51.9 52.7 75.8 73.4
Headlines 61.9 63.2 65.3 56.8 75.0 80.8
Images 67.6 68.5 71.4 64.3 81.2 83.4

Bold values denote the optimal results among the horizontal experimental results.

sentence is viewed as a document, and all sentences in the
dataset are used to compute the value of IDF.

4.3. Comparison with Other Methods. Comparison results of
the proposed method and other state-of-the-art methods for
each task are provided in Table 3. It is easy to see that the
proposed method obtains better or comparable perfor-
mance. The methods that utilize word embedding/sentence
embedding techniques include glove [28], word2vec [29],
RNN [30], LSTM [31], and iRNN [32].

Glove denotes global vectors, which is is a word repre-
sentation tool based on global word frequency statistics. The
glove can map a word into a numerical vector that captures
some semantic properties between words.

Word2vec denotes word to vector. Word2vec trains
layers of neural networks to map one-hot word vectors to
distributed word vectors.

RNN is the classical recurrent neural network that can
solve the problem that the training sample is a continuous
sequence with different lengths.

iRNN is an independently recurrent neural network that
is improved based on RNN. iRNN’s neurons in the same
layer are independent of each other, and they are connected
across layers. Multiple iRNNs can be stacked to construct a
network that is deeper than the existing RNNs.

LSTM denotes long short-term memory, which is is a
special kind of RNN. For remembering the long text’s vital
information during the training, the neural network cells will
forget some information and remember some information.
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Compared with these methods, our method accom-
plishes the best results on 13 out of 18 datasets. Even if the
proposed method is not the best one on some datasets, it can
also compete with the best results, such as 12’OnWn datasets
and 15'belief datasets. It is just as that the result of the
method on the 12'OnWn datasets is 68.8%, and the result of
the best method is 70.2%.

5. Analysis

5.1. Analysis of Results. Table 3 shows the results of the
accuracy of the state-of-the-art methods on the same
datasets. The methods that use word embedding techniques
include glove and word2vec. The performance of word2vec
is better than that of glove. The reason is that word2vec is
more suitable for processing sequential data than glove and
the most typical sequential data is the sequence of text.
Besides, word vectors trained by word2vec have stronger
semantic correlation than glove. Because our method in-
tegrates word2vec into the dependency tree, meanwhile,
Gaussian attention weight is added to highlight important
features. The WVD-tree method, which contains semantic
and syntactic information, is better than the word2vec
method.

The methods that use sentence embedding techniques
include RNN, LSTM, and iRNN. Both LSTM and iRNN
are improved based on the RNN method. The traditional
RNN cannot cope well with the long sequence input due
to vanishing gradients or exploding gradients. The van-
ishing gradients problem of RNN is solved by the LSTM
method, but it cannot counter the exploding gradients
problem. Another advantage of the LSTM compared to
RNN is that it can handle long text. However, it can be
seen from Table 3 that the performance of LSTM is not
better than that of RNN. The reason is that the STS
datasets are full of short sentences, so the advantages of
LSTM method cannot be given full play. The performance
of iRNN is better than those of RNN and LSTM, because,
compared with RNN and LSTM, the gradients of iRNN
are relatively stable, and iRNN can be stacked in multiple
layers, making it possible to build deeper networks. Our
method is generally superior to these neural network
methods, mainly because they focus on semantic infor-
mation training rather than syntactic information, which
is different from the WVD-tree method.

Meanwhile, it is necessary to analyze why our method
does not perform well on some datasets such as
12'SMTeuroparl and 12'SMTnews. Because of the particu-
larity of the sentences in these datasets, such sentences
contain many strings of numbers and special symbols that
damage the method’s performance, for example, the special
string “(a5-0241/2000)” in 12'SMTeuroparl dataset.

5.2. Effectiveness of Syntactic Information. For proving that
syntactic information plays a role in the WVD-tree
structure, two methods are compared in this section: (1)
“Gaussian weight + word2vec,” which uses the Gaussian
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attention weight and word2vec vector together, and (2)
“Gaussian weight + word2vec + DT,” which uses Gaussian
attention weight, word2vec vector, and dependency tree
together. Figure 10 displays the results obtained by using
four datasets from the STS'15 task. It can find that
“Gaussian weight + word2vec + DT” always performs
better than the “Gaussian weight + word2vec.” The ex-
perimental results of the method with “Gaussian
weight + word2vec + DT” increased 7.8%, 7.2%, 7.3%, and
2.3%, respectively. The above results essentially prove the
effectiveness of syntactic information. It should be noted
that the STS'15 task is chosen for the experiment because
the sentences of these datasets are clearly expressed and do
not contain any special characters, and the improvement
of experimental results by syntactic information could be
found.

