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A Pythagorean fuzzy set is the superset of fuzzy and intuitionistic fuzzy sets, respectively. Yager proposed the concept of
Pythagorean fuzzy sets in which he relaxed the condition that sum of square of both membership degree and nonmembership
degree of an element of a set must not be greater than 1. This paper introduces two new techniques to solve LR-type fully
Pythagorean fuzzy linear programming problems with mixed constraints having unrestricted LR-type Pythagorean fuzzy
numbers as variables and parameters by introducing unknown variables and using a ranking function. Furthermore, we show the
equivalence of both the proposed methods and compare the solutions obtained by the two techniques. Besides this, we solve an

already existing practical model using proposed techniques and compare the result.

1. Introduction

The origin of linear programming is the 1940s (World War
II). Linear programming is a technique in which a function
(called objective function) is an optimized subject to a given
set of restrictions (called constraints). It is mostly used in a
situation where there is some quantity to be optimized
within available resources. The nature of the linear pro-
gramming model is trivial and easily applicable to various
real-life applications, including transportation problems,
supplier selections, assignment problems, production
planning problems, and supply chain management. Linear
programming in a fuzzy environment is a very interesting
field in which many researchers showed interest around the
globe. It can be used very effectively in the situations, where
the data is fuzzy, vague, or uncertain, where crisp theory fails
to cope with. Hence, in these situations, fuzzy linear pro-
gramming technique is very effective in making decisions.

Zadeh [1, 2] introduced the concepts of fuzzy sets and
fuzzy numbers. Bellman and Zadeh [3] first introduced the
concept of decision-making in a fuzzy environment. Zim-
mermann [4] studied the fuzzy programming technique to

solve the multiobjective linear programming problem under
a fuzzy environment. The fuzzy optimization technique is
based on the maximization of the marginal satisfaction
(membership functions and degree of belongingness) of
each element into the fuzzy decision set. Tanaka et al. [5] also
discussed mathematical linear programming in a fuzzy
environment. Allahviranloo [6] presented the Adomian
decomposition method for a fuzzy system of linear equa-
tions. Allahviranloo et al. [7] discovered a method for
solving fully fuzzy linear programming problems by the
ranking function. Lotfi et al. [8] presented a method for
solving a full fuzzy linear programming using lexicography
method and fuzzy approximate solution. Kumar et al. [9]
proposed a new method for solving fully fuzzy linear pro-
gramming problems. Kumar and Kaur [10] studied a
method for exact fuzzy optimal solution of fully fuzzy linear
programming problems with unrestricted fuzzy variables.
Kaur and Kumar [11] presented Mehar’s method for solving
fully fuzzy linear programming problems with LR fuzzy
parameters. Moloudzadeh et al. [12] introduced a new
method for solving an arbitrary fully fuzzy linear system.
Behera et al. [13] studied new methods for solving


mailto:m.akram@pucit.edu.pk
https://orcid.org/0000-0001-7217-7962
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4306058

imprecisely defined linear programming problems under
trapezoidal fuzzy uncertainty. Najafi and Edalatpanah [14]
introduced a new method for solving fully fuzzy linear
programming problems. Pérez-Cantedo et al. [15] gave a
revised version of a lexicographical-based method for
solving fully fuzzy linear programming problems with in-
equality constraints.

Later on, it was realized that only the membership degrees
are not well enough to represent the marginal attainment of
the element into the fuzzy decision set. To extend or explore
the fuzzy set, Atanassov [16] introduced the concept of fuzzy
set to intuitionistic fuzzy set in which there is a nonmem-
bership function along with the membership function. In an
intuitionistic fuzzy set, the sum of membership degree and
nonmembership degree of an element should not be greater
than 1. Angelov [17] first considered the intuitionistic fuzzy
optimization techniques based on intuitionistic fuzzy decision
set in decision-making problems. Dubey and Mehra [18]
presented linear programming with triangular intuitionistic
fuzzy numbers. Parvathi and Malathi [19] proposed a method
to solve intuitionistic fuzzy linear programming problems.
Nagoorgani and Ponnalagu [20] revealed a new approach on
solving intuitionistic fuzzy linear programming problems.
Parvathi and Malathi [21] studied intuitionistic fuzzy linear
optimization. Parvathi et al. [22] gave intuitionistic fuzzy
linear regression analysis. Garg et al. [23] presented an
intuitionistic fuzzy optimization technique for solving mul-
tiobjective reliability optimization problems in an interval
environment. Suresh et al. [24] gave a method of solving
intuitionistic fuzzy linear programming problems by ranking
function. Nagoorgani et al. [25] presented the knowledge of
expert opinion in intuitionistic fuzzy linear programming
problems. Singh and Yadav [26] proposed optimization of
unrestricted LR-type intuitionistic fuzzy mathematical pro-
gramming problems. Singh and Yadav [27] proposed intui-
tionistic fuzzy multiobjective linear programming problems
with various membership functions. Malathi and Umadevi
[28] gave a new procedure for solving linear programming
problems in an intuitionistic fuzzy environment. Abhishekh
and Nishad [29] proposed a novel ranking approach for
solving fully LR-intuitionistic fuzzy transportation problem.
Bharati and Singh [30] studied a method for the solution of
multiobjective linear programming problems in interval-
valued intuitionistic fuzzy environments. Kabiraj et al. [31]
proposed another method for intuitionistic fuzzy linear
programming problems. Perez-Canedo and Concepcion-
Morales [15] presented a method for unique optimal values of
LR-type fully intuitionistic fuzzy linear programming with
inequality constraints.

Unfortunately, intuitionistic fuzzy sets fail to deal with
the situations where the sum of membership degree and
nonmembership degree of an element exceeds 1. To over-
come this difficulty, Yager [32] introduced the concept of
Pythagorean fuzzy set in which he relaxed the condition that
sum of square of both membership degree and nonmem-
bership degree of an element of a set must not be greater
than 1. Yager and Abbasov [33] presented Pythagorean
membership grades, complex numbers, and decision-mak-
ing. Yager [34] introduced Pythagorean membership grades
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in multicriteria decision-making. Zhang and Xu [35] ex-
tended the TOPSIS to multiple-criteria decision-making
with Pythagorean fuzzy sets. Peng et al. [36] studied Py-
thagorean fuzzy information measures and their applica-
tions. Wan et al. [37] gave a Pythagorean fuzzy mathematical
programming method for multiattribute group decision-
making with Pythagorean fuzzy truth degrees. Kumar et al.
[38] proposed a Pythagorean fuzzy approach to the trans-
portation problem. Lugman et al. [39] presented a digraph
and matrix approach for risk evaluations under Pythagorean
fuzzy information. Wan et al. [40] gave a new order relation
for Pythagorean fuzzy numbers and its application to
multiattribute group decision-making. On the contrary,
Ahmad et al. [41] studied spherical fuzzy linear program-
ming problems and Akram et al. [42] developed methods to
solve fully Pythagorean fuzzy linear programming problems
with equality constraints. Wei et al. [43] studied green
supplier selection based on the CODAS method in a
probabilistic uncertain linguistic environment. Wei et al.
[44] extended COPRAS model for multiple attribute group
decision-making based on single-valued neutrosophic 2-
tuple linguistic environment. Zhang et al. [45] studied the
TODIM method based on cumulative prospect theory for
multiple attribute group decision-making under a 2-tuple
linguistic Pythagorean fuzzy environment. Recently, Akram
et al. [46] have introduced a method to solve linear pro-
gramming problems in which all the variables and pa-
rameters are LR-type PFNs having equality constraints. As a
continuation of this work, we study two methods for solving
FPFLPPs with mixed constraints in which all the variables
and parameters are unrestricted LR-type Pythagorean fuzzy
numbers (PFNs).

The main contribution of this research paper is as
follows:

(1) The first method is presented to solve FPFLPPs with
mixed constraints, in which all the variables and
parameters are LR-type PFNs

(2) The second method is presented to handle inequality
constraints in FPFLPPs using a ranking function

(3) A comparison of the proposed methods with the
existing methods is given

(4) The results of the methods are shown graphically

The article is organized as follows. Section 2 presents
some preliminaries. Section 3 explains the proposed
methods to solve FPFLPPs with unrestricted LR-type PFNs
with mixed constraints. Section 4 presents the equivalence
of the proposed techniques. Section 5 is devoted for nu-
merical examples to explain the proposed methods. Section
6 includes comparative analysis and some discussions. In
Section 7, merits of the proposed methods are given. In
Section 8, we conclude the paper.

For further information, the reader can refer to [47-57].

2. Preliminaries

In this section, we review elementary concepts that are useful
for this article.
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Definition 1 (see [34]). A PFS Q on X is an object of the
form:

Q ={{x, pq (x), 75 (x))|x € X}, (1)

where u,: X — [0,1] and v, X — [0,1] are mem-
bership function and nonmembership function of Q, re-
spectively, such that 0<pd(x)+75(x)<1,Vx € X.

V1= 2 (%) = % (x) s
called a Pythagorean fuzzy index or degree of hesitancy of x

in Q. For computational convenience, QO = (g, vq) is called
a PEN [35].

