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In order to solve the problem that the subspace-like direction of arrival (DOA) estimation performs poor due to the error of
sources number, this paper proposes a new super-resolution DOA estimation algorithm based on the diagonal-symmetric loading
(DSL). Specifically, orthogonality principle of the minimum eigenvector of the specific covariance matrix and the source number
estimation based on the improved K-means method were adopted to construct the spatial spectrum. +en, by considering the
signal-to-interference-to-noise ratio (SINR), the theoretical basis for selecting parameters was given and verified by numerical
experiment. To evaluate the effectiveness of the proposed algorithm, this paper compared it with the methods of minimum
variance distortionless response (MVDR) and new signal subspace processing (NSSP). Experimental results prove that the
proposed DSL has higher resolution and better estimation accuracy than the MVDR and NSSP.

1. Introduction

+e direction of arrival (DOA) estimation has become an
important research subject in the array signal processing
[1–5] because it plays an important role in radar, sonar,
wireless communication, and many other application sys-
tems. DOA estimation aims to detect the direction infor-
mation of sources from the received signals [6, 7].
Researchers have studied how to implement DOA estima-
tion by weighted subspace fitting (WSF) [8, 9], multiple
signal classification (MUSIC) [10, 11], or estimated signal
parameter rotation invariance (ESPRIT) [12, 13]. +ese
methods mainly estimated the target angle by considering
the orthogonality of signal subspace and noise subspace,
which made certain progress.

By analyzing the DOA estimation process, it is essential
to obtain the target sources number accurately, but it is not
easy to get the target sources number directly [14]. +ere-
fore, some researchers adopted a number of different esti-
mation techniques, including Akaike information criterion
(AIC) [15], minimum description length (MDL) [16, 17],
second-order statistic of eigenvalues (SORTE) [18], property

of the variance of the rotational submatrix (VTRS) [19], and
characteristic threshold method (eigenthreshold, ET) [20].
However, these techniques are required under certain
conditions. Besides these techniques, Capon et al. [21] also
the proposed minimum variance distortionless response
(MVDR) method that can obtain better resolution and
strong anti-interference ability, but MVDR is very sensitive
to steering vector mismatch. Zhang et al. [22] designed a
narrowband DOA estimation algorithm that does not need
to consider the number of sources, which can achieve the
best performance of the MUSIC algorithm. Qian et al. [23]
described a DOA algorithm that uses Toeplitz matrix re-
construction and the maximum eigenvalue without the
number of sources, but the Toeplitz matrix reconstruction is
required. Qian et al. [24] propose a coherent DOA esti-
mation algorithm based on a new principal-singular-vector
utilization for modal analysis (PUMA). +is method uses
linear prediction theory to transform the DOA estimation
problem into a univariate polynomial root problem.

Although the above works have obtained some valuable
results, there are still some improvement in the resolution
and accuracy. +is paper makes full use of the orthogonality
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between the steering vector and the noise subspace [25] and
constructs a new spatial spectrum by considering the
characteristics of the trace of the received data covariance
matrix, which can achieve super-resolution effect and better
estimation accuracy when the number of sources is un-
known. Compared to the existing works, the main contri-
butions of this paper are described as follows:

(1) A new super-resolution direction of arrival estima-
tion algorithm based on the diagonal-symmetric
loading is proposed

(2) +e source number estimation is based on the im-
proved K-means method

(3) By considering the signal-to-interference-to-noise
ratio (SINR), the theoretical basis for selecting pa-
rameters in the proposed algorithm is described

+e paper is organized as follows. In Section 2, the signal
and noise model is presented and the DOA estimation
problem is formulated; on this basis, the proposed algorithm
is presented, and its parameter asymptotic properties are
discussed. In Section 3, the simulation experiment of the
proposed algorithm is carried out, and the comparison
results are given. In Section 4, the work of this paper is
summarized and the main conclusions are given.

2. Data Model and Problem Formulation

Notations: this paper uses E[·] to represent the expected
operation, [·]T and [·]H represent the transpose and con-
jugate transpose, respectively, and rank (·) represents the
rank operation.

