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In this paper, we study a kind of near optimal control problem which is described by linear quadratic doubly stochastic differential
equations with time delay. We consider the near optimality for the linear delayed doubly stochastic system with convex control
domain. We discuss the case that all the time delay variables are different. We give the maximum principle of near optimal control
for this kind of time delay system. +e necessary condition for the control to be near optimal control is deduced by Ekeland’s
variational principle and some estimates on the state and the adjoint processes corresponding to the system.

1. Introduction

As known to all, stochastic differential equations and sto-
chastic analysis develop rapidly. +e theory of stochastic
differential equations is widely used in economy, biology,
physics, financial mathematics, and other fields. In order to
give the probabilistic expression of stochastic partial dif-
ferential equations, Pardoux and Peng [1] gave a class of
double stochastic differential equations. Due to the wide
applications of this kind of equation in many fields, more
and more people pay attention to it. Han et al. [2] deduced
the maximum principle for the backward doubly stochastic
control system. Zhu and Shi [3] discussed the optimal
control problem of the backward doubly stochastic system
with partial information. And then they studied a type of
forward-backward doubly stochastic differential equations
with random jumps and applied their results to related
games [4]. Many scholars have discussed the maximum
principle of optimal control for different control systems [5].

With the further exploration of stochastic problems, we
find that many problems in the objective world are not only
affected by the current state but also influenced by the past
history. +is kind of problem is called time delay problem.
Time delay exists in many fields such as the latent period of
infectious diseases, genetic problems, advertising effects,

network transmission, and so on. +e equation describing
this kind of problem is called delay equation. Because of the
importance of time delay, people try to study this kind of
problem. Chen andWu [6] considered the delayed backward
stochastic system and obtained the maximum principle for
this problem. Wu and Wang [7] studied the optimal control
problem of the backward stochastic differential delay
equation under partial information. Lv et al. [8] considered
the maximum principle for optimal control of the antici-
pated forward-backward stochastic delayed system with
regime switching. Wang and Wu [9] concerned with the
optimal control problems of the forward-backward delay
system involving impulse controls and established the sto-
chastic maximum principle for this kind of system. Zhou
[10] investigated the maximum principle for stochastic
optimal control problems of the delay system with random
coefficients involving both continuous and impulse controls.
In previous work, we mainly studied the theory of doubly
stochastic differential equations with time delay. We de-
duced the maximum principle for the double stochastic
control system when all variables contain time delay vari-
ables [11]. And we concerned the expression of optimal
control and value function by the solution of the Riccati
equation for a special delayed doubly stochastic linear
quadratic control system [12].
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When we study the control problems, we usually focus
on finding optimal control. However, in practice, the op-
timal control may not exist or be difficult to obtain. Whether
in theoretical analysis or numerical calculation, it is easier to
obtain near optimal control than optimal control. Moreover,
near optimal control has its unique advantages both in
theory and practice. In order to solve the problem better, we
need to pay attention to the research of near optimal control.
Ekeland [13] discussed the necessary conditions for near
optimality of the control system driven by ordinary dif-
ferential equations. Zhou [14–16] discussed the dynamical
system and gave the necessary and sufficient conditions for
the existence of near optimal solutions for a kind of sto-
chastic control problem. Bahlali et al. [17] considered a class
of nonlinear forward-backward stochastic differential
equations and gave the necessary conditions for near op-
timal control. Hafayed et al. [18] concerned with the sto-
chastic maximum principle for near optimal control of
nonlinear controlled mean-field forward-backward sto-
chastic systems driven by Brownian motions and random
Poisson martingale measure. Wang and Wu [19] and Zhang
[20] discussed near optimal problem for the stochastic
system with time delay, respectively. Li and Hu [21] con-
cerned with a near optimal control problem for systems
governed by mean-field forward-backward stochastic dif-
ferential equations with mixed initial-terminal conditions.

By consulting some literatures, we find that the near
optimal control problem of the deterministic control system
and stochastic system has relatively complete conclusions.
However, the similar results about the doubly stochastic
system are relatively few. Inspired by such problems, we try
to study near optimal control problem of delayed doubly
stochastic linear quadratic optimal control problem. We
deduce the necessary condition of the near optimal control
problem for the delayed system, which is similar to the
maximum principle for the optimal control problem.

+e rest of our paper is organized as follows. In this
section, we introduce the elementary introduction. In Sec-
tion 2, we give some common notations and necessary
formulas, as well as the main conclusions to be used later. In

Section 3, we give our main results of this paper. When we
deal with the time delay problem, how to deal with the delay
term reasonably is the key to our research. At the same time,
different time delay variables will make our research more
difficult. We define a function H which is similar to the
Hamiltonian function and discuss some estimates for the
solution of the adjoint equations. +en, we deduce the
conclusions according to Ekeland’s variational principle.

