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As an important field for human activities, cities play a critical role in PM2.5 reductions. Among the determinants for PM2.5
concentration, technological progress is considered to exhibit significant inhibitory effects. Although most extant research has
focused on energy technologies or total factor productivity, due to limitations in data and methods, few scholars have focused on
emission reduction technological changes at a city-level scale. ,erefore, based on the combination of k-means clustering and the
log-mean Divisia index method, this study estimates and explores the impact of PM2.5 emission reduction technology (PME) on
the temporal changes and spatial differences of 262 Chinese cities’ PM2.5 concentration during 2003–2017.,e findings show the
following: (1) although the results based on econometric methods indicate that emission reduction technological changes de-
creased China’s city-level PM2.5 concentration, there were turning points in the yearly impacts, indicating that the improvements
to emission reduction efficiency were not stable; (2) compared with PME, energy intensity played a more stable role in PM2.5
emissions reductions, implying that the improvement of energy efficiency was still very important in controlling PM2.5 con-
centrations; (3) based on the classified groups after clustering, most cities’ PME contributed to negative differences, but the PME
of a small number of cities was very weak to largely lower the average level of their group; and (4) distributions of the spatial
decomposition of the three classified groups were stable in the period of 2003–2017, implying that the catch-up and transcendence
effects of PME within the group were limited. ,us, policymakers should focus on the impact of different policies on PME
differences between cities.

1. Introduction

In recent years, PM2.5 pollution has seriously concerned
countries around the world due to the threats it represents
to human survival and to the sustainable development of
society [1–3]. In light of previous studies, PM2.5 emis-
sions can not only lead to high haze reduction costs but
also indirectly cause health costs through medical ex-
penses and work-time loss. In particular, the emissions
control cost in Shanghai would be about 1.01%–2.26% of
the corresponding gross domestic product (DDP) values
in 2030 [4]. And the direct external cost of residential
health issues caused by PM2.5 pollution in Beijing and
Changsha was as high as 0.3%–2.69% of the GDP during
2012–2017 [5, 6].

As one of the world’s largest developing countries, China
is undergoing a process of accelerating urbanization and
industrialization, facing increasingly severe PM2.5 pollution
[7, 8]. ,us, the government has focused on formulating a
series of policy regulations, such as the Air Pollution Pre-
vention and Control Law, switching from coal consumption
to natural gas consumption, and setting emission reduction
targets for PM2.5 concentration in the 12th Five-Year Plan
(2011–2015) [9, 10]. At the same time, many actions have
also been taken to monitor PM2.5. For example, China has
established thousands of PM2.5 monitoring observatories,
which have been reporting hourly and daily air quality since
2012. Additionally, China’s grassroots government has in-
tensified supervision of straw burning in rural areas to curb
haze pollution.
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Concurrently, an increasing number of scholars have be-
gun to pay attention to the field of PM2.5 pollution and have
provided some corresponding policy implications with respect
to curbing it. Given that PM2.5 concentration has mainly been
driven by human activities, such as vehicle emissions, power
generation, and industrial production, many studies have paid
specific attention to the impacts of socioeconomic drivers on
PM2.5 pollution [11–14]. For example, Ma et al. [15] analyzed
the relationships among GDP per capita, the price of refined
oil, vehicle population, energy intensity, and PM2.5 concen-
tration in 152 Chinese cities based on spatial linkage and found
that the impacts of economic, social, and energy efficiency on
different cities varied significantly. Similarly, Zhang et al. [16]
used the log-mean Divisia index (LMDI) method to break
down changes in the PM2.5 concentration in these 152 cities.
,eir results showed that the decline of PM2.5 concentration
was mainly driven by energy intensity and emission intensity,
while GDP per capita and population were responsible for the
increasing PM2.5 concentration. Among the driving factors of
PM2.5 concentration, many socioeconomic factors have been
found to contribute to the increase in PM2.5 emissions and
concentration. ,ese factors, such as increasing urbanization,
economic growth, and population growth, are difficult to re-
duce in order to decrease PM2.5 pollution. ,erefore, several
studies have focused on factors that directly contribute to
reducing PM2.5 pollution.