2.1. Data Model. +e article assumes that the independent
narrowband signals (S1, S2, . . ., Sk) are incident on the
M-element uniform linear array (ULA) from θ1, θ2, · · · , θK,
which has been shown in Figure 1. +e numbers of signal K
are less than the numbers of array elements M, and the
element spacing d of the uniform linear array is half a
wavelength. Here, the proposed method in the article is also
applicable to multivariate arrays of other shapes.

By defining a matrix, the received signal can be simply
expressed as

X(t) � A(Θ)S(t)+N(t), (1)

where X(t) � [x1(t), x2(t), . . . , xK(t)]T, A(Θ) � [a(θ1),
a(θ2), . . . , a(θK)]T, S(t) � [s1(t), s2(t), . . . , sM(t)]T, and
N(t) � [n1(t), n2(t), . . . , nM(t)]T represent the output ma-
trix, direction response matrix, incident signal matrix, and
noise matrix of the ULA array, respectively.

For the ULA, the steering vector can be expressed as

a θi(  � 1, e
−j2πdsin θi( )/ϑ, . . . , e

− j2π(M− 1)dsin θi( )/ϑ 
T

, 1≤ i≤K, (2)

where ϑ represents the wavelength of the signal. +erefore,
the covariance matrix of the received signal can be expressed
as

R � E X(t)XH
(t) 

� A(Θ)E S(t)S
H

(t) AH
(Θ) + E N(t)NH

(t) 

� A(Θ)RSA
H

(Θ) + σ2nI,

(3)

where RS � E[S(t)SH(t)] represents the signal covariance
matrix, σ2n is the power of the white Gaussian noise, and I
represents the identity matrix.

2.2. Problem Formulation. In equation (3), R is a positive
definite matrix. In equation (4), λi and ei are the eigenvalue
and eigenvector of R. Moreover, λi is specified in the de-
creasing order:

Rei � λiei, i � 1, 2, . . . , M, λ1 ≥ λ2 ≥ · · · ≥ λK ≥ λK+1

� · · · � λM � σ2n.

(4)

+e range space of A (space spanned by columns of A) is
called the signal subspace, and it can be verified that

Range A{ } � Span e1, . . . , eM . (5)

In equation (5), each column of A is a steering vector
corresponding to a source direction and is equal to the
subspace spanned by the first M eigenvector of R. +us, they
are orthogonal to the last (M−K) eigenvectors
ej(j � 1, 2, . . . , M), and the above subspace spanned by
eK+1, . . . , eM  is called the noise subspace.

For the sources at fixed directions, the last (M−K) ei-
genvalues and their corresponding eigenvectors of the new
covariance matrix are the same as before when changing
their powers (variances). In other word, the noise subspace is
invariant to the power of sources.

However, when the number of snapshots is few, the noise
and signal spaces are not completely independent.+erefore,
in order to reduce the impact of snapshot number on DOA
estimation, a covariance matrix is constructed:

R � R + ασ2nI + βσ2a(θ)aH
(θ), (6)

where R is defined by equation (3), a(θ) is M ×1 array
response vector of θ in equation (1), σ2 is the power of the
signal, β is the positive constant scalars, and α is a unde-
termined constant. If λ∗i denotes eigenvalue in the de-
creasing order of R, which can be expressed as

Re∗I � λ∗i e
∗
i , i � 1, 2, . . . , M, λ∗1 ≥ λ

∗
2 ≥ · · · ≥ λ∗K ≥ λ

∗
K+1

� · · · � λ∗M,

(7)
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where e∗i denotes the corresponding eigenvector of λ∗i . Since
the order of magnitude of β is greater than that of α, then

λ∗i ≥ λi. (8)

As shown in equation (9), another important property of
R is that the remaining eigenvalues of R and R are the same
when θ in equation (6) is set to one of the source directions:

λ∗i − ασ2n � λi � σ2n, i � K + 1, . . . , M. (9)

When θ is not the actual source direction, it does not
have the above property. +e property stated does not de-
pend on the value of scalars α, β explicitly. +en, the source
directions in our proposed algorithm can be estimated as
follows:

(1) Compute the eigenvalues λi (i � 1, . . . , M) of cor-
relation matrix R of equation (3), and they should
satisfy equation (4)

(2) Select α, β by RMSE
(3) Compute R given in equation (6) and its eigenvalues

λ∗i (i � 1, 2, . . . , M)

(4) Obtain the direction of sources that satisfy equation
(9)

+eoretically, the above covariance matrix R is con-
tinuously available, and the direction of sources can be
obtained accurately. However, in practice the covariance
matrix is estimated from finite number of snapshots (N), so
it is discrete. +us, the (M−K) smaller eigenvalues of the
covariance matrix in equation (4), equation (5), and
equation (9) are different.

Based on the above analysis, an efficient DOA algorithm
is proposed. Here, the discrete covariance matrix is calcu-
lated by equation (3) and defined as R. +e main steps of the
algorithm are shown as follow.

Step 1: compute R by equation (3)
Step 2: compute the eigenvalues λi(i � 1, . . . , M) of R

that are in descending order
Step 3: substitute R by R in equation (6), and select

α and β. +en, compute R for all possible values
of theta. +at is, R � R + ασ2nI + βσ2a(θ)aH(θ).

Step 4: for each value of theta, compute the eigenvalues
λ
∗
i (i � 1, . . . , M) of R in descending order and
calculate spatial spectrum F(θ) as

F(θ) �
1


M
k�K+1

λ
∗
k − λk 

. (10)

Step 5: the values of θ are the direction angles of sources
and correspond to d largest maximums of F(θ).

By virtue of (8), it can be confirmed that F(θ) is a
positive function. Combining (8) and (9) together, the de-
nominator of (10) is zero when R � R. Considering the
discrete property of the signal X(t), the maximums of (10)
are obtained when the thetas are set to actual direction of
sources. +is proves the asymptotic consistency of the
proposed method. When the number of samples (N) used
for estimating R in equation (6) and (7) approaches infinity,
the maximums of F(θ) will reach the exact direction of
sources. Compared to MUSIC algorithm, the proposed
method not only is applicable to all array configuration but
also shows insensitive to the power level differences of
closely spaced sources. +e followings will explain in detail.

When there is a correlation between the directions of
sources, such as multipath propagation, or there exist smart
jammers in communication applications; their covariance
matrix R defined in (6) is not diagonal. If some sources are
fully correlated, that is, rank(R)<M.+en, the conventional
MUSIC and proposed methods fail to predict the DOA of
sources. Usually, with symmetric-array configurations
employed, both conventional MUSIC and proposed
methods can be applied after certain preprocessing such as
forward-backward smoothing. As the sources are partially
correlated, the matrix R is still not diagonal, but
rank(R) � M. In such a case, the MUSICmethod can still be
applied; however, its performance highly worsens [26, 27].
+erefore, the proposed algorithm is more suitable for the
case of partially correlated sources, and its performance is
much better even though the sources are highly correlated.

2.3. Improved K-Means Method for the Source Number
Estimation. Source number estimation is equivalent to R

eigenvalue classification problem. Hence, K-means can be
utilized to solve this problem. It is assumed that, in the
K-means clustering problem, there is a set of M eigenvalue
values Λ � λ1, λ2, . . . , λn  to be clustered. +e optimization
problem then has the form

minimizef Pk(  � 
k

i�1


xi∈ci

d λi, mi( ,

subject to Pk � c1, c2, c3, . . . , ck ,

(11)

where mi � (1/ni)(i � 1, . . . , k), ni is the number of data
items in the cluster Ci, and d(λi, mi) represents the distance
from xi to mi. +e common calculation process of K-means
is shown in Figure 2.

In this paper, two improved points, (a) and (b) in
Figure 2, are used by combining with the particularity of this
scheme (Table 1).

x1 x2 x3

s1

θ1

s2

θ2

xM

sK

θK

d
element 1 …… element M

Figure 1: Schematic diagram of source signals at different angles
using ULA.
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(a) +e basic idea of the improved k-means algorithm is
to generate a database containing data objects. +e
number of clusters is set 2, first; two fixed objects are
selected as the initial two cluster centers. +e dis-
tances between the remaining samples and each
cluster center are calculated, and the sample is
classified into the nearest cluster center, the new
cluster center is calculated by the average method.