2. Preliminaries

Let us give some notations used in this paper. Set (Ω,F, P)

as a probability space and T> 0 as fixed throughout our
paper. W(t): 0≤ t≤T{ } and B(t): 0≤ t≤T{ } are two mu-
tually independent standard Brownian motions which are
defined on (Ω,F, P). +e integral with respect to W(t){ } is
defined to be the forward Itô’s integral, and its value is in Rm.
Note that the integral with respect to B(t){ } is defined to be
the backward Itô’s integral, and its value is in Rd. Let N
denote the class of P-null sets of F. For each t ∈ [0, T], we
defineFt ≐F

W
t ∨F

B
t,T, whereF

W
t � N∨ σ W(r) − W(0):{

0≤ r≤ t} and FB
t,T � N∨ σ B(r) − B(t): t≤ r≤T{ }. Note

that the collection Ft: t ∈ [0, T]  is neither increasing nor
decreasing, so it does not constitute a filtration.

Let M2(0, T; Rn) denote the set of all classes of
(dt × dP a.e. equal) Ft measurable stochastic process φ(t)

satisfying E 
T

0 |φ(t)|2dt< +∞. Similarly, S2(0, T; Rn) de-
note the set of continuous n-dimensional Ft measurable
stochastic process φ(t) satisfying Esupt∈[0,T]|φ(t)|2 < +∞.
〈·, ·〉 denotes the inner product. And ⊤ in the superscripts of
the matrix means the transpose of the matrix. Moreover,
EFt [·] � E[·|Ft] denotes the conditional expectation under
Ft.

For a convex subset U ⊂ Rk, let U[0, T] �

u: [0, T] ×Ω⟶ U | u{ is Ft−measurable, E 
T

0 |u(t)|2

dt< +∞}.
In general, the delayed doubly stochastic systems can be

defined as follows:

dx(t) � f t, x(t), x t − δ1( , y(t), y t − δ2( , u(t), u t − δ3( ( dt

quad + g t, x(t), x t − δ1( , y(t), y t − δ2( , u(t), u t − δ3( ( dW(t)
�����→

quad − y(t)dB(t)
←

,

t ∈ [0, T],

x(t) � φ(t), t ∈ −δ1, 0 ,

y(t) � ψ(t), t ∈ −δ2, 0 ,

u(t) � η(t), t ∈ −δ3, 0 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)
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Functions f and g can be defined in different forms
according to different problems. In this paper, we mainly

investigate the delayed doubly stochastic linear quadratic
control system, that is,

dx(t) � A1(t)x(t) + B1(t)x t − δ1(  + C1(t)y(t) + D1(t)y t − δ2( 

+E1(t)u(t) + F1(t)u t − δ3( dt + A2(t)x(t) + B2(t)x t − δ1( 

+C2(t)y(t) + D2(t)y t − δ2(  + E2(t)u(t) + F2(t)u t − δ3( dW(t)
�����→

− y(t)dB(t)
←

,

t ∈ [0, T],

x(t) � φ(t), t ∈ −δ1, 0 ,

y(t) � ψ(t), t ∈ −δ2, 0 ,

u(t) � 0, t ∈ −δ3, 0 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where the delayed variables δ1, δ2, and δ3 are not equal.

Remark 1. In this delayed doubly stochastic control system,
the state variables and the control variables contain time
delay at the same time, and the three delay variables are
different. Time delay exists all the time in the system.
However, we do nothing before the initial time. So, we give
the assumption that u(t) � 0 when the time t belongs to the
interval before the intervention of the control variable.

+e cost functional can be written as

J(u(·)) � E 
T

0
l(t, x(t), y(t), u(t))dt +Φ(x(T)) . (3)

For better analysis and research, we give some defini-
tions similar to these in reference [16].

Definition 1. +e optimal control problem of the delayed
doubly stochastic system can be described as minimizing the
cost functional over U[0, T] to obtain the optimal control
u∗(·) satisfying

J u
∗
(·)(  � V � inf

u(·)∈U[0,T]
J(u(·)), (4)

and the corresponding (x∗(·), y∗(·), u∗(·)) is called an
optimal triple.

Definition 2. For a given ε> 0, an admissible triple
(xε(·), yε(·), uε(·)) or simply uε(·) is called ε− optimal if
|J(uε) − V|≤ ε.