Amongmany economic factors, technological progress has
been considered to play an important inhibitory role [17, 18].
In particular, Chen et al. [18] studied the effects of foreign
direction investment, export learning effects, research and
development, and import technology on the reduction of
PM2.5 concentrations in 48 Chinese cities during 2000–2015.
Likewise, Li et al. [19] used spatial econometric models to study
the potential relationship between environmental total factor
productivity and 283 Chinese cities during 2000–2013. Simi-
larly, Xu et al. [20] analyzed the impacts of total factor pro-
ductivity on 281 prefecture-level cities in China from 2007 to
2017 based on a spatial dynamic panel model, concluding that
technological progress has significant positive effects on alle-
viating PM2.5 concentration. In total, these studies have only
considered energy technologies or total factor productivity,
ignoring the effects of PM2.5 emission reduction technology
(PME). ,ere is no doubt that improvements to energy effi-
ciency can reduce energy input and decrease PM2.5 emissions;
however, there is a need to paymore attention to PME changes,
since these determine the PM2.5 pollution produced under the
same unit of energy consumption and economic output and
directly influence the level of cities’ sustainable development.

In the light of existing literature, although scholars have
studied the impacts of drivers on PM2.5 pollution in China’s
prefecture-level cities from a socioeconomic perspective, the
current literature on PM2.5 concentrations has several short-
comings. (1) Some scholars have analyzed the impacts of
technological progress on PM2.5 pollution, but few studies have
examined the impacts of PME changes on China’s city-level
PM2.5 pollution; (2) many studies have concluded that there is
significant spatial and temporal heterogeneity in the determi-
nants of PM2.5 pollution based on spatial econometrics, but

have not outlined detailed temporal changes; and (3) although
some scholars have used the LMDI method to analyze deter-
minants of temporal PM2.5 pollution changes, they have not
considered spatial differences, especially within classified groups.

Hence, this study explores the impacts of PME changes
on PM2.5 concentrations of 262 Chinese cities during
2003–2017. First, we applied three spatial econometric
models (SDM, SAR, and SEM) to identify the spatial au-
tocorrelation and potential relationship between PME
changes and PM2.5 concentrations. Next, we decomposed
the temporal and spatial changes in the PM2.5 concentra-
tions of the 262 cities based on the combination of LMDI
and k-means clustering methods. Our study makes the
following contributions and findings: (1) we estimate the
PM2.5 PME of 262 cities and analyze its impacts on China’s
city-level PM2.5 concentration; (2) the results show that
there have been turning points in the yearly impacts, in-
dicating that improvements to the emission reduction ef-
ficiency have been limited and unstable; and (3) based on the
combination of k-means clustering and spatial LMDI
methods, we find that the gaps among the spatial decom-
position in our classified three groups were stable in the
period 2003–2017, implying that the ranking of the emission
reduction technology development level of each prefecture-
level city in each group was relatively stable.

2. Materials and Methods

2.1. Spatial Impacts ofPMEonPM2.5Concentrations. In light
of the modified production-theoretical decomposition anal-
ysis method proposed by Wang et al. [21], we first estimated
the PME during 2001–2017. We selected three input factors,
one desirable output, and one undesirable output: fixed
capital stocks, employed population, energy consumption,
real GDP, and PM2.5 concentrations.,e calculation of PME
was based on the Shephard distance functions:
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where K represents fixed capital stocks, L represents labor
force, E represents energy consumption, PM represents
PM2.5 concentration, Y represents gross domestic output,
and θ represents PM2.5 reduction efficiency.

,us, the PME can be estimated using the following
equation:
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where PME denotes emission reduction technological
changes.

Based on previous studies [22], we further used spatial
econometric methods to explore the potential spatial im-
pacts of PME on PM2.5 concentration.,e spatial models of
Durbin (SDM), autoregression (SAR), and error (SEM) were
selected. ,e normal form of spatial econometric model is
given as

PM � λWPM + Xβ + θWX + ε, (3)

where PM represents PM2.5 concentration, X represents
explanatory variables, W is the spatial distance weight
matrix, and ε is the error term. We used the reciprocal of the
geographical distance of the city center to construct the
spatial econometric weight.

2.2. .e Temporal and Spatial LMDI Methods. Although
spatial regressionmethods have the ability to reveal potential

relationship between the expected values of PME and PM2.5
concentrations, they ignore temporal and spatial changes.
,us, we used the index decomposition analysis (IDA)
method to analyze the yearly and spatial impacts of PME on
PM2.5 concentration. In light of previous studies (e.g.,
[11, 16]), the IDA identity of PM2.5 concentrations can be
described as follows:
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where PMt
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Based on a proposition by Zhou and Ang [23], we can
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To simplify equation (5), it can be written as follows:
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where PPMEt
i denotes the ith city’s potential emission in-

tensity of PM2.5 concentration without technological
change’s impacts in period t; EIt

i represents the ith city’s
energy intensity in period t, which reflects energy efficiency;
PIt

i represents the ith city’s GDP per capita in period t; and
PMEt

i represents the ith city’s PM2.5 emissions efficiency in
period t, whose changes reflect the changes in PME.

