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Experimental and numerical investigations of the modal behavior of a prototype Kaplan turbine runner in air have been
conducted in this paper.(e widely used roving accelerometer method was used in the experimental modal analysis. A systematic
approach from a single blade model to the whole runner has been used in the simulation to get a thorough understanding. (e
experimental results show that all the detected modes concentrate their displacements on the impacted blade. (e numerical
results show that the modes of the single blade form different mode families of the runner, and each mode family corresponds to a
narrow frequency band. Harmonic response analysis shows that, at the response peak point, the single blade excitation can only
get mode shapes with concentrations on the exciting blade due to the superposition of the close modes in eachmode family, which
explains the experimental results well, while the mode superposition can be avoided by the order excitation method. With the
reduction of the connection stiffness between the blades and hub/control system, the frequencies of most modes change from
insensitive to more and more sensitive to the connection stiffness change, which results in a sensitive area and an insensitive area.
(rough comparison with the experimental results, it is indicated that the natural frequencies of the runner can probably be
predicted by merging the runner into a whole body.

1. Introduction

Nowadays, hydropower contributes a lot to world electricity
generation [1]. To meet the daily increasing demand for
electricity, the power intensity in hydraulic turbines is
promoted for both new construction and the updating of
power plants, which makes the fluid pressures and velocities
higher, resulting in higher hydraulic excitation forces.
Moreover, among all types of renewable sources, hydro-
power is the only one with a wide range of power regulation
with fast responses (20–100% max. power, less than 1
minute) to offset the unstableness of the electricity grid
caused by some other renewable sources, such as solar and
wind energy. (erefore, hydraulic turbines operate at ex-
treme off-design conditions and experience transient events
much more times one day than before, which leads to even
larger forces [2]. Such higher forces can produce higher

vibration levels in the runners, which can cause fatigue
damage and shorten their lifetime.

To avoid this situation and to prolong the lifetime of
runners, thoroughly understanding the modal behavior of
hydraulic turbine runners is very important. Kaplan turbines
are one type of widely used hydraulic turbines, which can be
seen mostly in low water head and large capacity hydropower
plants [3], and the blades of Kaplan turbine runners can rotate
to make the runner operate under high efficiencies for a wide
range of operation.(e rotation of the blades is controlled by a
complex control system located inside the runner body. (e
typical structure of Kaplan turbines is shown in Figure 1. (e
excitation forces of Kaplan turbine runners can be both static
and dynamic pressure loads [4, 5]. (e static pressure load is
positively correlated with the flow rate passing through the
runner, and the dynamic pressure load mostly comes from the
rotor-stator interaction (RSI) [6, 7].
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(e modal behavior of Francis turbine runners and
pump-turbine runners has been widely studied [8–14].
However, few investigations of the dynamic behavior of
Kaplan turbine runners have been undertaken before. In
another two papers [15, 16], the dynamic behavior of a single
blade of a prototype Kaplan turbine was studied experi-
mentally through the roving accelerometer method, but
there is a lack of studies on the whole runner.(ere are some
studies about the fluid-structure coupling vibration with
only blade models of Kaplan turbine runners, but the in-
fluence of the hub/control system was not considered [17].
(e complex connections between the blades and the runner
body, as well as the complicated connections inside the
control system, bring many difficulties to numerically study
the modal behavior of Kaplan turbine runners. (e typical
connections in the Kaplan turbine are shown in Figure 1.
(ese connections may have a large influence on the dy-
namic behavior of the runner because these connections can
be loose, which may lower the support stiffnesses of the
blades. (erefore, it is of great importance to know the
connection stiffness levels, which can only be determined by
experiments.

(e structure of Kaplan turbines is similar to that of
bladed disks [18–21], and they are all periodic and cyclic
structures, though the disk part of Kaplan turbines (hub,
control system, piston rod, etc.) can be more complicated
than that of traditional blade-disk structures. For blade-
disk structures, the modes of the single blade would form
different mode families and each mode family consists of
different ND (nodal diameter) modes. (ese different ND
modes form a frequency band. For Kaplan turbines, the
situations ought to be similar. However, because of the
unknown connection stiffness levels, the width of the
natural frequency band of each mode family is still
unknown.