Moreover, for all x € X, 7, (x) =

Definition 2 (see [46]). A PFN A = (a;n,0;1',6'),z is de-
fined as an LR-type PEN if its membership (u4) and
nonmembership (v,) functions are given as

a—x
L( ), x<a,n>0,
n

R(x_a> >a,0>0
| 9 > x=2a, >

[ (a-x
L 7

R,(xe—,a>’ x>a,0 >0,

pa(x) =1

(2)

), x<a,n' >0,

Ya (x) =4

where 7<#',0<6 and 0<p% +7»4<1. L and R are con-
tinuous, decreasing functions on [0, c0) and L' and R’ are
continuous increasing functions on [0, 0c0) such that

(1) L(0) =R(0) =1

(2) lim,_,  R(x) =lim,_, L(x)=0
(3)L'(0)=R (0)=0
(4) lim,_,R'(x) =lim, L (x)=1

a is called the mean value of A, 57 and 0 are the left and
right spreads of 1, and 1'and 6’ are left and right spreads of
V4, respectively.

Remark 1 (see [46]).
(1) If weset L' (x) =1 —-L(x) and R'(x) =1 - R(x) in
Definition 2, then A= (a;7,0;1',0');z becomes
LR-type intuitionistic fuzzy number [26].

(2) If we take

1-x, 0<x<1,
L(x) =R(x) =
0, otherwise,
(3)
, , x, 0<x<1,
L' (x)=R(x) =
1, otherwise,

in Definition 2, then A = (a;#,60;4',6'),x becomes trian-
gular PFN.

Definition 3 (see [46]). An LR-type PEN A = (a;n,0;
! ! . . . oy

', 0 )z is nonnegative (respectively, nonpositive), denoted

as A >0 (respectively, A<0),ifa — ' >0 (respectivelya + 6'
<0) and A is unrestricted if a belongs to real numbers.

Definition 4 (see [46]). An LR-type PFN A = (a;n,0;7’,
6');x is positive if a — 5’ >0 and negative if a + 6' <0.

Definition 5 (see [46]). An LR-type PFN A = (a;n,0;7’,
'),y is zero if and only if a =0, =0, 6 =0, ' =0, and
' =o.

Definition 6 (see [46]). Two LR-type PFNs A, =

(ay;ny, 045 ’71/’ GI’)LR and A, = (ay; 1, 0,; ’72l> 92l)LR are equal if
! ! ! !

a, =ay, 1y =1, 0, = 0,, 1, =1, and 0, = 0,.

Theorem 1 (see [46]). Let A, = (a,;n,,0,;71,0))x and
A, = (ay; 15,0515, 05) r be two LR-type PENs; then,
A1 @Ay = (ay +ayi )y + 1,0y + 0y377 + 13,01 + 0)

Theorem 2 (see [46]). Let A, = (a,;n,,0,;71,0))x and
A, = (ay; 15,6515, 05)r be two LR-type PENs; then,
A1A, = (ay —ayny + 65,0y + 150y + 05, 0] + 1) e

Theorem 3 (see [46]). Let A= ((a;n,6;n',0' )z be an
LR-type PFEN and c be any real number; then,

c>0,

ca;cn,c;cn’,cO') p,
cA:{( n n )ik (4)

ca; —c0,—cn; —c0',—cn' ), n, ¢ <O0.
n M )r

Theorem 4 (see [46]). Let A, = (a;;n,, 0,314, 01)x and
A, = (ay; 15, 653115, 05) 1z be two nonnegative LR-type PFNs;
then, A ®A, = (ayay;ayn, +ayn — 1y a0, +a0,+
0,0 a1 + ay| = 11130, + a,0] + 0,65) .

Theorem 5 (see [46]). Let A, = (a;;n,, 0,571, 0)) . be
nonnegative LR-type PFN and A, = (a,; 1, 0; 15, 05) 1 be
nonpositive LR-type PEN; then, A ®A, = (a,a,;a,
M2 = 5,1291 + 7291>a192 = ayff= 11053 a1y = 4,0 + 1,0}, 2,6,
—ayy = mb)

Theorem 6 (see [46]). Let A, = (ay;n,, 0,511, 0,)r be an
LR-type PFN in which a,-1n,<0, a;—-1,=0 and
A, = (ay; 15, 0,315, 05)  be an unrestricted LR-type PFN;
then, A, ® A, = (a;1,0;1',6") r, where a = a,a,:
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1= a,a, —min{a,a, — 1,4, = 1,0, + 1,1, 4,8, — 1,0, + 0,0, — 1,0, },
6 = max{a,a, + 6,a, + 0,a, + 0,6,,a,a, + 6,a, — n,a, — n,0,} — a,a,, 5)

I . ' / o’ ’ i Y
' = a,a, — min{a,a, - nya, + 0,a, — 1,05, a,a, + 0ja, — n,a, — 1,0},

! ! ! 1o ! ! n!
0 = max{alaz —11ay — 1,0, + 11y, 014, + 01a, + Oya; + 9162} = a,4;.

Theorem 7 (see [46]). Let A, = (a;;n,, 01311, 01)r be an A, = (ay; 15,0515, 0,), be an unrestricted LR-type PEN;
LR-type PEN in  which a;-1,<0, a; =0 and  then, A;®A, = (a;n,0;1',0)x where a =aa,:

1 = a,a, - min{a,a, - n,a, + 6,a, - n,0,,a,a, + 6,a, — n,a, — n,0,},
0 = max{a,a, - n,a, — 1,0, + 1,1, 14, + 0,a, + 0,a, + 0,0,} —a,a,, 6)

! . ! ! 'n! ! ! 'n!
n' = a,a, - min{a,a, - ma, + 0,a, — 1,0, a,a, + 01a, — ma, — 1,01},

! _ ! ! o ! ! 'n!
0" = max{a,a, — n,a, — 1,0, + M1y, 310, + 01a, + 630, + 0,0,} — a,a,.

Theorem 8 (see [46]). Let A, = (a,;1,,0,;1,,01)r be an A, = (ay; 15, 0,15, 0,), be an unrestricted LR-type PEN;
LR-type PEN in which a;<0, a;+0,20 and then, A;®A, = (a;1,0;1',0")x where a = a,a,:

n = a,a, - min{a,a, - n,a, + 6,a, — n,0,,a,a, + 6,a, — m,a, — 1,0, },
0 = max{a,a, — n,a, — 1,8, + N1y, 4,0, + 0,a, + 6,a, + 0,0,} — a,a,, )

I _ . ! ! 'n! ! ! 'n!
' = a,a, - min{a,a, - nya, + 0,a, — 1,05, a,a, + 0ia, — n,a, - 1,0},

! ! ! 1o ! ! n!
0" = max{a,a, - n,a, — 1,4, + N1y a,a, + 01a, + O,a, + 6,0,} - a,a,.

Theorem 9 (see [46]). Let A, = (a;;n,,0,;711,0)) g be an A, = (ay; 15,0531, 05)1x be an unrestricted LR-type PFN;
LR-type PFN in which a, +0,<0, a, +60,>0 and  then, A,®A, = (a;n,0;1',60)x where a = aa,:

1 = a,a, - min{a,a, - n,a, + 6,a, — n,6,,a,a, + 6,a, + 0,a, + 6,6,},
0 = max{a,a, + 61, — n,a, — 1,01, 0,0, — 1,0y — 13y + 110y} — a1y, )

! . ! ! n! ! ! 'n!
1N =a,a, - min{a,a, — ma, + 0,a, — 1,05, a,a, + 6,a, — nya, — 0,1,

! ! ! I, ! ! n!
0' = max{a,a, - n1a, - 1,0, + 11, a0, + 01, + Oya, + 6,0,} - aa,.

Theorem 10 (see [46]). Let A, = (a;;n,,0;;11,0))r bean A, = (ay;1,,0,;15,0,) be an unrestricted LR-type PEN;
LR-type ~ PFN  in which  a; +6,<0 and  then, A\®A, = (a;n,0;7n',0) g, where a = aa,:

1 = a,a, - min{a,a, - n,a, + ,a, — 1,6,,a,a, + 6,a, + 0,a, + 6,6,},
0 = max{a,a, + 0,a, — nya, — 1,0, a,a, — 1,0, — 1,8, + ,1,} — @105, 9)

! . ! ! n! ! ! n!
1" = a,a, - min{a,a, — na, + 6,a, — n,6,,a,a, + 6,a, + 6;a, + 6,6,},

! _ ! ! 'n! ! ! 1o
0" = max{a,a, + 6,a, — n,a, — 1,0, a,a, — n1a, — 1,4, + N1} - a,a,.

Theorem 11 (see [46]). Let A, = (a,;n,,0,;11,0)) g bean A, = (ay;n,,0,;1505)r be an unrestricted LR-type PEN;
LR-type PEN in which a,—1,20 and  then, A\ ® A, = (a;n,0;1',0") . where a = a,a,:
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1= a,a, —min{a,a, — 1,4, = 1,0, + 1,1, 4,8, — 1,0, + 0,0, — 1,0, },
6 = max{a,a, + 6,a, + 0,a, + 0,6,,a,a, + 6,a, — n,a, — n,0,} — a,a,, (10)

! . ! ! o ! ! 'n!
' = a,a, —min{a,a, - 1,a, — 1,0, + 1,15 @18, — 1,0, + 01a, — 1,01},

! ! ! 'n! ! ! n'
0" = max{a,a, + 6,a, + 6,a, + 0,0,a,a, + 6;a, — n,a, — n,0,} — a,a,.

Definition 7 (see [46]). Let A= (a;n,0;7n',6')x be an
LR-type PFN; then, ranking of A, denoted R (A), can be
defined as

R(A) =

[(J;(a gL (@) da + J:(a +OR! (oc))doc) +<J;(a ' (@))da+ J;(a LOR! (oc))doc)]. (11)

o

Let A, and A, be two LR-type PEN; then, we see that Remark 2 (see [46]). Ranking function, as defined in Def-
(i) A, <A, if R(A) <R (A,) inition 7, is a linear function.