Next, considering that there may be strong spatial
heterogeneity in the effects of PME, we adopted a spatial
clustering decomposition analysis method in this study. As
described by Cheng et al. [24], this method entails a com-
bination of spatial index decomposition analysis and clus-
tering methods. In particular, we adopted the LMDI method
to study the impacts of the five driving forces on PM2.5
concentrations because it is robust, easily understood, and

has clear economic meaning. Appendix A presents the
formula of the temporal and spatial LMDI method, which
can indicate the temporal and spatial impacts of the five
driving forces on PM2.5 concentration.

2.3..eClusterMethod. Regarding traditional spatial LMDI
method, it is necessary to select a reference for the spatial
index decomposition analysis. Normally, the average of total
samples’ may be used as a reference. However, it will ignore
heterogeneity between and within groups. ,us, the clus-
tering method was adopted in this study to combine with the
traditional spatial LMDI method, better capturing differ-
ences between and within groups.

With regard to the clustering method, hierarchical and
nonhierarchical cluster methods are the two main approaches
used. ,e algorithms of hierarchical cluster analysis are related
to the construction of the tree structure of clusters, while that of
nonhierarchical cluster analysis aims to classify objects into a
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predetermined number of disjointed clusters. ,us, we use a
nonhierarchical cluster to make classifications among the
observed cities. In particular, we selected k-means clustering
because the algorithm has exhibited high efficiency and em-
pirical success [25, 26] and has been widely adopted in many
fields of study, such as environmental analysis, image classi-
fication, and so on [24, 27]. However, the operations of k-
means clustering analysis need to assume the number of center
points in advance, leading to some uncertainty. To overcome
this disadvantage, we first used hierarchical cluster analysis
based on the shortest Euclidean distance to identify the den-
drogram and classifications [28] so as to provide a more in-
tuitive and reasonable reference for the number of center
points selected for k-means methods.

Additionally, with regard to the cluster indicators, the cities’
PM2.5 concentrations and GDP in 2017 were considered.
Given that the PM2.5 emission intensity (i.e., ratio of PM2.5
concentration to GDP), like carbon intensity, has often been
used to represent the level of PME [16], PM2.5 concentrations
and GDP would perform well in revealing the clustering and
classifications of PME. ,us, we selected cities’ PM2.5 con-
centrations and GDP in 2017 for this purpose.

,e resulting dendrogram based on hierarchical cluster
analysis is presented in Figure 1. From the dendrogram, we
can clearly observe the clustering process of each sample. In
total, 262 cities can be divided into 28 categories based on the
shortest Euclidean distance. From the right to left, the 18th
category can be regarded as a single big category, and the
17th category can also be regarded as a separate category. In
addition, the 23rd category and the remaining categories can
be combined into one big category. ,erefore, we speculated
that the cities may be classified into three categories. ,us,
we preset the number of center points as three. Next, based
on the main idea of the k-means clustering algorithm, we
continuously optimize the selection of the center points
according to the Euclidean distance between each point and
the center point, until the center points are stable.

2.4. Data. Using the equations above, city-level data were
derived for PM2.5 concentrations, energy consumption,
fixed capital stock, population, and real GDP. Given the
availability of PM2.5 concentration and fixed capital stock
data, this paper focused on 262 cities, and the research
period spanned from 2003 to 2017.

,e data for PM2.5 concentrations were obtained from
the real-time monitoring of the Ministry of Ecology and
Environment monitoring site (https://106.37.208.233:
20035). We estimated the data for city-level energy con-
sumption based on city-level CO2 emissions, as proposed
by Chen et al. [29], due to the significant relationship
between energy use and CO2 emissions. ,e economic
output was taken from the China Statistical Yearbook
(2003–2017). To avoid the influence of price, we used the
price in 2001 as the constant price and obtained the real
GDP, which is consistent with the approach used by Chen
et al. [30]. Additionally, we calculated the fixed capital stock
based on the perpetual inventory method, which is con-
sistent with Chen et al. [31].

3. Results and Discussion

3.1. .e Results of Spatial Regressions. Based on the spatial
econometric method outlined in Section 2.1, we used fixed
effects, spatial Durbin (SDM), autoregression (SAR), and
error (SEM) models to analyze the relationship between
PM2.5 concentrations and PME. In line with Hao et al. [32],
we selected GDP and population as the control variables.
Table 1 shows the results. Among them, P denotes pop-
ulation and Y denotes GDP.