In this paper, the modal behavior of the same pro-
totype Kaplan turbine in [15] has been studied experi-
mentally and numerically after the reparation of the
damaged blade. Unlike the study on a single blade [15],

this research was conducted on the whole runner with one
accelerometer on each blade to measure their responses.
In the experiment, the roving accelerometer method was
used and the peak-hold method was used to capture the
mode shapes and natural frequencies. (e influence of the
connection stiffnesses on the modal behavior of the whole
runner has been investigated numerically, and through
comparison with the experimental results, the connection
stiffness level is talked about. (is paper is organized as
follows: first, the theoretical background, experimental
procedures, and numerical settings are introduced, then
experimental and numerical results are presented, and
finally, experimental and numerical results are compared
and discussed.

2. Theoretical Background

2.1. Forced Response of a Structure. (e governing equation
of one structure in vibration can be expressed as

[M] €x (t) +[C] _x(t) +[K]x(t) � F(t) , (1)

where h (t), _h(t), and €h(t) are the displacement, velocity, and
acceleration of each discrete point in the time domain,
respectively; [M], [C], and [K] are, respectively, the mass,
damping, and stiffness matrices; and F(t) is the force vector
applied on each discrete point in the time domain.

(e frequency response function (FRF) can be obtained
by applying Fourier transform to equation (1) in the fre-
quency domain (jω):

X(jω)  � [H(jω)] · F(jω) , (2)

where X(jω)  and F(jω)  are the displacement and force
vectors in the frequency domain, respectively, and [H(jω)]

is the conduction matrix between X(jω)  and F(jω)  and
can be expressed as

[H(jω)] � 
n

r�1

j2ωrQr φ r φ 
t
r

ξ2r + ω2
r − ω2

  − 2ξrjω
. (3)
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Figure 1: Structure of Kaplan turbines.
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ha,b, any element of this matrix, can be seen as the re-
sponse of discrete a when a force is applied on another
discrete point b:

ha,b � 
n

r�1

j2ωrQrφa,rφb,r

ξ2r + ω2
r − ω2

  − 2ξrjω
, (4)

where φa,r and φb,r are the modal displacements at the
discrete point a and b for the r mode.

2.2. Free Vibration of the Monocoupled Cyclic System. For a
system with N substructures, each substructure is seen as a
lumped mass, for simplicity. (e mass and stiffness of each
substructure are M and K, respectively, and each sub-
structure is connected to the neighboring substructures with
massless springs, whose stiffness is k. Only one freedom of
the lumped mass is considered. (e modal shapes of this
system can be divided into two categories [21, 22]:

U
c
r � 1, cos αr, . . . , cos(N − 1)αr , r � 1, . . . ,

N

2
+ 1,

(5)

U
s
r � 0, sin αr, . . . , sin(N − 1)αr , r � 2, . . . ,

N

2
, (6)

where αr is the phase difference between every two
neighboring substructures and can be expressed as
2π(r − 1)/N. (e eigenvalues of r mode are

ω2
0r � 1 + 2R

2 1 − cos αr(   · ω2
b, (7)

where R2 � k/K is usually called the coupling effect and ω2
b �

K/M is the circular natural frequency of each substructure.
(e lower and upper boundaries of the frequency band are

ωL � ωb ωU �
������
1 + 4R

2


ωb. (8)

For r equals 1 or N/2 + 1, eigenvalues are singlet and all
the rest are doublet. (e ND (nodal diameter) of the mode r
is r − 1.

3. Experiment Setup

Experimental modal analysis (EMA) [23]was undertaken on
the same prototype Kaplan turbine runner in [15] after the
reparation of the damaged blade. (e head of the turbine is
34m, and the maximum power is 73mW. (e machine is
vertical and is restricted by a thrust bearing at the upper part
of the shaft, one radial bearing on the turbine side and
another radial bearing on the generator side. (e runner has
6 blades with an outside diameter of 6m, and the nominal
rotating speed is 125 rpm. One accelerometer was set on
each blade, and 6 accelerometers were used in total. A single
axis was used for each accelerometer. (e accelerometers
were attached perpendicularly to the blade profile to
measure the response normal to the blade profile of each
attached position. In the experiment, the roving acceler-
ometer method was used. One blade was chosen for impact
with a piezoelectric hammer (Dytran 5802 A, 220 μV/N)
normally to the blade profile of the impact position. (e

response was measured with the accelerometers (Kistler
8752 A, 100mV/g). Signals of the accelerometer and
hammer in the time domain were transferred to a Bruel &
Kjaer (LAN XI Type 3053) acquisition system.