(il) Ay >4, if R(4))>R(4;) Proof. LetA; = (ay;1,, 0,571, 0))pand A, = (ay; 775, 055115,
(iii) A, = A, if R(A) =R(4,) 6,),r be two LR-type PFNs; then, A, ® A, = (a, + a1, +
M2 01 + 05511 + 17, 01 + 0)) .
Now, if L =R,

R (A ®A,) =Re(a, +ay;n, + 1,0, + 0,51, + 1500 +65) 5

1 1
= i [(Jo(al +ay = (ny + 1)L (@))dac + JO(“I +ay+ (0, +0)R (a))doc)

1 1
+(Jo(a1 +a,— (g +n)L"" (oc))doc + Jo(a1 +a,+ (6] +6)R"" (oc))doc)]

1

1 1
(Jo(al —q L7 (oc))d(x + jo(al +O,R! (oc))doc) +(Jo(al —glL! (oc))doc

I

(12)

—

1

1 1
+ jo(al + H{R'l(oc))doc)] + i [(Jo(az — L7 (oc))doc + J-O(az +6,R™! (oc))doc)
1
0

(a + GZ'R'I(oc))doc)]

+<J (a2 -t (ac))dac + j

0

=R (‘113 11> 013 ’71l’ 91,)LR +R (‘123 12> 0 ”Iz,’ GZI)LR

=R(A)+R(4,).
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Similarly, for some scalar ¢, R (cA,) = cR(A)).
Hence, ranking function, as defined in Definition 7, is a
linear function. O

3. Methodology to Solve LR-Type Fully
Pythagorean Fuzzy Linear
Programming Problems

We state here our proposed FPFLPP with LR-type PFNs as

n
Max/Min) C;® X, (13)
j=1

which subject to

n
Y A ®X <,=>B, VYi=12..,m (14

where A;;, X, B;, and C; are LR-type PFNs.

3.1. Method 1: FPFLPP Using Unknown Variables. Here, we
state a criterion for the optimal solution of FPFLPP (13).

Definition 8. An LR-type Pythagorean fuzzy optimal solu-
tion of FPFLPP (13) with LR-type PFNs will be LR-type
PENs X; if

1) X are LR-type PFNs

2) Y A;®X;®S;=B;®S, Vi=12,...,m, such
that 3" | A;;®X;>B; for some PFNs §; and S
satisfying R (S) -R($)20; Y7, A;©X; 88 =
B;®S, Vi=1.2,...,m,such that Y | A;®X; > B;
for some PFNs S; and S; satisfying R (S;) — R (S}) < 0;
and Y%, A;;®X;=B;, Vi=12,...,m, such that
Zj=1 A;j®X;=B;

(3) If there exist any LR-type PFNs X} satistying step 2,
then R, C;0X)>R (Y], Cj®X]'.) in maxi-
mization problem and R (Y}, C;®X;)< R(X7,
C;® X]'») in minimization problem

The statement of our proposed problem is given in
equation (13). We now present steps to solve proposed
FPELPP (13).

Step 1: separating all the constraints into three cate-
gories, ', A;®X;<B,VleM, 3} A, 0X,=
B,VreM, and Y7 A;®X;>B,VseM; the
FPFLPP (13) can be rewritten as

n

Max/Mlnj;C]@Xj, (15)

which subject to
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n
Y A;®X;<B, VleM,
j=1

n
YA, j®X;=B, VreM, (16)
j=1

n
YA ;8X;>B, VseM,
=1

where X; are LR-type PFNs and M, =
{i1<ism Y% A @X;<B}, M,={i: 1<i<m,
Y A;j®X; =B}, and My = {i: 1<i<m, ¥ | A;®
X;>Bj}.

Step 2: introduce the variable S; on left side and S; on
right  side of the inequality  constraint
Y1 A;;®X;<B,Vl € My, to convert it into equality
constraint as below:

n
ZA,j®Xj€BSl:Bl€BS§, vie My, (17)
i

where R (S)) - R (S)) =0.

Introduce the variable S; on left side and S_ on right side
of the inequality .C(?nstraint . YAy ®X i=
B,,Vs € M3, to convert it into equality constraint as
below:

n
Y A @X;®S,=BeS, VseM,, (18)
=1

where R (S;) - R (S)) <0.

The FPFLPP (15) can be written as

n
Max/Mmj;Cj@Xj, (19)

which subject to

Y A;®X;0S =B oS, VleM,
j=1
n
YA, ®X;®S,=B@S, VseM,
=1
o (20)
ZA”@XJ- =B, VreM,,
j=1
R(S)-R(S)=0, VieM,
R(S,)-R(S)<0, Vse M,
where X, S;,8),S;, and S; are LR-type PFNs.

Step 3: by assuming Aij = (a,-j;pij,Tij;p,-]’-, T,-})LR,
! ! /
X;= (x50, B50,B) 0 B = (RN NS Cj=
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(C];C]’ﬂ];(]”r]]’)LR’ i = My 1’f1’g1’h)LR’ and S
my; e, fi; gi hy) > the FPFLPP (19) can be rewritten as

MaX/Minj;(Cj?gj’”j;q’”})m ( xji o) By @ J’ﬁJ)LR’

(21)

which subject to

n
(] Il
Z(aljvplj’le7plj’ le)LR®(xj’ ‘Xj’ﬁja aj’ﬁj)LRe) (mlvel’fhgl’hl)LR

j=1

= (by; 61, b33 01, 91) 2 ® (M5 €45 £33 G1s 1) s

vle M,

Z( spps]’ spps;’ S])LR ( ]’ j’ﬁ]’ ]’ﬁ])LR ( mg; s’fs?gs’hs)LR

=1

= (b; 0, ;04 0) 1z ® (M e [5G0 ) o

n
Z(arj;prj’Trj;p;jTrlj)LR ® (x5 ), B3 ), )

j=1

(22)
Vs € M3,

( 1’7 r’(/)r? ,>¢,I-)LR) Vr EMZ’

R (my; e f15 95 ) g — R (mis el f1; 9 M) g 20, VIe My,

R (m57 €5 fsa s hs)LR

where (x]7 J,/3]» J’ﬁ])LR’ (my; e, f15 9 M) Lgs (mlael’
f}? gl’ l)LR’ mg; s’fs’gs’ s)LR’ and (ms7 s’fs
gehl)p are LR- type PEN.

Max/Min Z( ¢33 o153 o 17) 1 ® (55 410 By 5, BS) o

\.
._.

M=

(’b]?‘sl]’ YI]a 61]’ yl])

.
Il
—

M=

-
I
—

(mlael’flagbh )LR

(/15], 85]’ ysj; SLjV;)LRea (ms; €s> fs; s> hs)LR = (bs; es’ ¢s; e.ls’ ¢;)LR€B (m,

( mg; s’fs?gs’h)LR 0’ VS€M3,

Step 4: by using the product as discussed in Section 2

and takmg (az 7p1]’ 1],p1]’ TIJ)LR® (XJ, “]’ﬂ]’ ]ﬁ])LR
(Nijs 6ij> Viji z]’VIJ)LR’ the FPFLPP (21) can be written
as

(b5; 01, 013 0, 1) 12 ® (M€, 15 91 1) oo VI € M,

geo fegohdip Vse€Ms,  (23)

Z(Ar]’ 67’]’ yrﬁ ry y”.)LR (br’ r> ¢r7 61” ¢r)LR’ Vl" € MZ’

j=1

R (my;ep, 15 91 1) g — R (Mg €, f1; g 1) 1r 20,
9{( s’ s’fs’gs’ )LRSO

m(ms’ S’f37g5’ )

where (x], @ B J’ﬁ])LR’ (my; e, f15 91 M) Lps (ml’el’
f}7 gl’ l)LR’ (msves’ fsvgs’ s)LR’ and (msves’ fs?
gs, hl) g are LR-type PFN.

Step 5: using arithmetic operations as discussed in
Section 2 and using Definition 6, the FPFLPP (23) takes
the form

vl e M,

Vs € M3,

n
Max/Min Z; (Cf; Cj’ js CJ," rl})LR® (x]-; “J"ﬂj; “J," ﬁ})LR’
=
(24)

which subject to



n
lej+ml=b1+m1', VZEMI,
j=1

n
Z6lj+el=61+€;, VlEMl,
j=1

Zylj+fl=¢l+f;’ vlie M,
i1

Z‘%j"’ g1=0+g, VleM,
=1

n

Zy,’j+ hy=¢,+h, VleM,,
j=1

n

Yhi=b, VreM,

j=1

n

Y8,;=06,, VreM,

=1
n

ZY;]‘: ¢ VreM,,

=1

n

ZAsj +m,=b,+m., VseM,, (25)
=1

n

!
Zésj +e,=0,+e, VseM,,
j=1

ZYsj+fs:¢s+f.£’ VS€M3’
j=1

Z(SSJ+ gi=0.+g., VseM,,
Zys'j+ hy=¢.+h, VseM,,
-1

dVii=0, VreM,,
j=1
25:]2 9;, vr € MZ)
j=1
R (my; e 159 M) 1x
=R (msep, f1; g h)1r 20, Ve M,,

m( ; s’fs;gs’h)LR
_m(mw s’fsvgsah)LR s VSEM3,

where (x]7 ]’/3]7 ]’ﬂ])LR’ (ml’ € flv gl’h )LR’ (mh el’
flv g;’ l)LR’ (msv s’fsvgs’h )LR’ and (msv s fs7gs’
hQ).r are LR-type PEN.