Column (1) shows that there was a significant negative
relationship between PM2.5 concentrations and PME, in-
dicating that PME helpfully reduced PM2.5 concentrations.
Columns (2)–(4) imply that there should be spatial het-
erogeneity. At the same time, the SDM and SAR models
individually report the direct, indirect, and total effects of
PME progress, indicating that the impacts of PME on dif-
ferent regions’ PM2.5 concentrations may vary by regions.
In total, the regressions results indicate that China’s PME
has generally reduced the cities’ PM2.5 concentration.

3.2.Drivers of theTemporalChanges inPM2.5Concentrations.
Based on the temporal LMDI method outlined in Section
2.2, we categorized the city-level changes in PM2.5
concentrations into five main driving forces that pertain
to the influences of energy use. Given that there are no
official data about city-level energy use, some scholars
have used electronic power consumption to replace total
energy use. However, such replacement may cause sig-
nificant errors, since fluctuations in electronic power use
are inconsistent with total energy combustion. ,erefore,
we calculated the energy use of the 262 cities during
2003–2017 based on data on city-level CO2 emissions, as
proposed by Chen et al. [29].

Considering that the calculation of city-level CO2
emissions followed a top-down approach (i.e., provinces and
cities), the corresponding city-level energy use can be es-
timated according to city-level CO2 emissions and the re-
lationship between provincial CO2 emissions and energy
consumption. To capture the provincial differences in the
ratio of CO2 emission to energy use, we used the varied
coefficient model to conduct a regression between provincial
CO2 emissions and energy consumption during 1997–2017.
At the same time, to avoid the negative values of city-level
energy use, we used a no-constant model. Table 2 in Ap-
pendix A presents the results.

Evidently, the coefficient of determination was 0.986,
implying that the estimated city-level energy consumption
was highly accurate. Based on the city-level energy use, we
can obtain the impacts of driving forces on the PM2.5
concentrations of the 262 cities.

To capture more temporal fluctuations of PME impacts,
we divided the period of 2003–2016 into four parts:
2003–2006, 2006–2009, 2009–2012, and 2012–2017. ,ese
results are presented in Figure 2. ,ey show that not all
cities’ PME continuously decreased the PM2.5 concentra-
tions during 2003–2017, and detailed information thereon
cannot be found based on regressions. At the same time,
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there were many turning points in the impacts of PME
changes on PM2.5 concentrations, which again cannot be
captured by regressions.

Given that serious PM2.5 emissions always occurred in
large cities, we selected PME impacts in Beijing, Shanghai,
Guangzhou, and Shenzhen for analysis. In particular,
Beijing’s PME impacts changed by about −0.59, −14.84, and
−4.50 ug/m3 in the periods of 2003–2006, 2006–2009, and
2013–2017, respectively; however, it increased by about
4.49 ug/m3 during 2009–2013. PME changes reduced
Shanghai’s PM2.5 concentrations from 2003 to 2006
(−0.43 ug/m3), while they increased by about 0.30, 9.30, and
8.18 ug/m3 during 2006–2009, 2009–2013, and 2013–2017,
respectively. Guangzhou’s PME changes had a negative
impact during 2009–2013 (−6.29 ug/m3), while it stimu-
lated PM2.5 concentrations in the other periods (+4.34,

+0.56, and +7.81 ug/m3). Shenzhen decreased its PM2.5
concentrations in 2003–2006 and 2009–2013 (−0.82 and
−5.66 ug/m3), but increased them in the periods 2006–2009
and 2013–2017 (+2.68 and + 2.91 ug/m3, resp.). Evidently,
Beijing fared better than the other three cities in developing
PME, especially after 2013; this is consistent with Yang et al.
[14] and Zı́ková et al.’s [33] findings. ,e reasons for this
may derive from the issuance and implementation of more
stringent policies related to smog control in the Bei-
jing–Tianjin–Hebei region in 2012, such as “Bei-
jing–Tianjin–Hebei regional environmental protection
takes the lead in breaking through the cooperation
framework agreement,” switching from coal consumption
to natural gas consumption, and implementation of the
Atmospheric Pollution Prevention and Control Action
Plan [11, 34].
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Figure 1: Hierarchical cluster results.

Table 1: Spatial econometric results of the four models.