Totally 21 impact positions on the impacted blade were
chosen for measurements, and the impact position was kept
the same (near the leading edge). In this way, the mode
shape of the blade for every natural frequency can be
obtained. (rough the responses at the same position on
different blades, particularly the phase differences, the
nodal diameter of one mode can be identified. (ree im-
pacts were undertaken in every measurement position, and
the average value of them was used to calculate the fre-
quency response function. (e measurement positions on
the impacted blade are shown in Figure 2. During the whole
progress, the accelerometers on other nonimpacted blades
were kept at the same position without movement.

(e frequency response function (FRF), the relationship
between the response of accelerometers and the force of the
hammer, was computed by transforming equation (4)
through the Fourier transformation. 8 s of response signal
was taken for calculation, which determined the frequency
resolution to be 0.125Hz. (e coherence function was also
computed between the accelerometer and the hammer to
ensure the accuracy of the results. A value of the coherence
function close to 1 means the noise and nonlinear effects are
low. In this way, for each measurement point, one FRF was
obtained. (e peak hold method was used to extract natural
frequencies and responses from each FRF. With all the
responses of different measurement points, an operating
deflection shape (ODS) [24] of the runner can be obtained,
which can be used to analyze the mode shapes.

4. Simulation Setup

Simulations were conducted via Ansys Workbench 16.2
[25]. (e FEM model includes the blades, hub, control
system, hollow shaft, and generator. (e numerical geom-
etry profile was built from the sketch of the turbine.
(erefore, there may be some geometry errors for some
parts, particularly the blade profile. In [15], the numerical
blade model was validated by the experiment. (e structure
material is stainless steel with a Young’s modulus of
1.93 E+ 11 Pa, density of 7750 kg/m3, and poison ratio of
0.31. (e total weight of the generator was set to be 20300 kg
(real value) through changing its material density. (e re-
striction of radial bearings was simulated as elastic supports
to the peripheral surface, and the foundation stiffness was set
to be 6.524N/mm3 with an equivalent spring stiffness of
1010N/m around bearings, which is also used in some other
similar studies [11]. When the machine is not in operation,
the whole turbine is supported by the thrust bearing, and
zero-displacement support was given to the bottom surface
of the thrust bearing in the shaft axial direction. Blade-
dominated modes are usually not sensitive to the bearing
stiffness due to the low deformation in the shaft, which can
be seen in the following sections.

(e connections in Figure 1 have been given some
simplifications. (e bearing-1 was shorted to the inner
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surface of the hub, bearing-2 was neglected and replaced
with a small clearance, and a thin rod inside the shaft that is
used to control the position of the control system has been
omitted. Because the connections are too complicated, a thin
layer was created at the location of connection-1 and
bearing-1 in Figure 1 for each blade, and the support stiffness
of the blade can be changed via the variation of Young’s
modulus of the layer material, and all other parts are merged
as a whole body. In other words, the change of the layer
stiffness acts as an equivalent support stiffness change due to
all the connections. (e mesh sensitivity has been strictly
checked, and when the whole runner is simulated, about
67500 tetrahedral elements were used (Figure 3). A layer
stiffness ratio is obtained by normalizing its Young’s
modulus to that of the stainless steel.

5. Results and Discussions

5.1. Experimental Results. Figure 4 shows the frequency re-
sponse functions of different measurement points, including
the points on the impacted blade and nonimpacted blades.
Five modes are detected below 200Hz. (e coherences of
some measurement points are shown in Figure 5. At all the
detected natural frequencies, the coherences are all close to 1
for both the measurement points on the impacted blade and
nonimpacted blades. Generally, the mode shapes of a single
blade can usually be bending (BD), torsion (TS), and in-plane
(IP) modes. For torsion modes, they can usually be marked

according to the number of its horizontal (perpendicular to
the rod axis) nodal lines (mH) and vertical (parallel to the rod
axis) nodal lines (nV). A nodal line is a line where the
structure stands still on it. Amode (mH, nV) means this mode
has mH horizontal nodal lines (NLs) and nV vertical NLs. (e
mode names have been marked in Figure 4. In Bruel & Kjaer,
a numerical model consisting of 6 blades and one part of the
turbine bearing has been built to present the mode shapes,
which have been shown in Figure 6. (e mode shapes on the
impacted blade are presented especially.