Step 6: now, we have to find LR-type Pythagorean fuzzy
feasible solution out of all LR-type Pythagorean fuzzy
feasible solutions corresponding to which the ranking

Mathematical Problems in Engineering

of the objective is optimum. By applying ranking, the
FPFLPP (24) can be written as

MaX/Min”‘(Z (e Gty CGoty) e ® (.55 By a;’ﬁ;)LR>’

j=1
(26)
which subject to
ZA,]- +my=b, +m|, VleM,
=1
n
Z(S,j +e=0,+e, VlieM,
=1
n
!
ZYlijfl =+ f VleM,
=1
Z‘Sllj+ g=0+g, VieM,,
=1
Yyl =i+ b, VleM,
=1
Z/\,j =b, VreM,,
=1
28”- =0,, VreM,
j=1
Zyr] ¢r> VT € MZ’
j=1
ZAS]- +m,=b, +m., VseM,, (27)
=1

28 +e, =0, +e Vs € M,
Zysj+fs=¢s+f;’ VS€M3’
=1

Z&Lﬁ gi=0.+g., VseMs,,

Zys]+ hy=¢.+h, VseM,,

R (my; e f1:.90 M) 1r
- R (mp; el f1; g M) 20, Ve M,
m( mg; s’fs7gs’hs)LR
_m(mwes’fygp S)LRSO) VS€M3,



Mathematical Problems in Engineering

>0, ; 20, (x] «;>0, /3 -B;j=0, ¢
—e >0, and fi- fl>0 Vz—12
Vi=1,2,.
Step 7: by taking
ﬁj;ocj'-,ﬁ]'-)LR:(w]-; K ],K)LR,problem (26) can be
written as
n
Max/MinR Z;(wj,a],xj,a],zc]) ,
i=

which subject to
n
Yhj+m=by+mj, VleM,
=1

n
Z5Ij+el=91+e;, VZEMI,
j=1

Zylj+fl:¢l+f;’ vie M,
j=1
28}j+g}:6§+g}, Vlie M,,
j=1

Yyl b= ¢+ h, VleM,

j=1
n
YAj=b, VreM,,
j=1
n
>8,,=6, VreM,,
j=1
n
ZY;F ()b;[’ Vr € M2’
j=1

n
!
lej +mg =b,+mg,

Vs € M3,
=1
n
!
Zésj +e,=0,+e, VseM,,
=1

Zysj+fs:¢s+f;’ VSGMB’
j=1

28;j+ gi=0.+g., VseM,,

j=1

n

Zy;ﬁ hy=¢.+h,, VseM,,
j=1

n

V=9, VreM,

j=1

Vr € M,,

n
! !
Z5rj= O
j=1

R (my; e 159 M) 1x

~ R (mj; el f1; g H) 20, Ve M,
,‘R( mg; s’fs’gs’h)LR
_m(msv s>f5,g5,h)LR VSEMs,

>0, f,20, e
and

(C]7( ’77]; {]’ 77])LR® (X], ])

(28)

(29)

9
®;20, §;>0, ac]—oc 20, Bi—B;20, 20, f;20, €
—-e;>0, and fi=f;=0, Vi=12,...,m and
Vji=1,2,.

Step 8: by using the linearity property of ranking
function, problem (28) takes the form

Max/Min(i m(a)],aj,;c],a], K])LR>, (30)

j=1

which subject to

Yhj+m=b +mj, VleM,
j=1

n
Z5lj+61=91+e;, VZEMI,
j=1

Z)}lj+fl:¢l+f;’ vlie M,
j=1

dYoragi=6+g, VieM,
=1

Dy by =g +h, VleM,
st

YAj=b, VreM,,

j=1

Y8,;=06,, VreM,

=1
n
! !
ZYrj: ¢r> Vr € MZ’
=1
n
Z)sz+m5=bs+ms’, Vs € M,, (31)
=1
28 +e, =0, +e Vs e M,

ZYsj+fs=¢s+fs” VSEMS’
=

n

Z8gj+ gi=0.+g., VseM,,
=1

Vs € M3,

n
D Vit o= g+
=1

n
Z)}rj = ¢r’ Vr € M2’
j=1

n
I _ !
S,
j=1

R (my; e f1590 M) 1x

Vr € M,,

- R(mis e f1; g )1 20, V€M,
9{( 57 s’fs?gs’h )LR
- m(msv s’fsagy hs)LR <0, VseMs;,
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a;>0, f;>0, (x}—’ajzo, ﬁ;_ﬁj? 0, e,20, f;>0, e Step 9: bY. using Definition 7, problem (30) can be
-6;20, and f;-f;20, Vi=12,...,m and converted into
Vi=1,2...,n

Max/MinZn: [i {(J;(wj - ajL_1 (oc))doc + J;(wj + KjR_l (oc))d(x) +<J;(wj - (I}Lk1 (a))dtx + J;(wj + K]'-Rkl (a))doc)} ],

j=1
(32)

which subject to

Yhj+m=b +mj, VleM,
j=1

Z5l]~+el=91+e;, VZEMI,
j=1

Z)’zj+fl:¢z+f§’ Ve M,
j=1

Z‘%ﬁ g=0+g, VieM,,

=

Zy}j+ hy=¢,+h, VleM,,

j=1

n

YAi=b, VreM,,

r

>6,,=6, VreM,
n
ZY;]‘: ¢ VreM,,
j=1

n

!
Z/\sj +m,=b,+m, Vse M;,
i=1

n

!
Z(SS]- t+te,=0,+e, VseMs,,
i=1

ZYsj+fs=¢s+f;’ VSEM3>
j=1

n
Z(?;ﬁ gi=0.+g., VseM,,
=



Mathematical Problems in Engineering 11
iy;ﬁ hy=¢.+h,, VseM,,
j=1
Z)}rj = (pr’ Vr € MZ’
j=1
ié;]: 0., VreM,,
1 1 1
i{(J-O(m, —e L' ( ))doc + jo(ml + fi (oc))doc) <J0<ml - gzL’ )doc + J()(m, +mR" (oc))doc)}
1 1
_i{<jo(ml—elL (oc))doc+j () + fIR° (a))da)+<jo<m; gL (oc) da+j m§+h§R’1(a)>doc>}
>0, VleM,,
i (J-;(ms —e ! (oc))doc + J;(ms + fR! (oc))doc) +<J;<ms —gL™! (oc))doc + J:)(ms +h R (cx))doc)}
1 1
_%{(Jo(m;—e;L ((x))doc+J (m + fiR° ((x))d(x) +(Jo<m; g.L' (oc))doc+J (m +h.R" (oc))doc)}
<0, Ve M,
(33)
a;>0, B;>0, o >0, /3] /3]2 , € f,>0 e (1) X; are LR-type PFNs
_e >0, and fl f1>0 Vi =12 .. and (2)9{(2]114 ®X)_, = >R (B), for all i=1,2,
Vj=12,. m

Step 10: now, solve the crisp linear/nonlinear pro-
gramming problem (32) by any ex1st1ng method to find
the optimal solution x],(x] ) J, oc] B
Step 11: find the LR-type Pythagorean fuzzy optimal
solution X7 of the FPFLPP (13) by substltutmg the

*

values o x], al, 3 Bjs oc] , and ﬁ in
Xj = (x5 a5, By 0 ﬁj Urs
Step 12: find the LR-type Pythagorean fuzzy optimal

value of the FPFLPP (13) by substituting the values of
X3, as calculated in Step (11), in 37, C; ® X ;.

3.2. Method 2: FPFLPP Using Ranking Function. Now, we
present another method to solve FPFLPP (13). We present a
criterion for the optimal solution.

Definition 9. An LR-type Pythagorean fuzzy optimal solu-
tion of FPFLPP (13) with LR-type PFNs will be LR-type
PENs X if

M=

.
Il
—

M:

( Gsjs Psjp T SJ’PSJT)LR ( xjs o By o J’ﬁl)

.
Il
—

M:

.
Il
—

. . ! !
> (@i P s P1y 1) ® (355 B3 45, B))

(3) If there exist any LR-type PFNs X]'» satisfying step 2,
then R(Y1,C;0X)>R(YL, C;®X)) in maxi-
mization problem and R}, C;®X;)< R

(YL CieX ;) in minimization problem
Step 1 by assuming A;; (al],p,], U,pl], Tl])LR,
], ]’/5], ]7ﬁ])LR’ B - (bu i’ (/517 [ ¢1)LR’
and C] = (c;; ¢ r]J,C ,117) 1> the FPELPP (15) can be
rewritten as

n
Max/Min Zl (cj; (j, ;i (}, n})LR'X’(xj; a;Bj; (X},/;})LR,
=
(34)

which subject to

(aljvpl]’Tlppl]’ TIJ)LR@’(xj%“j»ﬁj?“}ﬂ]")m< (bl§9l>¢l;9;’ ¢;)LR’ vlie M,

( 5 s’ (psv ’¢S’)LR’ Vs € M3’ (35)

= (br; Gr’ ¢r; Gr,’ ¢r,)LR’ Vr € MZ’
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where (x;;a;, B;; oc}, ﬁ})LR is an LR-type PFN.
Step 2: by using the product as discussed in Section 2
and taking (ai]-;pij,rij;pi]'., T,-]'-)LR® (xj;

Mathematical Problems in Engineering

]ﬁ] ]’ﬁ])LR

(34) can be wrltten as

n
Max/Min (¢ (o nji Cot}) o ® (%5 @ Bjs oo B) o
=

M=

(Alp 61]’ YIjv 81]’ YI])

-
I
—_

M=

(A'S] ) 85]’ YS] ? 57 YS) LR

-
Il
—

M=

(Ar]’ r]’Yr]v rj))r)LR

-
Il
—_

where (xj;a;, B;; &}, )1x is an LR-type PFN.