Fe SDM SAR SEM
(1) (2) (3) (4)

P 0.000000519∗∗∗(1.26E − 07) 1.40E – 07 (0.000000102) −0.000000161∗(9.63E − 08) −1.54E – 07 (1.01E − 07)
PME −0.24∗∗∗(0.06) −0.19∗∗∗(0.05) −0.211∗∗∗(0.04) −0.20∗∗∗(0.05)
Y 0.0003103∗∗∗(0.0000927) 0.0000706(0.0000447) 0.0000781∗∗(0.0000371) 0.0000741∗(0.0000447)
Wx
P −3.31E − 07 (6.25E − 07)
PME −0.17 (0.16)
Y 0.0000593 (0.0001256)
Rho 1.04∗∗∗(0.0070891)
Lambda 1.04∗∗∗(0.0071271)
LR_direct
P −0.000000204∗(1.22E − 07) −1.78E – 07 (1.13E − 07)
PME 0.24∗∗∗(0.0536886) −0.24∗∗∗(0.05)
Y 0.000094∗∗(0.0000446) 0.0000929∗∗( 0.0000409)
LR_indirect
P −0.0000173 (0.0000222) −5.40E − 06 (3.77E − 06)
PME −12.38∗(6.97) −7.23∗∗∗(2.42)
Y 0.0047381 (0.0042833) 0.0028055∗(0.0015252)
LR_total
p −0.0000175 (0.0000223) −5.57E − 06 (3.87E − 06)
PME −12.62∗(6.99) −7.47∗∗∗(2.46)
y 0.0048321 (0.0042962) 0.0028983∗(0.001561)
N 262 262 262 262
Note. ∗, ∗∗, and ∗∗∗ denote statistical significance levels at 10%, 5%, and 1%, respectively.
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Figure 3 presents the impacts of the other four driving forces
on PM2.5 concentrations. Potential emission intensity in 210
cities curbed PM2.5 concentrations, reflecting the optimization
of the energy consumption structure. In particular, Jinchang
(−42.93 ug/m3), Hengshui (−40.87 ug/m3), Anshan (−38.13 ug/
m3), Daqing (−37.39 ug/m3), and Baoding (−33.40 ug/m3) were
the top five cities whose potential emission intensity decreased
PM2.5 concentrations during 2003–2017. Energy intensity had
reduction effects on PM2.5 concentrations in all observed cities
during 2003–2017, which is consistent with Chen et al. [11],
Zhang et al. [16], and Li et al. [35]. ,e results indicate that the
improvement in energy efficiencymay be responsible for energy
conservation, leading to the decline in PM2.5 concentrations.
GDP per capita and population in almost all cities contributed
to increasing PM2.5 concentrations during 2003–2017. Among
them, Zhengzhou’s GDP per capita and Shengzhen’s pop-
ulation individually contributed to the highest increases, of
139.21 and 29.85 ug/m3, respectively.

3.3. PME for the Spatial Changes in PM2.5 Concentrations
among Cluster Cities. Based on the above-described

clustering methods, we divided the 262 cities into three
groups. ,e first group was concentrated on the cities with
the largest emissions intensity (0.026 ug/m3∗million yuan,
averagely); the second group had the middle emissions
intensity (0.006 ug/m3∗million yuan, averagely); and the
third group’s average emissions intensity were the lowest
(0.002 ug/m3∗million yuan). ,e detailed classification is
presented in Appendix A, Table 3.

,en, we studied the impacts of PME changes on within-
group differences of PM2.5 concentrations. Figure 4 reports
the impacts of PME on PM2.5 concentrations between each
city and the classified group’s average in 2003 and 2017.

Regarding the cities in the first group, 141 cities’ PME
contributed to negative differences within the first group’s
PM2.5 concentrations and reduced the within-group dif-
ferences when the average PM2.5 concentrations in the first
group in 2003 were set as the reference, indicating that these
cities’ PME did better than their average level. And there
were 75 cities’ PME stimulated within-group differences,
implying that they failed to reach their groups’ average level.
Taking six cities in 2003 as examples, Daqing (−176.31 ug/
m3), Taizhou (−161.50 ug/m3), and Xiamen (−147.90 ug/m3)

Table 2: Regression between provincial CO2 emissions and energy consumption based on the variable coefficient model.