In Figures 4 and 5, the measurement points on non-
impacted blades show low responses compared with those on
the impacted blade at the same position for all the modes.(e
displacements of the measurement points on all the blades
with the same position are plotted in Figure 7 (normalized to
the maximum value of them for each mode). (e blade
numbers have been marked in Figure 2. As can be seen, the
impacted blade (B1) has the highest displacement for all the
modes. In other words, the ODSs of each mode all con-
centrate their displacements on the impacted blade.

5.2. Numerical Results

5.2.1. Influence of Support Stiffness on the Natural Fre-
quencies of a Single Blade. To get a systematic understanding
of the modal behavior of the runner, the influence of support
stiffness on the natural frequencies of a single blade has been

Impact Impact

Measurement
position on non-
impacted blades

Measurement
position

Figure 2: Experimental modal analysis.
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Figure 3: View of the mesh.
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first studied numerically. (e investigated model (see Fig-
ure 8) is formed by a single blade and the layer. Fixed
support is given to the rod end and the outside peripheral
surface of the aforementioned layer. (e fixed support at the
end of the rod is similar to providing base support stiffness to
the blade. (e total support stiffness can be modified by
changing the material stiffness of the layer. (e first six
modes of the blade under a layer stiffness ratio of 1.0 are
shown in Figure 9. (e bending mode and torsion modes
have all been detected by the experiment, while the IP mode
is not detected in the experiment probably because this
mode mainly vibrates parallelly to the blade profile plane,
but the accelerometers only measure the response in the
direction perpendicular to the blade profile.

(e frequencies of different modes under different layer
stiffness ratios normalized (normalized to Young’s modulus
of stainless steel) to those under layer stiffness ratio 10.0 are
shown in Figure 10. When the support stiffness is high
enough, the frequencies of all the modes approach con-
vergent values. (e natural frequencies of all modes are not
sensitive to the layer stiffness change at the beginning, but
they may become more and more sensitive with the decrease
of the layer stiffness.

5.2.2. Modal Behavior of the Whole Runner. According to
equations (5) and (6), for this type of periodic and cyclic
structures, the modes of the single blade form different
mode families, and each mode family contains six modes,
namely, the singlet 0ND, doublet 1ND and 2ND, as well
as singlet 3ND. Each mode family corresponds to a
narrow frequency band. (e numerical frequency bands
of different mode families when the layer stiffness is 1.0,
as well as the experimental frequency values of each
mode, are shown in Table 1. One mode of each mode
family and the 6 modes of TS (1, 2) mode family are shown
in Figure 11.

Generally, unlike that shown in equation (7), the appear
sequences of different ND in each mode family are much
more random because the interaction intensities between the
blades and hub/control system of different ND modes are
different. A higher interaction intensity activates more mass
to vibrate together with the blades, thus lowering the natural
frequency. (ese interaction differences are mainly deter-
mined by the movement motions of the blades of different
NDmodes. (e interaction of the 1NDmode of the bending
family is the strongest, which makes its frequency lowest in
that mode family. From Figure 9, we can see that the de-
formation at the rod part of all modes is low, which de-
termines the interactions for all mode families are not high
generally, thus resulting in low interaction differences of
different ND modes and narrow frequency bands for all the
mode families. Among these mode families, the interactions
of the bending mode family usually are the strongest, which
makes the width of its frequency band the highest.