Step 3: using arithmetic operations as discussed in
Section 2 and using Definition 6, the FPFLPP (36)
can be rewritten as

M=

(/\117 61]’ yl]a 61]’)’1])

-
I
—_

M=

-
Il
—

Vr € M,,
Vr € M,,

Vr € M,,

n
/ /
ZYrjz ¢r’
j=1

Zyrj = ¢r’ Vr € MZ’
j=1

Za;]: 6,

Jj=1

Vr € M,,

where (x;;a;, ;; (x}, ﬁ]'-)LR is an LR-type PFN.
Step 4: by applying ranking, the FPFLPP (37) takes
the form

(bz§ 0, 3 ‘9; ¢;)LR’

(Asp 85]’ YS]7 sﬂ/s)LR - (b37 es’ ¢s7

(bbel)(pl;e;;gb;)LR, Vl € Ml’
bsa 65’ (/)57 65, ¢$)LR’ Vs € M3,
(br7 r’¢ra I: (/);)LR’ Vr € MZ’

l]7 l]’ yl] ? l]’

Vi) the FPFLPP

(36)

n
MaX/Min;(Cj?("ﬂj;cfl"”})m ( xj; o) By @ J’ﬁ])LR’

which subject to

Vi e M,,

o P VS € M,

n
Max/Min R (Z (cji i Ejo) @

j=1

(37)

(38)

( Xjs ]’[J)J’(xJ’ﬁJ)LR>’

(39)
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which subject to

™=

"
"

(Aljv 81]’ YI]a 61]7 YIJ) > SER(bl; 617 ¢l; 9;> (p;)LR’ vie Ml’

1

™=

(’15]7851’)/5]7 s]ys)LR> (bs’es"/)s’ ’¢;)LR’ Vs € M3’

I
—

ZA,]- =b,, VreM,,

Y8,;=6, VreM,, (40)
Z)’;]‘: ¢ VreM,,

n

ZYrj = (pr’ Vr € MZ’

=1

n
Y'8,=6), VreM,

n
ocj‘zo, ﬂjZO, ocj'-—ocjzo, and ﬁ}—ﬁjZO, Max/Min?{(Z(w],UJ,K],OJ,K])LR>, (41)
Vji=12,. j=1
Step5 bytakmg (c],( n],(,r]])LR@)(xJ, J,ﬁj, i . .
ﬁJ)LR W 0K ],KJ)LR, problem (39) can be which subject to

rewrltten as

™M=

Il
—_

"

<Z( 53 Osjp Vs SJ’YS])LR>>m(b5765’¢5765’¢s)LR’ Vs € M,

j=1

(/\ZJ»5IJ)Y1]>5U,Y1;)LR><m(bl,91 G0 ) VIEM,,

Z’lrj =b, VreM,,
»8,,=06,, VreM, (42)
Z)’;j: ¢ VreM,,
j=1
n
zyrj = (pr’ Vr € MZ’
j=1

Y'81=6), VreM,
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1— j L

Vi=12,. Max/Min(Z iﬁ(wj,aj,xj,cr], K])LR>, (43)
Step 6: by using the linearity of ranking function, =
problem (41) can be written as

;
;

a; >0, ﬁ]>0 oc'-—ocjzo, and ﬁ}—ﬁjzo,

which subject to

™=

1

m(%@y%p@p Vz;) >S§R(bzé O, ¢1; 0} ¢;)LR’ Ve M,,

™=

I
—

m(lsﬁ(ss;’))sp sjys)LR> (bs’es’ ¢s’65’¢s)LR’ VS € M3’
YAj=b, VreM,,
Y8,,=06, VreM, (44)
Z)};j: ¢, VreM,,
j=1
Zyrj = ¢r’ Vr e MZ’
j=1
n
Y'8,=6), VreM,

. Bj=0, aj-a;20, and B;-p;=0, Step 7: by using Definition 7, problem (43) can be
1,2,...,n. converted into problem (45):

&N 1 B 1 _ ! Iyi= ! 'RI™
Max/Mmj; [Z {(Jo(wj—ajL l(oc))doc+J0(wj+;<jR 1(“))d“)+<jo<wj_UjL l(oc))doc+JO(wj+KjR 1(oc))doc)H,

(45)
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which subject to

Vr € M,,
i=1
n
)8,,=6, VreM,,
j=1
n
I !
Zyrj: ¢r’ Vr e MZ’
i=1

n
D= VreM,
j=1

n

Y8,=6, VreM,

j=1

@;20, B;20, aj-a;20, and p;-p;=0,
Vi=12,...,n

Step 8: solve the crisp linear/nonlinear programming
problem (45) by any ex1st1ng method to find the
optimal solution x7, a} NN ]*.

Step 9: find the LR- type Pythagorean fuzzy optimal
solution X7 of the FPFLPP (13) by substltutlng the

! .
values of x5 ;‘, Bj> «, and [3 in

Xj = (xj; J/SJ’ j /3 )ik-

Step 10: find the LR-type Pythagorean fuzzy optimal
value of the FPFLPP (13) by substituting the values of
X3, as calculated in Step (9), in Z;Ll C;®X;

4. Equivalence of the Proposed Methods

Here, we confirm that the two techniques proposed in
Section 3.1 and Section 3.2 give the same solution.
If A, and A, are any two PFNs such that A; = A,, then

R (A) = R(B). Thus, the 1% and 2" constraints [27:1

— 6L (a))dar + J;(b, +¢R () dcx) (

1
oL @)dat [ (L 47,8 (@)da

(oc))doc+J (b, + ¢k () doc> (J

0

15

1 1
8L (@) dac + jo(a,j + R (@) doc> +< M= 8L (a ))dcx + L(AU bR (a)>d(x>}>

(cx))dcx + j;(b, + R (oc))doc)]», vieM,

( b @)ias [y y;;z'*(a))da)})

! a))da)}, Vs € Ms,

b —or" (oc))doc+j;(bs+¢sR’

(46)

Aj®X ;88 =BeS,VieM;, Y, A;®X;®S =BeS,
Vs € M3] of Problem (19) can be wr1tten as

m<ZAlj®Xj®Sl>:m(Bl®S;), vieM,, (47)
ot

m<2A5j®Xj®SS>:9{(BS$S;), VseM,  (48)

=i

Since the ranking function as discussed in Definition 7 is
linear, so equations (47) and (48) can be written as

m(ZAlJ@)X])+§R(Sl)=m(Bl)+§R(S;), VZGMI,

=i

"

(49)

M=

Asj®xj> +R(S) = R(BIR(S), VseM,

I
—_

(50)
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Thus, equations (49) and (50) can be written as

R (B)) - m(Z A,j®Xj> =R(S)-R(S), VleM,

=1
(51)

m(BS)—m<iAsj®Xj> =R (S,)-R(S.), VseM,

=1
(52)

Now, by using the 4" and 5% constraints
[R(S)-R(S)=0,R(S,)-NR(S)<0] of problem (19),
equations (51) and (52) convert to

2R(Bl)—5R<ZA;]»®X]~>20, vl e M,
. (53)
91(35)—?1<ZA5]463>X1,>so, Vs € Ms,
j=1
or
m(ZAU@X])Sm(Bl); VleMl,
. (54)
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Hence, the proposed techniques (method 1 and
method 2) are equivalent. Both the techniques give almost
the same solution. However, there is a little bit of difference
that when solving the translated crisp problem, one of them
may give an answer more faster than the other one. So,
depending on the initial guess for the solver, technique
which gives faster optimal solution is not known in advance.

5. Numerical Examples

Example 1. A farmer has (45;41,80;44, 138); square-feet
land. He wants to grow two types of plants, namely, X and Y.
Each X plant needs (5;3,2;3,4);r square-feet of land and
(2;1,1;2,3),x man-per-hour labor. Each Y plant needs
(6;5,4;5,6), square-feet of land and (3;2,3;3,3);; man-
per-hour labor. Maximum labor which is available is
(21;18,48;21,74), man-per-hour. Profit for each X plant
is (4;1,2;3,4);x and for each Y plant is (3;2,3;3,5)-
Farmer wants to maximize his profit subject to give available
resources  with  L(x) = R(x) =max{0,1-x’} and
L' (x) = R (x) = min{1, x*}.

Let X, be the number of X plants and X, be the number
of Y plants that farmer should grow. Then, the problem
converts to the following LR-type FPFLPP:

Max(4;1,2;3,4), @ X, ® (3;2,3;3,5) R ® X5, (55)

which subject to

(2;1,1;2,3), 0 X, @ (3;2,3;3,3) g ® X, < (21; 18,48; 21, 74) 1,
(5;3,2;3,4) 1, X, ® (6;5,4;5,6) ® X, = (45;41,80;44,138),

where X are LR-type PFNs for j=1,2and L(x) = R(x) =
max{0,1 - x*} and L' (x) = R’ (x) = min{1, x*}.

Now, we solve Example 1 by using method 1 as discussed
in Section 3.1.