Coefficient Standard error P-value
CO2 emissions 49.07 1.83 ≤0.001
id#c.CO2 emissions
Yunan −23.22 2.16 ≤0.001
Inner Mongolia 89.95 3.96 ≤0.001
Beijing 17.42 4.23 ≤0.001
Jilin −30.34 2.05 ≤0.001
Sichuan 82.65 3.50 ≤0.001
Tianjin −21.72 2.46 ≤0.001
Ningxia 57.76 10.25 ≤0.001
Anhui −12.96 2.30 ≤0.001
Shandong 31.09 2.07 ≤0.001
Shanxi 39.99 2.74 ≤0.001
Guangdong 103.77 2.95 ≤0.001
Guangxi −10.29 2.66 ≤0.001
Xinjiang 11.02 2.89 ≤0.001
Jiangsu −5.69 1.95 0.004
Jiangxi −7.98 3.03 0.009
Hebei 8.32 2.02 ≤0.001
Henan 19.66 2.26 ≤0.001
Zhejiang 71.60 3.38 ≤0.001
Hainan −46.77 1.93 ≤0.001
Hubei 9.60 2.42 ≤0.001
Hunan 19.80 2.71 ≤0.001
Gansu −35.43 2.02 ≤0.001
Gujian 26.39 3.54 ≤0.001
Guizhou 220.59 12.52 ≤0.001
Liaoning −8.40 2.01 ≤0.001
Chongqing −10.25 2.73 ≤0.001
Shaanxi −16.14 2.31 ≤0.001
Qinghai −44.93 1.91 ≤0.001
Heilongjiang −0.97 2.48 0.690
N 630
R 0.9861
F(30, 600) 1420.9∗∗∗

Note. ∗, ∗∗, and ∗∗∗ denote statistical significance levels at 10%, 5%, and 1%, respectively.
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Figure 2: ,e effects of PME on PM2.5 concentrations during the periods of 2003–2006, 2006–2009, 2009–2013, and 2013–2017.
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Figure 3: ,e effects of potential emission intensity, energy intensity, GDP per capita, and population on PM2.5 concentrations during
2003–2017.

8 Mathematical Problems in Engineering



Table 3: List of city clusters.

Cluster City name Number of
cities

First group

Ankang, Anqing, Anshun, Anyang, Anshan, Bazhong, Baicheng, Baishan, Baiyin, Bengbu, Baotou, Baoji,
Baoding, Baoshan, Beihai, Benxi, Binzhou, Cangzhou, Changde, Chaoyang, Chaozhou, Chenzhou,

Chengde, Chizhou, Chifeng, Chuzhou, Dazhou, Daqing, Datong, Dandong, Deyang, Dezhou, Dongying,
Fangchenggang, Fushun, Fuzhou, Fuxin, Fuyang, Ganzhou, Guang’an, Guangyuan, Guigang, Guiyang,
Guilin, Haikou, Handan, Hanzhong, Heyuan, Heze, Hebi, Hegang, Heihe, Hengshui, Hengyang, Hohhot,
Huludao Huaihua, Huai’an, Huaibei, Huainan, Huanggang, Huangshan, Huangshi, Jixi, Ji’an, Jilin, Jiamusi,
Jiaxing, Jiayuguan, Jiangmen, Jiaozuo, Jieyang, Jinchang, Jinhua, Jinzhou, Jincheng, Jinzhong, Jingmen,

Jingdezhen, Jiujiang, Kaifeng, Karamay, Laiwu, Lanzhou, Langfang, Leshan, Lishui, Lianyungang,
Liaoyang, Liaoyuan, Liaocheng, Linfen, Linyi, Liuzhou, Liuan, Liupanshui, Longyan, Loudi, Luzhou,

Luoyang, Luohe, Ma’anshan, Maoming, Meishan, Meizhou, Mianyang, Mudanjiang, Nanchong, Nanning,
Nanping, Neijiang, Ningde, Panzhihua, Panjin, Pingdingshan, Pingxiang, Putian, Puyang, Qitaihe, Qiqihar,
Qinzhou, Qinhuangdao, Qingyuan, Quzhou, Qujing, Rizhao, Sanmenxia, Sanming, Sanya, Xiamen,
Shantou, Shanwei, Shangqiu, Shangrao, Shaoguan, Shaoyang, Shiyan, Shizuishan, Shuangyashan,