(b) +e usual spatial clustering algorithms are based on
various distances, such as Euclidean distance,
Manhattan distance, and Mincus distance. However,
the commonly used distance may cause misclassi-
fication. +erefore, the inverse distance is used to
improve the classification accuracy. As shown in
Table 1, when the number of sources (K) is less than
or equal to 1/3 of the number of array elements (M),
the classification result reaches 100%.

2.4.αandβValueAnalysis. In the proposed algorithm, α and
β are required to discuss. According to the feature subspace
decomposition theory, the feature decomposition of R is
obtained:

R � σ20a θ0( aH θ0(  + 
M−1

i�1
σ2i a θi( aH θi(  + σ2nI, (12)

where σ20a(θ0)aH(θ0) is the expected signal component and


M−1
i�1 σ2i a(θi)aH(θi) is the interference component.
Actually, R is often sampled by a limited number of

snapshots, which can reduce the performance of DOA
resolution. Compared with the ideal interference plus noise
covariance matrix, the sampling covariance matrix has two
disadvantages. (1) R is obtained by a finite number of
snapshots, and the small eigenvalues corresponding to the
noise subspace will be disturbed. It can cause that the
sidelobes rise and the DOA resolution performance de-
creases. (2) R contains the desired signal component, which
will reduce the performance of DOA resolution, especially in
many nonideal situations [28]. It can be seen that sup-
pressing the disturbance of the small eigenvalues corre-
sponding to the noise subspace can not only reduce the
sidelobes but also improve the DOA resolution performance
and reduce the expected signal component.

According to (6) and (12), the eigendecomposition of R

is obtained:

R � σ20a θ0( aH θ0(  + 
M−1

i�1
σ2i a θi( aH θi(  + σ2nI + ασ2nI + βσ2a(θ)aH

(θ).

(13)

When the symmetric loading part is divided into θ � θ0
and θ≠ θ0, the above formula can be expressed as follows:

R � σ20 + βσ20 a θ0( aH θ0(  + 

M−1

i�1
σ2i a θi( aH θi(  + σ2n + ασ2n I, θ � θ0,

R � σ20a θ0( aH θ0(  + 
M−1

i�1
σ2i a θi( aH θi(  + σ2n + ασ2n I + βσ2Ia(θ)aH

(θ), θ≠ θ0, θ � θI,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

N

The distance between the remaining sample
points and the cluster centroid is calculated

and allocated to the nearest cluster

Renewal of endoplasmic
centers in clusters

K randomly selected as the initial
cluster centroid

The cluster to which the sample
belongs has not changed

Start

End

(a)

(b)

Figure 2: Common calculation process of K-means.

4 Mathematical Problems in Engineering



where σ2I is the symmetrical loading disturbance power.
+e signal-to-interference-to-noise ratio (SINR) in the

covariancematrix R after diagonal-symmetric loading (DSL)
is

SINR �
σ20 + βσ20


M−1
i�1 σ2i + σ2n + ασ2n 

, θ � θ0,

SINR �
σ20


M−1
i�1 σ2i + σ2n + ασ2n  + βσ2I

, θ≠ θ0, θ � θI,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

It can be seen from (15):

(1) Symmetrical loading is equivalent to adding signal
and interference components into the covariance
matrix at the same time. For the symmetrical
loading, when β becomes larger, the main eigenvalue
corresponding to the signal subspace is strength-
ened, and the proportion of interference compo-
nents will be increased. When θ � θ0, the expected
signal component and interference component in
the covariance matrix are increased by β times si-
multaneously, the SINR ratio in equation (15) will
become larger, and the peak can be obtained well.
When θ≠ θ0, the interference component is moved
to the denominator, and the proportion of the de-
nominator will increase, which can also effectively
suppress the increase in sidelobes.