Step 1: by applying Step 2 of the presented method 1 in
Section 3.1, the problem becomes

(56)

Max (4;1,2;3,4), ® X, ® (3;2,3;3,5),, 8 X,, (57)

which subject to

(2;1,1;2,3),,® X, ®(3;2,3;3,3),, ® X, ®S = (21;18,48;21,74) ,, &S,
(5:3,2;3,4),,® X, ® (6;5,4;5,6),2,® X, = (45; 41, 80; 44, 138), 1,

R (S) —R(S')>0, where Xj,S, and S’ are LR-type
PFNs for j=1,2 and L(x) = R(x) = max{0,1 - x}
and L' (x) = R’ (x) = min{1, x*}.

St,ep ,21 let X; = (o3 0, 815 00 B)) 1o X; = (x2’; 0‘%>ﬁz,§
Bl S= (mje fig.h)r, and S = (m'e, f;

(58)

g',h") > and the problem obtained in Step (1) can be
written as

Max (4;1,2;3,4)z ® (x1§ ap P “{’ﬁ{)LR

, (59)
®(3;2,3;3,5) 12 ® (X350, 5 0, B2) 1o
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which subject to

(21,1;2,3) 1@ (x55.005 By 0, B1) 1o ® (352,35 3,3) 1 ® (X956, B3 45 B3) 12 ® (1158, £ 9, )1k

=(21;18,48;21,74) z @ (m';€’, ' 9" 0 ) >

(60)
(553,2;3,4) 1 ® (x13 01, By 01, B) @ (635,45 5,6) 5 ® (X33 0, B3 043, B3) 1 = (45341, 80; 44, 138) p,

R(mse, f9.h)p —~R(m'se’, f'19' 1) 20,
where  (xy; 05, By 00, B g (%33 095 By 00 Bo) 1o Step 3: using the product as discussed in Section 2, the
(m;e, f;9,h) g, and (m';e’, f';9',h'")x are LR-type FPFLPP, obtained in Step 2, can be written as
PFNs.

Max (4x,; 4x; — min{3x; — 3a;, 6x; — 6a; }, max{6x, + 6f3;,3x, + 3f;}
—4x,;4x, — min{x, — af, 8x; — 8}, max{8x, + 86, x; + B} — 4x,)x (1)

® (3x,; 3x, — min{x, — a,, 6x, — 6a,}, max{6x, + 6f3,,x, + B,} — 3x5;

3x, — min{0, 8x, — 8a,}, max{8x, + 8f,,0} — 3x,);x

which subject to

(2x;2x; — min{x; —a;,3x; — 30, }, max{3x; + 3, x; + B;} — 2x;; 2%, — min{0, 5x; — 5a;}, max{5x; + 56,0} — 2x,),x
@ (3x,; 3x, — min{x, — a,, 6x, — 6a,}, max{6x, + 6B,, x, + f,} — 3x,; 3x, — min{0, 6x, — 6a,}, max{6x, + 6B,,0} — 3x,),
® (mje, f;9,h)x = (21;18,48;21,74) p® (m';e', f' 9" 1) s
(5x,; 5%, — min{2x; — 2a;, 7x; — 7o}, max{7x; + 7B, 2x; + 2B, } — 5x1; 5x; — min{2x; — 2a;,9x; — 9/},
max{9x, + 9B/, 2x; + 2B} — 5x1) 1z ® (6x,; 6x, — min{x, — a,, 10x, — 10a,},
max{10x, + 10B,, x, + B,} — 6x,; 6x, — min{x, — a;, 12x, — 12a,},
max{12x, + 12B,, x, + 3} — 6x,) 5 = (45;41, 80; 44, 138), ,

R(mse, f; g, h)x _m(m,§e/>f,;g/>h,)LR20’

(62)
where (x1; a1, B3 00, B)rr (%2540, Bas 0, B ipe (mse, Step 4: by using arithmetic operations discussed in
f3 g-h)r and (m';e’, f';g',h')x are LR-type PFNE. Section 2 and using Definition 6, the FPFLPP, obtained

in Step 3, can be rewritten as
Max (4x, + 3x,; 4x; — min{3x, — 3a;, 6x; — 6a;} + 3x, — min{x, — a,, 6x, — 6a,},
max{6x; + 6f3;,3x; + 3f,} — 4x, + max{6x, + 6f3,, x, + B,} — 3x,;4x,
(63)

—min{x; — a;,8x; — 8a;} + 3x, — min{0, 8x, — 8as},

max{8x, + 881, x; + B} — 4x; + max{8x, + 8f,,0} — 3x,)
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which subject to

2x, + 3%, +m=21+m',

5x; + 6x, =45,
2x, —min{x; — a;,3x; — 3a;} + 3x, — min{x, — a,, 6x, — 6a,} +e =18 + ¢,
max{3x,; + 3B, x, + B} — 2x; + max{6x, + 6B,,x, + B,} —3x, + f =48+ f',

2x; — min{0, 5x, — 5a,} + 3x, — min{0, 6x, — 6ay} + g =21 + g,

max{5x; + 58,0} - 2x, + max{6x, + 6f,,0} —=3x, +h =74+ 1/, (64
5x, — min{2x, — 2a;,7x; — 7a;} + 6x, — min{x, — a,, 10x, — 10a,} = 41,
max{7x, + 7B, 2x; + 2B, } — 5x; + max{10x, + 10B,, x, + B,} — 6x, = 80,
5x; — min{2x, — 2a,9x, — 9} + 6x, — min{x, — a;, 12x, — 12a,} = 44,
max{9x; + 9B, 2x, + 2B} — 5x; + max{12x, + 128,,x, + B,} — 6x, = 138,
R(mse, f;9.h) g —R(m'se', f5g',h) =0, where Step 5: using Step 6 of the proposed method 1, the
(x5 00, B0, Bir (%3500, By 00, Bo) i (M€, £ G, FPFLPP, obtained in Step 4, can be rewritten as
h).g> and (m';e’, f';g',h')x are LR-type PENs.
Max R (4x, + 3x,;4x, — min{3x, - 3a,, 6x; — 6a;} + 3x, — min{x, — a,, 6x, — 6, },
max{6x; + 6f3;,3x; + 3f,} — 4x; + max{6x, + 6f3,, x, + B} — 3x,;4x, (65)
—min{x; — a;,8x; — 8a;} + 3x, — min{0, 8x, — 8as},
max{8x, + 8B, x; + B} — 4x; + max{8x, + 8$,,0} — 3x,) .
which subject to
2x, +3x2+m=21+m',
5x; + 6x, =45,
2x, — min{x; — a;,3x; = 3a;} + 3x, — min{x, — a,,6x, — 6a,} +e =18 + ¢,
max{3x; + 3B,, x, + B} — 2x; + max{6x, + 6B,,x, + B,} = 3x, + f =48 + f,
2x, — min{0, 5x; — 5a;} + 3x, — min{0, 6x, — 6a,} + g =21 + g',
max{5x; + 58,0} — 2x; + max{6x, + 6f,,0} —3x, +h =74+ 1/, (69
5x; — min{2x, — 2a;,7x; — 7a,} + 6x, — min{x, — a,, 10x, — 10a,} = 41,
max{7x; + 7B, 2x; + 2f3,} — 5x; + max{10x, + 108,, x, + f,} — 6x, = 80,
5x; — min{2x, — 2a,9x; — 9a;} + 6x, — min{x, — ay, 12x, — 12a,} = 44,
max{9x; + 9B, 2x, + 2B} — 5x; + max{12x, + 12B,,x, + B,} — 6x, = 138,
R(mse, ;9. Mg —Rm's e, f59,h) =0, a; >0, Step 6: using min{a, b} = ((a +b)/2) — | (a — b)/2| and
B20,a] —a,; 20,8 - B, =20,a,20, f, 20,0 — at; >0, max{a, b} = ((a +b)/2) + | (a - b)/2| and Steps 8 and 9
By—P,=0,e>0, f>0,g—e>0,h— f>0,e' >0, f' > of method 1, presented in Section 3.1, the FPFLPP,

0,g' —€ 20, andh' - f' >0. obtained in Step 5, can be written as
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65 61 27 9 21 15 27 9 21
Max (%) + 5%~ 5@ —g|x1 - ay -5 —§|x2 - | +§ﬁ1 +§|x1 + By +§ﬁ2
(67)
15 7 8 8 7 8 8
+§|x2+[32|—3a{—5|x1 —ocl'|—gocz'——|x2—(x2'|+3ﬁ1'+§|x1+[31'|+§ﬁ2'+§|x2+/32'|),
which subject to
2x, +3x, +m=21+m',
5x; + 6x, = 45,
1 7 5 ,
2a1+|x1 —a1|—2x2+5(x2+5|x2—o¢2|+e: 18 +e,
1 7. 5 .
2ﬁ1+|x1+ﬁ1|+5x2+5ﬁ2+5|x2+ﬁ2|+f=48+f,
1 5,5 ’ / ’ _ ’
——xl+—oc1+—|x1—a1|+3a2+3|x2—a2|+g—21+g ,
2 2 2
lx1 +§ﬂ1’+§|x1 +Bi| +3Bs+3|x, + Byl +h =74+ 1,
2 2 2 (68)

1 9 11 9
—xy ooy o |xg -y Xt +§|x2—0£2| =41,

2 2 2
1 9

5
—% + B, +5|x1 +Bi| -

21T
1 11, 7

2 2 2

1

11 9
%2 +7/32 +5|x2 +B,| = 80,

13, 11

——x; + —af + = |x; - ay — Xt +7|x2 - oy = 44,

2

11 7 1 13 11
> +7ﬁ1’ +E|x1 + By 5% +?ﬁ2'+7|x2 + By = 138,

8m—e+ f-g+h-8m' +e' — f +g -h' >0,

a,20,8,20,a, —a; 20,8 —f,20,a,>0,3,> 0,0, —
0, 20,8, ,20,e>0,f>0, g—e>0,h— >0, ' >
0,f'20,g' —¢' >0, and '~ f'>0.