5.3. Effectiveness of Gaussian Attention Weight. For proving
that the Gaussian attention weight plays a role in WVD-
tree structure and works better than traditional attention
mechanism, three methods are compared in this section:
(1) “word2vec+DT,” which uses the word2vec vector
and dependency tree together, (2) “traditional
weight + word2vec + DT,” which uses traditional atten-
tion weight, word2vec vector, and dependency tree to-
gether, and (3) “Gaussian weight+word2vec+ DT,”
which uses Gaussian attention weight, word2vec vector,
and dependency tree together. Figure 11 shows the results
obtained by using four datasets from the STS'15 task. It
can be  found  that  “Gaussian  weight+
word2vec + DT” always performs better than “word2-
vec+DT” and “traditional weight + word2vec + DT.” The
experimental results of “Gaussian
weight + word2vec + DT” increased by 4.5%, 3.8%, 2.7%,
and 2.3% compared to “word2vec+DT.” The experi-
mental results of “Gaussian weight + word2vec + DT”
increased by 1.7%, 2.6%, 2.0%, and 0.8% compared to
“traditional weight + word2vec + DT.” This phenomenon
proves that the Gaussian attention mechanism plays a
positive role in performance.
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TaBLE 4: The performance of different tree kernels.
Dataset STK SSTK PTK
MSRpar 62.1 62.5 64.3
MSRvid 76.8 76.4 80.6
SMTeuroparl 47.0 47.5 51.7
OnWN 67.1 66.3 68.8
SMTnews 50.9 50.1 53.2

Bold values denote the optimal results among the horizontal experimental
results.

5.4. Varying Tree Kernel. The enhanced tree kernel intro-
duced before (recall Section 3.3) is changed based on the
partial tree kernel. However, the commonly used tree kernel
includes subtree kernel (STK) [20] and subset tree kernel
(SSTK) [27] in addition to partial tree kernel.

5.4.1. Subtree Kernel. A subtree is characterized by con-
taining all descendant nodes of the target node. The STK is a
convolution kernel that computes common fragments
shared between two trees. The fragment considered is a
subtree, which means a node and its full children.

5.4.2. Subset Tree Kernel. Since leaf nodes of subset tree can
be nonterminal symbols, the subset tree is a more general
structure than a subtree. The SSTK is a convolution kernel
that computes common fragments shared between two trees.
The fragment considered is a subset tree, that is, a node and
some of its children (children may be incomplete in depth,
but partial generation is not allowed).

Here we also change subtree kernel and subset tree
kernel in the same way (add Gaussian attention weights and
word vectors to traditional tree kernel) and then compare
their performance. The comparison results tested on the
STS'12 task are shown in Table 4. Comparison results of the
STK and the SSTK have little change in accuracy rate. The
reason is that STK and SSTK do not differ much in the depth
of splitting tree fragments. The PTK has better performance
than other tree kernels. The reason is that the PTK can get a
greater number of tree fragments than other tree kernels so
that PTK can compare more common details for computing
the similarity between two structure trees.
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6. Conclusions

This paper proposed a new method for textual similarity
measurement. The proposed model aims to extract
syntactic-semantic information of sentences by com-
bining several techniques, including word embedding,
dependency tree, and attention weight mechanism. In
this model, the WVD-tree is a semantic-embedded de-
pendency tree structure for sentence representation.
Meanwhile, the enhanced tree kernel is an algorithm
designed for similarity calculation. Experiment results on
widely used STS tasks demonstrate that this model can
achieve favourable performance. Moreover, we design the
Gaussian attention weight for distinguishing the con-
tribution of different words more effectively. Experiment
results also show that the Gaussian attention mechanism
outperforms the traditional attention mechanism. In
general, the major advantages of our method are the
following: (1) it can be used as a general architecture
because the integrated techniques in our model can be
viewed as building blocks, allowing users to replace them
with other more useful techniques; (2) different from
most of the neural network methods, our model does not
require time-consuming training, once word embeddings
are available. In the future, there are still many works to
study. For example, (1) other state-of-the-art techniques
can be integrated to improve our model further; (2) our
model can be compared with some neural network
methods (e.g., RNN, LSTM, and iRNN) on larger training
datasets to see whether our model can still achieve
competitive performance.
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