(2) Diagonal loading is equivalent to enhancing the
noise component in the covariance matrix. In order
to further analyze the relationship between sym-
metry and diagonal, two extreme cases are consid-
ered. (i) When the value of β is very small, only the
diagonal loading part is considered temporarily;
when α⟶ − 1, theoretically, the small eigenvalue
disturbance corresponding to the noise subspace can
be suppressed, and an effective peak can be formed.
In fact, the number of snapshots is limited, and the
formed noise covariance matrix is not a unit matrix
and is greatly affected by the randomness of noise. As
a result, sidelobes tend to appear frequently under
different noises. (ii) When the value of β is relatively
large, the influence of α in equation (15) becomes
weak, the sidelobes gradually disappear, and the peak
is likely to be significant. At this time, SINR is close
to a stable value. When β is much greater than 1, the
original information of the signal will be overwritten
by the diagonal loading component. In this paper,
the appropriate range is decided by experiments.

It can be seen from the above analysis that a suitable α
can increase the resolving power of the main peak, and
increasing the value of β reasonably can improve the ro-
bustness of the algorithm. +e relationship between α and β
is further discussed in Section 3 of this article.

3. Simulation Experiment

3.1. Algorithm Feasibility Analysis. We assume two equal
power and uncorrelated far-field narrowband signals are
incidents on a uniform linear array, which is composed of 6
sound pressure sensors at the arrival angles of 0° and 10°.
d � 0.5λ is the distance between the array elements, the
number of snapshots is 300, and the SNR is 0 dB. +en, the
compared experiment among MVDR, NSSP, and proposed
algorithm is conducted. +e result is shown in Figure 3. It
can be found that when the angle difference between the two
targets is small, the MVDR algorithm cannot accurately
identify the two targets, but the proposed algorithm and the
NSSP algorithm can accurately identify the two targets. It
indicates that the proposed algorithm and the NSSP algo-
rithm have higher resolution than the MVDR algorithm.
Moreover, at this time, the proposed algorithm has relatively
flat sidelobes and no wrong peaks, which proves the cor-
rectness of (11) and further demonstrates the correctness
and feasibility of the proposed algorithm theory.

3.2. α and β Value Estimation. According to the α and β
value analysis in Section 2.4, there is a limit to SINR. To
estimate the limit situation, the influence of α and β on the
root mean square error (RMSE) is analyzed under two
different snapshot numbers, which are shown in Figure 4. X-
axis and Y-axis represent the logarithm of β and α,
respectively.

As seen in Figure 4, the results are affected by the
number of snapshots evidently. When the number of
snapshots is low, the effect of β is obvious. While in the case
of the high snapshot number, the accuracy of RMSE is
improved, and the influence of randomness is aggravated
and α is sensitive. Meanwhile, it can be found that the in-
fluence of α is very small, and the RMSE gradually decreases
with the increase of β. Lower sample frequency generates
more random information, which causes the noise subspace
and signal subspace are not completely orthogonal. With the
decrease of the sampling frequency, the random information
takes the place of noise information. +us, the addition of α
is approximately regarded as a disturbance to the noise.
According to (15), the increase of β advances the value of the
SINR, which can decrease the noise effect and improve the
robustness of the proposed algorithm. In addition,

Table 1: Classification results under the different value of K and M with 10000 Monte Carlo test.

K-means
(K, M)

(2, 6) (2, 7) (2, 8) (2, 9) (3, 6) (3, 7) (3, 8) (3, 9) (3, 10) (3, 11)
Common method 0% 0% 70.80% 100.00% 0% 0% 0% 0.02% 98.98% 100.00%
Proposed method 100.00% 100.00% 100.00% 100.00% 0% 9.15% 99.97% 100.00% 100.00% 100.00%
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considering the estimation of α in equation (9), α and β are
set as −1 and 10, respectively.