Step 7: the optimal solution of the crisp nonlinear
programming problem, obtained in Step 5(using:
MATLAB R2014a, solver “fmincon,” algorithm “inte-
rior point,”  TolFun=eps, TolX=eps, Tol-
Con=0.000001) is x; = 9.0001, «; = 0.001, 3, = 8.857,
a; = 0.1011, B; = 11.3333, x, = —0.0001, &, = 1.3996,
B, = 0.0001, a; = 1.3997, and S, = 0.0002.

Step 8: substituting the values of x;,a;,pBq
Bis %2 0, By 03, and By in Xy = (x50, By, f)ie
and X, = (x,; 4y, B; @3, B3) 5o the exact LR-type Py-
thagorean  fuzzy optimal solution is X, =
(9.0001;0.001, 8.8570.1011,11.3333);,, and X, =
(-0.0001; 1.3996, 0.0001; 1.3997, 0.0002), .

Step 9: substituting the values of X, and X, obtained in
Step 8, into the objective function, the LR-type Py-
thagorean fuzzy optimal value 1is (36.0001;
9.0034, 75.3404; 38.2995, 126.6415), z. So, the farmer
should grow (9.0001;0.001,8.857; 0.1011,11.3333);,
number of plants of X and (-0.0001; 1.3996,0.0001;
1.3997,0.0002);, number of plants of Y to get a
maximum profit of (36.0001;9.0034, 75.3404;
38.2995,126.6415), .

We now solve Example 1 by using method 2 as discussed
in Section 3.2:

Step 1: let X, = (xl;ocl,ﬂl;txl',ﬁl')LR and X, = (x,; a5,

B,; &, B5) s then, problem of Example 1 can be written
as

Max (4;1,2;3,4) 12 ® (x15 0, B1; a1, B1) o ® (352,353,5) 12 ® (X054 By 00, B2) o (69)
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which subject to

(21,152,3) 12 ® (xp5 00, Brs 1, Br) 1o ® (352,35 3,3) 12 ® (%2 g, By @, B) 1 X (21518, 48; 21, 74) 1, (70)
(553,2;3,4) 12 ® (x5 00, By s Br) 12 ® (655,45 5,6) 1 x ® (%55 6, By 43, B3) 1 = (45541, 80; 44, 138)

where (x5 a,, B; a0, B1)r and (x,; &, By; 0, B5) g aT€ Step 2: using the product as discussed in Section 2, the
LR-type PFNs. FPFLPP, obtained in Step 1, can be written as

Max (4x,;4x, — min{3x; — 3a;, 6x; — 6a,}, max{6x, + 6B;,3x; + 3B;} — 4x,; 4x; — min{x, — ay, 8x; — 8a,},
max{8x, + 8B/, x; + B} — 4x,)2® (3x,; 3x, — min{x, — a,, 6x, — 6, }, (71)

max{6x, + 6B,, x, + B} — 3x,; 3x, — min{0, 8x, — 8a,}, max{8x, + 8f3,,0} — 3x,) .

which subject to

(2x,; 2x, — min{x; — a;,3x; — 30}, max{3x; +3f,,x; + f;} - 2x; 2x; — min{0, 5x, — 5a;},
max{5x; + 58,0} — 2x,)z ® (3x,; 3x, — min{x, — ay, 6x, — 6a,},
max{6x, + 6B,, X, + f,} — 3x,; 3x, — min{0, 6x, — 6}, max{6x, + 6B,,0} — 3x,); x < (21; 18,48;21,74) ,
(5x; 5x; — min{2x; — 2y, 7x; — 7a; }, max{7x; + 7B, 2x, + 2f3,} — 5x;;5x; (72)
—min{2x, — 2a;,9x, — 9a;}, max{9x, + 9B, 2x; + 2B;} — 5x,)x
@ (6x,; 6x, — min{x, — a,, 10x, — 10a,}, max{10x, + 10B,, x, + f,} — 6x,;

6x, — min{x, — &, 12x, — 120}, max{12x, + 12B,, x, + B,} — 6x,) 1z = (45; 41, 80; 44, 138), ,

where (x5 a;, B1; a1, B1)r and (x,; &y, By; 0, B5) g aTE Step 3: by using arithmetic operations discussed in
LR-type PFN. Section 2 and Definition 6, the FPFLPP, obtained in
Step 2, can be rewritten as

Max (4x, + 3x,;4x; — min{3x; — 3a;,6x, — 6a,} + 3x, — min{x, — a,, 6x, — 6a,},
max{6x; + 6f3;,3x; + 3f,} — 4x; + max{6x, + 6f3,, x, + fB,} — 3x,;
4x, — min{x; — af, 8x; — 8a;} + 3x, — min{0, 8x, — 8a,}, max{8x, + 8B, x; + B} — 4x;

+max{8x, + 86,0} — 3x,)»,

(73)

which subject to

(2x, +3x,;2x, — min{x; — a;,3x; — 3o} + 3x, — min{x, — a,, 6x, — 6, }, max{3x; + 3B, x; + f;} - 2x;
+ max{6x, + 6B,, x, + f,} — 3x,;2x; — min{0, 5x; — 5a;} + 3x, — min{0, 6x, — 6a,},
max{5x; + 58,0} — 2x; + max{6x, + 6f,,0} — 3x,); x < (21;18,48;21,74) 1,
5x; — min{2x; — 2ay,7x; — 7o } + 6x, — min{x, — a,, 10x, — 10a,} = 41, (74)
max{7x, + 7B, 2x, + 2f3,} — 5x; + max{10x, + 108,, x, + B,} — 6x, = 80,
5x; — min{2x, — 2ay,9x; — 9a;} + 6x, — min{x, — a3, 12x, — 12a,} = 44,

max{9x; + 9B, 2x, + 2B} — 5x, + max{12x, + 12B,, x, + B,} — 6x, = 138,
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5x; +6x, =45,  where  (x;a5, B30, 8)r and Step 4: using Step 4 of the proposed method 2, the
(%33 0y, By &3, B5) g are LR-type PFNs. FPFLPP, obtained in Step 3, can be rewritten as

Max R (4x; + 3x,;4x; — min{3x; - 3a,, 6x; — 60, } + 3x, — min{x, — a,, 6x, — 6, },

max{6x; + 6f3;,3x; +3f,} — 4x; + max{6x, + 6f3,, x, + f5,} — 3x,,

4x, — min{x, — af, 8x; — 8a,} + 3x, — min{0, 8x, — 8a,}, 7
max{8x, + 8B, x; + B} — 4x, + max{8x, + 8B,,0} — 3x,) >
which subject to
R (2x; + 3x,; 2x; — min{x; — &y, 3x; — 3} + 3x, — min{x, — a,, 6x, — 6a,},
max{3x; + 3B, x; + B} — 2x; + max{6x, + 6B,,x, + 5,} — 3x,; 2x;
— min{0, 5x; — 5a;} + 3x, — min{0, 6x, — 6a,}, max{5x, + 54,0}
—2x; + max{6x, + 6f3,,0} — 3x,) x <R (21; 18,48;21,74) 1,
5x, — min{2x, — 2a;,7x, — 7a;} + 6x, — min{x, — a,, 10x, — 10a,} = 41, 7
max{7x, + 7B, 2x; + 2} — 5x; + max{10x, + 10B,, x, + f3,} — 6x, = 80,
5x; — min{2x, — 2a,9x, — 9} + 6x, — min{x, — a,, 12x, — 12a,} = 44,
max{9x, + 9B, 2x; + 2B} — 5x, + max{12x, + 12f;, x, + B,} — 6x, = 138,
5x; +6x, =45, a;20,4,20,a; —a; 20,8 — B, >0, of the presented method 2, the FPFLPP, obtained in
a4, >0, B,>0,0, — &, >0, and 8, — B, > 0. Step 4, can be written as
Step 5: using min{a, b} = ((a + b)/2) — | (a — b)/2| and
max{a, b} = ((a +b)/2) + | (a - b)/2| and Steps 6 and 7
Max(%x1 +%x2 —%al —§|x1 - oy —%(xz —%|x2 - o] +%/§’1 +§|x1 + By +2—81[32 +§|x2 + By
(77)
=30 2 | ]~ Sad = s — ] + 3B+ 2+ B+ 5B+ S +;s;|),
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which subject to
8 15 3 3 21 15 3 3 21 15
gxl +Zx2—£“1 _lel —Olll —§OC2 _glxz—“2| +Eﬁ1 +Z|X1 +ﬁ1| +§ﬁ2 +§
5 ! 5 ! ! ! 5 ! 5 ! ! !
|, + Bs| - 3473 |, — af| = 205 = 2|, — 3| + Fi+3 |, + Bi| +2B; + 2|x, + By| <35.4583
1 9 5 1 11 9
Exl +E(X1 +5|x1 — (X1| +5X2 +7(X2 +5|x2 — O(Zl = 41,
1 9 5 1 11, 9 78
_Exl+Eﬂ1+E|x1+ﬁ1|_5x2+7ﬂ2+5|x2+ﬂ2|:80: (78)
1 11, 7 L1 13, 11 .
- 3%t +E|x1 - - % +7(x2+7|x2—a2| = 44,
1 11 7 1 13 11
> +7ﬂ1' *2 lx, + Bil 5% +7[32' +7|x2 + 5| = 138,
5x, + 6x, = 45,
a, 20,8, 20,0, —a; 20,8/ —f,20,a,>0, B,>0, a - So, according to this technique, the farmer should grow
a,>0, and ff; — 3, >0. (9;0,8.8;0,11.33),, number of plants of X and