Shuozhou, Siping, Songyuan, Suihua, Suizhou, Suining, Taizhou, Taiyuan, Tai’an, Tianshui, Tieling,
Tonghua, Tongliao, Tongchuan, Tongling, Weihai, Weinan, Wuhai, Urumqi, Wuhu, Wuzhong, Wuzhou,
Xining, Xianning, Xianyang, Xiangtan, Xiaogan, Xinzhou, Xinxiang, Xinyu, Xinyang, Xingtai, Suqian,
Suzhou, Xuchang, Xuancheng, Ya’an, Yan’an, Yangjiang, Yangquan, Yichun, Yibin, Yichang, Yichun,
Yiyang, Yinchuan, Yingtan, Yingkou, Yongzhou, Yulin, Yuxi, Yueyang, Yunfu, Yuncheng, Zaozhuang,
Zhanjiang, Zhangjiajie, Zhangjiakou, Zhangzhou, Changzhi, Zhaoqing, Zhenjiang, Zhongshan, Zhoushan,

Zhoukou, Zhuhai, Zhuzhou, Zhumadian, Ziyang, Zigong, Zunyi

216

Second
group

Changzhou, Chengdu, Dalian, Dongguan, Foshan, Fuzhou, Harbin, Hangzhou, Hefei, Jinan, Jining,
Kunming, Nanchang, Nanjing, Nantong, Ningbo, Qingdao, Quanzhou, Shaoxing, Shenyang, Shijiazhuang,
Taizhou, Tangshan, Weifang, Wenzhou, Wuxi, Wuhan, Xi’an, Xuzhou, Yantai, Yancheng, Yangzhou,

Changchun, Changsha, Zhengzhou, Zibo

36

,ird group Beijing, Guangzhou, Shanghai, Shenzhen, Suzhou, Tianjin, Chongqing 7
∗, ∗∗, and ∗∗∗ denote statistical significance levels at 10%, 5%, and 1%, respectively.
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Figure 4: Continued.
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Figure 4: ,e impacts of emission reduction technological changes on PM2.5 concentrations between each city and the classified group’s
average.
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were the top three cities with negative differences. Mean-
while, Jiayuguan (+270.48 ug/m3), Jinchang (+152.6 ug/m3),
and Tongchuan (+151.10 ug/m3) were the top three cities
that contributed to positive within-group differences.
Compared with 2003, there were several changes in the
spatial decomposition results in 2017: 147 cities’ PME
lowered the between-emissions differences within the first
group’s PM2.5 concentrations, but PME changes in 69 cities
caused a positive within-group gap. For example, Ankang
city’s PME reduced the within-group gap in 2013 (−54.28 ug/
m3) but failed in 2017 (+9.82 ug/m3).

In the second group, the PME in 20 cities led to re-
ductions in the within-group differences in 2003, and 16
cities’ emission reductions caused positive within-group
differences. Particularly, PME in the cities of Quanzhou
(−51.10 ug/m3), Hangzhou (−50.30 ug/m3), and Fuzhou
(−47.35 ug/m3) contributed to a decline in the within-group
difference, while Hefei (+54.07 ug/m3), Taizhou (+52.57 ug/
m3), and Jining (+51.09 ug/m3) saw an increase of the
within-group gap. Moreover, there were 18 cities in which
PME helped to reduce the within-group differences in 2017,
implying that the spatial differences did not change much in
these cities.

With regard to the third group, PME in the first-tier cities
(Shanghai, −53.98 ug/m3; Guangzhou, −35.47 ug/m3; Shenz-
hen, −30.03 ug/m3; and Beijing, −14.17 ug/m3) contributed to
reductions in the within-group differences in 2003. However,
the PME of Tianjin, Suzhou, and Chongqing increased to
55.82, 24.16, and 19.30 ug/m3 of the within-group differences,
respectively. In 2017, the four first-tier cities’ and Chongqing
city’s PME changes were responsible for the negative within-
group differences (Shanghai, −18.89 ug/m3; Guangzhou,
−16.15 ug/m3; Shenzhen, −27.79 ug/m3; Beijing, −24.41 ug/
m3; and Chongqing, −10.41 ug/m3), and the remaining cities
still contributed to positive within-group gaps (Tianjin,
+18.89 ug/m3; Suzhou, +35.19 ug/m3).

In summary, since most cities’ PME contributed to
negative impacts on the within-group differences, indicating
that most cities’ PME was better than their group’s average
level. However, it also should be noted that the PME of a
small number of cities, such as Jiayuguan city and Tong-
chuan city, were lower than their groups’ average level and
had a very weak impact on curbing PM2.5 concentrations,
which is consistent with the results proposed by Zhang et al.
[16]. At the same time, the distributions of the spatial de-
composition of the three groups were stable in the period of
2002–2017, implying that the catch-up effect within the
group was not obvious. ,us, the governments should focus
more on regional heterogeneity when encouraging the
promotion of PM2.5 emission reduction technologies.