3.3. Algorithm Statistical Performance Analysis. In order to
verify the performance of the algorithm, 500 independent
Monte Carlo experiments were performed. We set the
arrival angle of one target to 0°, and the other angle to (0+ θ)
° by keeping other conditions unchanged. +e theta can be
expressed as an arithmetic sequence, which starts at 5 and
increase by 2 each time until 25. +erefore, the theta can be
regarded as the angle difference between the two targets.
+en, this paper set the SNR to 0 dB and conducted 500
Monte Carlo experiments to obtain the RMSE of the al-
gorithm under different angle differences. When the target
angle difference is less than 10°, it can be analyzed that the

intersection between two signal subspaces becomes large.
To decrease this effect, this study added β in equation (15)
to improve the identification results. Meanwhile, it can be
also seen that the performance of the proposed algorithm is
the best among the three algorithms in Figure 5. When the
angle increases, the RMSE of the three algorithms are the
same. Overall, the performance of the proposed algorithm
is better than the MVDR algorithm and can obtain the
super-resolution effect without knowing the number of
sources.

Next, by keeping other conditions unchanged, we set the
signal-to-noise ratio (SNR) starts from −5Db and increased
it by 2 dB each time until 15 dB. +en, the comparative
analysis experiment of the three algorithms on RMSE is
conducted. +e results are shown in Figure 6. +e RMSE of
the proposed algorithm and the NSSP algorithm decrease

DOA (°)
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w

er
 (d

B)

Proposed Method
NSSP
MVDR

-50
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-5

0

-100 -50 0 50 100

Figure 3: Comparison of spatial spectrum of algorithm.
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Figure 4: RMSE under two different snapshot numbers (n� 100 (a), 300 (b)).
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when the signal-to-noise ratio increases. However, when the
SNR of the MVDR algorithm is less than 7 dB, the RMSE
decreases more slowly. When the SNR is greater than 7 dB,
the RMSE of the algorithm decreases sharply, which means
that when the MVDR algorithm is less than 7 dB, the two
targets of 0° and 10° cannot be distinguished. +e reason is
that the decrease of SNR can make DOA estimation more
difficult. To solve this problem, this study increases SINR to
improve the algorithm performance by introducing β. It also
shows that the proposed algorithm has a super-resolution
effect. +e results of the three algorithms tend to the CRB
curve, which shows the effectiveness of these methods.

Furthermore, to analyze the impact of the number of
snapshots on the algorithm, by keeping other conditions
unchanged, we set the target incident angle to 0° and 15° and
fix the numbers of snapshots are 100, which will be increased

by 200 each time until 900. Finally, 500 Monte Carlo ex-
periments are conducted.+e RMSE is shown in Figure 7. As
the number of snapshots increases, the RMSE of the MVDR
algorithm also decreases. However, the performance of
MVDR is the worst among the three algorithms. When the
numbers of snapshots are less than 400, the proposed al-
gorithm performs better than the NSSP method. When the
numbers of snapshots are over 400, the RMSE of the pro-
posed algorithm is relatively stable and closer to the NSSP
algorithm. +e above results show that the orthogonality is
worse when the snapshots are not many, which is the same
with the conclusion from Figure 5, that is, the proposed
algorithm is more suitable to the few snapshots. +us, the
proposed algorithm performs better than the other two
methods.+e results of the three algorithms tend to the CRB
curve, which also proves their effectiveness.

5 7 9 11 13 15 17 19 21 23 25
DOA interval (°)
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Figure 5: Comparison of RMSE of algorithms under different DOA intervals.
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Figure 6: Comparison of RMSE of algorithms under different SNR.
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4. Conclusion

+is paper presented an efficient DOA estimation algorithm
based on diagonal-symmetric loading, which can hold the
invariance property of noise subspace to the source powers.
+e compared experiments proved that the proposed al-
gorithm has higher resolution and better estimation accu-
racy. +e conclusions are summarized as follows:

(1) +e improved K-means method performs better
than the original method, especially when the
number of array elements is small

(2) When the numbers of sources are unknown, the
proposed algorithm is more effective than the
MVDR and NSSP algorithms

(3) +e theoretical analysis of α and β selections is given,
which can overcome the drawback of false peaks
appearing on the scanning spectrum when the fea-
ture vector corresponding to the minimum feature
value of the noise is orthogonal to the scan steering
vector
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