(e influence of layer stiffness ratio on the natural
frequencies of all ND modes in the bending and TS (0, 2)
mode family is shown in Figure 12 (normalized to those
under layer stiffness ratio 1.0). A lower layer stiffness usually
means a lower frequency for most modes, which is the same
as that of the single blade model. However, for some modes,
e.g., 0ND of the TS (1, 2) mode family, the changes may not
be monotonous.(is is possible because though the decrease
of the layer stiffness lowers the support stiffnesses of the
blades, it also lowers the coupling stiffness in equation (7),
which activates less mass to vibrate together with the blades,
thus increasing the frequencies, particularly when the fre-
quencies of the blades are not sensitive to the layer stiffness
change. (e same is observed with those of the single blade,
when the layer stiffness is lower than some values, as marked
in Figure 12, the frequencies of all modes become very
sensitive to the layer stiffness change. Generally, according
to the sensitivity to the support stiffness change, the fre-
quency changes can usually be classified into the sensitive
area and insensitive area, which have been marked in
Figure 12.

5.2.3. Harmonic Response Analysis of the Runner. In the
experiment, the displacements of all the detected modes
concentrate on the impacted blade and no mode shows a
pure harmonic waveform of any ND. At the same time, there
is usually only one mode that is detected for each mode
family through the peak-hold method. From Table 1, the
natural frequencies of all NDmodes in each mode family are
very close. In the experiment, the roving accelerometer
method was used, which is similar to exit the runner on a
single blade. According to equation (4), because of the close
natural frequencies and the effect of damping, it is very
difficult for the response to be dominated by only one mode.
In this section, this point will be tested through the harmonic
response analysis. First, a 1N force excitation on blade 1 at
the tipping point of the trailing edge in the shaft axial di-
rection was implemented. (e forced response and the
operating deflection shape (ODS) at the frequency with peak
response are shown in Figure 13(a).
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Table 1: Experimental and numerical frequencies.

Mode Simulation (Hz) Experiment (Hz)
BD 51.84–60.94 55.42
TS (0, 1) 73.43–77.84 77.39
IP 91.78–97.81 Not detected
TS (0, 2) 114.29–123.75 126.25
TS (1, 1) 142.49–150.21 141.31
TS (1, 2) 191.15–197.37 195.39
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(e upper and lower limits of the natural frequency band
of TS (1, 2) are also marked in Figure 13 using grey dashed
lines. When exciting a single blade, the ODS of the peak
response indeed concentrates at the impacted blade 1 with
some low displacements on blade-4, which is the same with
the experimental results, and this response appears at a
frequency between the upper and lower frequency limits.
(ough the peak response is not dominated by a pure mode,
from equation (4), the response certainly has relationships
with themodal displacement of the impact point, and a higher
modal displacement is prone to produce a higher response.
Under this situation, the ODS of the peak response cannot
have low responses on the impacted blade, and obviously, a
shape with a concentration on the impacted blade is more
prone to produce high responses. Of course, the final ODS of
the peak response is still restricted by equation (4). Because of
the severe mode superposition, there is usually only one peak
for each mode family, as shown in Figures 4 and 13. Under
this situation, even some multi-DOF mode extraction
methods, such as the complex exponential (CE) method
[18, 19], may still be incapable to get the natural frequencies
and modes shapes in each mode family.

Here, we recommend the order excitation method to
study the modal behavior of Kaplan turbines. For turbine
structures, under an order excitation with a certain ND, one
mode can only be excited by the corresponding ND exci-
tation. When the modes of a turbine structure are close, this

method together with the peak-hold method can be used to
avoid mode superposition to get the mode shapes and their
frequencies, which can be seen in [12, 19, 20]. 0ND order
excitation with a 1N excitation force was applied on each
blade. (e TS (1, 2) mode family under the layer stiffness
ratio 1.0 was still chosen for testing, and the experimental
damping ratio was applied. (e forced response and the
operating deflection shape (ODS) at the frequency with peak
response are shown in Figure 13(b). As expected, the 0 ND
mode shape is excited at the peak response because other ND
modes cannot be excited by this order excitation, which
makes the exited mode dominant at the peak response.
(erefore, the roving hammer/accelerometer method, which
has been widely applied to investigate the modal behavior of
other types of hydraulic turbine runners [8, 10], is not
suitable to get the mode shapes and natural frequencies of
blade-dominated modes of Kaplan turbines due to the close
natural frequencies in each mode family, and they are better
to be obtained through the order excitation method.