4. Conclusions

,is study explored the impacts of PME changes on the
PM2.5 concentrations of 262 Chinese cities during
2002–2017. First, we applied three spatial econometric models
(SDM, SAR, and SEM), identifying the spatial autocorrelation
and potential relationship between PME changes and PM2.5

concentrations. Furthermore, we decomposed the temporal
and spatial changes in the 262 cities’ PM2.5 concentrations
based on a combination of LMDI and k-means clustering
methods. In terms of the temporal changes, we found that
most cities’ PME impacts fluctuated during 2002–2017, and
there were many turning points, indicating that the reduction
effects in many cities were not stable. However, energy in-
tensity continuously played a significant role in decreasing
PM2.5 concentrations due to energy conservation caused by
the improvement in energy efficiency. With regard to the
spatial decomposition based on clusters, we found that most
cities’ PME contributed to negative differences, implying that
the PME in a small number of cities, such as Jiayuguan City
and Jinchang City, was not strong and lowered the average
level of their group. At the same time, the distributions of the
spatial decomposition of the three groups were stable in the
period 2002–2017, implying that a catch-up effect within the
group was not obvious.

Based on the analysis, we provide several policy impli-
cations for curbing PM2.5 concentrations from a socio-
economic perspective. First, although the results, based on
econometric methods, show that PME progress had sig-
nificant curbing impacts on China’s city-level PM2.5 con-
centrations, the temporal and regional heterogeneity cannot
be ignored. Given that the PME failed to continuously
decrease China’s city-level PM2.5 concentration, China’s
cities should pay more attention to increased fiscal expen-
ditures in technological innovations, such as composite
carbon slurry clean combustion technology, supercritical
flue gas desulfurization (FGD) systems, and ultra-super-
critical FGD systems [21, 35].

Second, in addition to increasing PME, it is important to
promote the application of energy-saving technologies and
the optimization of energy use structures. In light of the
effects of energy intensity on PM2.5 concentrations, the
promotion of energy efficiency will reduce the energy input,
thus reducing PM2.5 emissions and concentrations under
the same conditions of PME. In addition, since PM2.5
pollution is mainly driven by fossil fuel combustion [36],
speeding up the use of clean energy would also significantly
reduce PM2.5 concentration.

,ird, considering that the spatial impacts of PME were
relatively stable over time, regional advanced emission re-
duction technological innovations should be promoted
around and selected as demonstrations so that the catching-
up effects within group will be highlighted.

Appendix

,e temporal impacts of drivers on PM2.5 concentration can
be estimated based on equations (A2.1)–(A2.5):
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where ΔPMb,t
i,PPME denotes the impacts of potential emission

intensity on the ith city’s PM2.5 concentration from period b

to t; ΔPMb,t
i,EI denotes the impacts of energy intensity on the

ith city’s PM2.5 concentration from period b to t; ΔPMb,t
i,PI

denotes the impacts of GDP per capita on the ith city’s
PM2.5 concentration from period b to t; ΔPMb,t

i,P denotes the
impacts of population on the ith city’s PM2.5 concentration
from period b to t; and ΔPMb,t

i,PME denotes the impacts of
PM2.5 emission efficiency on the ith city’s PM2.5 concen-
tration from period b to t.

Similarly, based on the definite reference, the spatial
LMDI method can also be used for spatial decomposition;
the corresponding formulas are presented as follows:
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where ΔPMr
i,PPME denotes the gap between the impacts of

potential emission intensity on the ith city’s PM2.5 con-
centration and the reference; ΔPMr

i,EI denotes the gap be-
tween the impacts of energy intensity on the ith city’s PM2.5
concentration and the reference; ΔPMr

i,PI denotes the dif-
ference between effects of GDP per capita on the ith city’s
PM2.5 concentration and the reference; ΔPMr

i,P denotes the
gap between the effects of population on the ith city’s PM2.5
concentration; and the reference ΔPMr

i,PME denotes the gap
between the impacts of PM2.5 emission efficiency on the ith
city’s PM2.5 concentration and the reference.

Data Availability

,e data can be obtained upon request from the corre-
sponding author.

Additional Points

PM2.5 emission reduction technology (PME) was estimated
for 262 cities. ,e 262 cities were classified into three groups
based on the k-means cluster method. ,e curbing impacts
of PME on PM2.5 were fluctuated and unstable. Energy
intensity played a more stable role in PM2.5 emissions re-
ductions. ,e catch-up and transcendence effects of PME
within the group were limited.
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