(0;1.3,0; 1.3,0);  number of plants of Y to get a maximum

Step 6: the optimal solution of the crisp nonlinear
profit of (36;16.8,70.8;37.4,126.64) .

programming problem, obtained in Step 5(using
MATLAB R2014a, solver “fmincon,” algorithm “inte-
rior point,” TolFun=1, TolX=eps, TolCon=1), is  Example 2. Let us solve the practical model, discussed in
x;=9 a=0, ;=88 a;=0, f;=1133, x, =0, [15], by method 1 as discussed in Section 3.1, using L(x) =

@ =13,p,=0,a,=13,and 8, = 0. R(x) = max{0,1 — x} and L' (x) = R’ (x) = min{1, x}:
Step 7: substituting the values of x,,a,f, 55 55
i} B}, @3,y and B in X, = (5151, By @l B Max(8:2,2:2,) oX0(12:2.22.7)
and X, = (x,; 4y, B; a3, B3) o the exact LR-type Py- (79)
thagorean fuzzy optimal solution is X, = (9; 1111
0,8.8;0,11.33); and X, = (0;1.3,0;1.3,0),p. ®X2@<1;Z’Z’ E’E)LR®X3’
Step 8: substituting the values of X, and X,, obtained hich subiect t
in Step 7 into the objective function, the LR-type Py- which subject to
thagorean fuzzy optimal value is (36;16.8,
70.8; 37.4,126.64), p.
1133 1133
(5,—,—,—,—) ®Xlea(5,—,—;—,—> ® X, ® X5 = (155;45,52;60,70), >
2°2°4 4/1r 2°2°44)L
1111 1111
6;7,7;7,7) ®X 69(2;7,7;7,7) ® X, < (125;18,22;30,35);z, 80
(4422LR 1O\ Z g p2) o i (80
1131 1111
(113553),,8%0 (4 p355), ©X.= (110;42,38:65,60) 1,
24 42/1r 4224/Ir
where X ; are LR-type PFNs for j = 1,2,3. S, = (myiey, f2: 90 M) S1 = (myel, f1;91,h)r  and

Let X, = (x;;0,B00 B Xo = (%500, By05, Sy = (my; ey f2; Gy o)1 g- By solving step by step as discussed

Bir X5 = (x3503, B350 B S1 = (my5eq, f1591h)p in Section 3.1, we obtain the crisp problem as given under
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1 3 1 1 1

Max(8x1+12x2+x3—oc1—1|x1 —a1|—§a2—1|x2—a2|—§rx3—3—2
3 1 1 1 5 3

+§ﬁ2+Z|x2+ﬁ2|+§ﬁ3+§|x3+ﬁ3l‘“{‘E|x1_“1,|‘5“2,_

oo =~ gt 1
8

which subject to
5x, +5x, + X3

6x, +2x, +m,

X, +4x, +m,
1 1
50c1+5|x1—oc1|+50(2+5|x2—(x2|+(x3
1 1
5[31+5|x1+,31|+5ﬁ2+5|x2+/32|+ﬁ3
3 3
erl’+Z|x1—ocl'|+50c2’+1|x2—oc2'|+oc3’
’ 3 12 12 3 ! !
Sﬁl+z|x1+/31|+5/32+j1|x2+ﬁ2|+/33
1 1
6a, +Z|x1 —ocl|+2042+Z|x2—042|+e1
1 1
6ﬂ1+Z|x1+/31|+2/32+Z|x2+ﬁ2|+f1

6 ! 1 ! ! 1 !
0c1+z|x1—oc1|+20c2+z|x2—0c2|+gl

1 1
6ﬂ1’+£|x1+[31’|+2[32’+E|x2+/32’|+h1

1 7 3 1 33 3
§x1+g(x1+§|x1—a1|—§x2+§tx2+§|x2—(x2|+ez
1 7 3 1 33 3
_gxl+§ﬁ1+§|x1+ﬁl|+§x2+§ﬁ2+§|x2+ﬁ2|+fz
1 7,5 . 1 33,5 ,
gxl+§0(1+§lx1a1|—§X2+§0(2+§|x2—a2|+g2
1 7 5 1 33 5
—gxl+§[31'+§|x1+/31’|+§x2+§[32'+§|x2+ﬁ2'|+h2

8m,—e, + f1—g,+h —8m{+e — fi+ g —h =0, 8m, -
et fr—gothy,—-8my+e,— f+g,—hy>0, a;>0,B,>
0,0 —a; 20,8 = B,20,a,20, 3,20,0) —, >0, B, = B, >

0,e,>0, f120>g1
e> 0,h{— f1>0,e,>0,f,>0, g, —e;>0,h, — f,>0, e,
>0, f,20,g;, —e;>0, andhy — f,>0.

23

1
|x3—(x3|+/31 +le1 +ﬁ1|

5

T (81)

5 3 5 1 1
|x3 —“3’| +/31'+E|x1 +/51'| +552'+E|x2 +ﬁz’| +§/33'+1—6|x3 +ﬁ3’|)’

=155,
=125 +myj,

=110 + m,,

=45,

=52,

60,

70,
=18 +ej,
(82)

=22+ f,
= 30+g1',
=35+h,
=42 +ey,
=38+ f,
=65+ g,

=60 + h,,

—e;20,h — f,20,e/20, {20, g/-
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Comparison of optimal value
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FIGURE 1: Comparison of the Pythagorean fuzzy optimal value using proposed methods (method 1 as discussed in Section 3.1 =red and

method 2 as discussed in Section 3.2 =blue).

The optimal solution of this nonlinear problem (using
MATLAB R2014a, solver “fmincon,” algorithm “interior
point,” TolFun=0.1, TolX=eps, TolCon=0.1) is X, =
(12.9809, 0.0332, 0.0866; 0.0749, 0.1206), 5, X, = (23.8686;
4.4142,3.0225;5.8714,4.3456);z, and X; = (-29.2479;
6.5785,16.4640;7.0914,16.6821); . The optimal value of
this problem is (368.27;117.03, 109.26; 159.43,146.96), ;.

6. Comparison with Existing Linear
Programming Model

Perez-Cantedo et al. [15] developed a method to solve
LR-type fully intuitionistic fuzzy linear programming
model. We have proposed two methods to solve LR-type
FPFLPP with mixed constraints. By applying the proposed
methods to Example 1, we have obtained the solution.
Results of Example 1 are given in Table 1 and are shown
graphically in Figure 1. Furthermore, we have solved the
practical model [15] by using L(x) = R(x) = max{0, 1 — x}
and L' (x) = R'(x) = min{1,x}, and results are given in
Table 2. Solution with existing method [15] with permu-
tation (&, A, M, D, E) and solution with method 1 as dis-
cussed in Section 3.1 are compared in Figure 2. We observe
the following facts:

(1) Our proposed methods are equivalent in terms of
handling the inequality constraints of FPFLPP with
LR-type PFNs as variables and parameters.

(2) Example 1 is solved by using our proposed methods.
We see from Table 1 and Figure 1 that both methods
produce the optimal solution which is almost the same.

(3) The solutions of both the methods (method 1 and
method 2) are obtained by solving ultimately a crisp
linear programming problem, which is mostly done

using any software. The iterations needed for the
solution of the crisp problem may vary problem to
problem and may also depend on one of the methods
used.

(4) We compare the solutions of our proposed method 1
with the existing method [15]. We see from Table 2
and Figure 2 that both the solutions are consistent to
a large extent.

7. Merits of the Proposed Methods

The proposed mathematical model is based on the Py-
thagorean fuzzy environment. The advantages of the pro-
posed method as compared to the existing method are as
follows:

(1) There is no method to solve FPFLPP in which all the
variables and parameters are unrestricted LR-type
PENSs. Thus, this contribution is new and very helpful
for the decision makers.

(2) A Pythagorean fuzzy model is more powerful than an
intuitionistic fuzzy model since the intuitionistic
fuzzy model cannot handle the situation where sum
of membership degree y and nonmembership degree
v of an element exceed 1. So, these techniques are
more general and can be used in an intuitionistic
fuzzy environment or fuzzy environment.

(3) The proposed techniques give almost the same re-
sults, so these techniques can be used depending on
the interest of the decision maker.

Apart from all the benefits, the presented methods have
some limitations. Our proposed methods fail where the
condition y? +1% > 1.
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Comparison of optimal value
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F1GURE 2: Comparison of optimal value using the existing method [15] is in blue and using method 1, as discussed in Section 3.1, is in red.

8. Conclusions and Future Directions

In mathematical programming models, linear programming
problems are the simplest and most extensively used model.
The linear programming model is easily applicable to various
real-life applications. In this article, we have studied two
techniques to solve LR-type FPFLPP with mixed constraints.
We have shown the equivalence of both the presented
methods. We have compared the results obtained from both
the proposed techniques which come out to be almost the
same. Furthermore, we have compared with the existing
method [15]. In the future, our research work can be ex-
tended for nonlinear programming problems, fractional
programming problems, and transportation problems.
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