When using the roving accelerometer/hammer method
in the experimental modal analysis, a harmonic response
analysis may be needed in the simulation to match the
frequency of the peak response of each mode family with
that of experimental results to determine the equivalent
connection stiffness level. When using the order excitation
method, because of the nonmonotonous frequency changes
of some NDmodes with the decrease of the support stiffness,
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all ND modes in each mode family may need to be con-
sidered. If the connection stiffness is demonstrated to be
located at the insensitive area, the runner merged as a
whole body can be used to estimate the runner frequencies,
and this can bring great conveniences. (ough the nu-
merical geometry errors bring some difficulties to deter-
mine the real connection stiffness levels, from the detailed
comparisons of natural frequencies and modal shapes
between the experimental and numerical results for the
studied turbine blade in [16], the geometry errors ought to
be limited. Together considering all the experimental fre-
quencies in Table 1 fall into the numerical frequency bands
or slightly higher than the upper limits of numerical fre-
quency bands, it seems that the runner merged as a whole
body can still be used to estimate the natural frequencies of
the real runner.

6. Conclusions

(emodal behavior of a prototype Kaplan turbine runner is
investigated experimentally and numerically in this paper.
(e roving accelerometer method combined with the peak-
hold method has been used in the experimental modal
analysis. A systematic approach from a single blade model to
the whole runner has been used in the simulation. (e
experimental results show that the displacements of all de-
tected modes concentrate on the impacted blade. (e sim-
ulation shows that, for Kaplan turbines, the modes of single
blade form different blade-dominated mode families. Each
mode family contains 6 (the number of the blades) modes,
including the singlet 0ND, doublet 1ND and 2ND, as well as
singlet 3ND. Each mode family corresponds to a narrow
frequency band. Because of the close natural frequencies in
each mode family, the single blade excitation can only get a
mode shape with a concentration on the exciting blade due to
severe mode superposition. (e roving accelerometer/ham-
mer method is the same as single blade excitation, which
makes themodes detected in the experiment concentrate their
displacements on the impacted blade. However, the order
excitation method can be used to get the natural frequencies,
mode shapes, and damping ratios of different ND modes in
each mode family with little influence of the mode
superposition.

A systematic approach from the single blade model to
the whole runner model was used in the simulation. (e
numerical results of the single blade model show that when
the connection stiffness is higher than some values, the
frequencies of all modes are not sensitive to the connection
stiffness change and approach to convergent values. With
the reduction of the connection stiffness, the frequencies of
most modes become more and more sensitive to the
connection stiffness change and may fall to sensitive areas
when the support stiffness is lower than some values. (is
is also applicable to the whole runner model. If the con-
nection level lies at the insensitive area, merging the whole
runner into a whole body can be a quick method to es-
timate the natural frequencies of the prototype turbine
runner, which can bring great conveniences. For the
runner studied, after the comparison with experimental

results, the runner merged as a whole body is demon-
strated to be able to predict the natural frequencies of the
real runner with limited errors.

In the future, the order excitation method can be used to
investigate the natural frequencies, mode shapes, and
damping ratios of different ND modes in each mode family.
(ough the study in this paper shows that the natural
frequencies can be approximately predicted by merging the
runner as a whole body for the investigated runner, it is
better to be validated for more runners to get more solid
conclusions.

Abbreviations

x(t): Vibration displacement at an instant time
DOF: Degree of freedom
FRF: Frequency response function
[H(jω)]: Transfer matrices in the frequency domain
F(t): Force applied on each DOF in the time domain
ξr: Damping ratio
Qr: (e scale factor of mode r
φ r: Mode shape of mode r
ωr: (e natural frequency of the corresponding mode

r

FFT: Fast Fourier transform
kc: Coupling stiffness
Uc

r: Cosine category of modal shapes
Us

r: Sine category of modal shapes
r: Eigen order
ND: Nodal diameter
R: Coupling stiffness
ωL: Lower boundary of the passband
ωU: Upper boundary of the passband
αr: Phase difference between neighboring

substructures
ω0r: Natural frequency of the (r− 1) ND mode
ωb: Natural frequency of the substructure
mH: Number of the horizontal nodal lines
λ: Frequency reduction ratio of the localized mode
nV: Number of the vertical nodal lines.
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