Definition 3. A family of admissible triples
(xε(·), yε(·), uε(·)) or simply uε(·) parameterized by ε> 0 is
called near optimal if |J(uε) − V|≤ r(ε) holds for sufficiently
small ε, where r(ε)⟶ 0 as ε⟶ 0. +e estimate r(ε) is
called an error bound. If r(ε) � cεc for some c> 0 inde-
pendent of the constant c, then uε is called near optimal with
order εc.

We assume that the following conditions hold:

(A1) Assume that the coefficient matrices Ai, Bi, Ci, Di,
Ei, and Fi(i � 1, 2) are bounded matrix processes with
proper dimensions, (i � 1, 2)

(A2)+e functionΦ is continuously differentiable in x,
and the partial derivative of Φ is bounded
(A3) +e function l is continuously differentiable in
(x, y, u), and every partial derivative is bounded

Corresponding to the delayed doubly stochastic control
system, the adjoint equation can be written as

−dp(t) � A
⊤
1 (t)p(t) + E

Ft B
⊤
1 t + δ1( p t + δ1(   + A

⊤
2 (t)q(t) − lx(t)

+E
Ft B
⊤
2 t + δ1( q t + δ1(  dt + ly(t) − C

⊤
1 (t)p(t) − C

⊤
2 (t)q(t)

−E
Ft D
⊤
1 t + δ2( p t + δ2(   − E

Ft D
⊤
2 t + δ2( q t + δ2(  dB(t)

←
− q(t)dW(t)

�����→
,

t ∈ [0, T],

p(T) � −Φx(x(T)),

p(t) � 0, t ∈ (T, T + δ],

q(t) � 0, t ∈ (T, T + δ],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where the variable δ � max δ1, δ2, δ3 .

Remark 2. According to +eorem 3.1 in [11], the delayed
doubly stochastic differential equation (2) admits a unique
solution.

Lemma 1. Under the assumption (A1), the adjoint equation
(5) admits a unique solution (p(t), q(t)) for any u ∈ U[0, T].
And there exists a positive constant C> 0 such that

E sup
0≤t≤T

p
u
(t)



2

+ 
T

0
q

u
(t)



2dt  ≤C, ∀u ∈ U[0, T].

(6)

Proof. Adjoint equation (5) is a new kind of equation which
is similar to the anticipated backward stochastic differential
equation in [22]. We call it anticipated backward doubly
stochastic differential equation. +eorem 2.2 in reference
[23] introduces the conditions for the existence and
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uniqueness of solution of general anticipated backward
doubly stochastic differential equation. In this paper, we
only discuss the linear system, which is a special case in
reference [23]. Characteristics of the linear system and
boundedness of coefficient from assumption (A1) satisfy the
condition of +eorem 2.3. We can directly deduce the ex-
istence and uniqueness of the solution from this theorem.

Under the premise of the existence of solutions,+eorem2.5
in reference [24] gives the boundedness of solutions in general
cases. When we discuss the linear system, the term


T

0 (|f(t, 0, 0, 0, 0)|2 + |g(t, 0, 0, 0, 0)|2)dt � 0. And the
delayed termsp(t) � 0, q(t) � 0 when t ∈ [T, T + δ].+en,we
can deduce inequality (6) by +eorem 2.5 in reference [24]
directly. □

Definition 4. Let us define a metric d on U by
d(u, v) � [E 

T

0 |u(t) − v(t)|2dt]1/2.

Obviously, (U, d) is a complete metric space. Next, we
will discuss the relation by using the metric d.

Lemma 2. Assume (A1), then there exists a constant C> 0
satisfying

E sup
0≤t≤T

x
u
(t) − x

v
(t)



2

+ 
T

0
y

u
(t) − y

v
(t)



2dt ≤C d(u, v)

2
.

(7)

Proof. Applying Itô’s formula and Jensen inequality for the
general delayed doubly stochastic system (1), we have

E x
u
(t) − x

v
(t)



2

+ 
T

0
y

u
(t) − y

v
(t)



2dt 

≤E 
T

0
|f t, x

u
(t)( , x

u
t − δ1( , y

u
(t), y

u
t − δ2( , u(t), u t − δ3( 

−f t, x
v
(t)( , x

v
t − δ1( , y

v
(t), y

v
t − δ2( , v(t), v t − δ3( |

2dt

+ E 
T

0
|g t, x

u
(t)( , x

u
t − δ1( , y

u
(t), y

u
t − δ2( , u(t), u t − δ3( 

− g t, x
v
(t)( , x

v
t − δ1( , y

v
(t), y

v
t − δ2( , v(t), v t − δ3( |

2dt.

(8)

For the liner system (2), we can deal with the first term in
(8) as the following:

E 
T

0
|f t, x

u
(t), x

u
t − δ1( , y

u
(t), y

u
t − δ2( , u(t), u t − δ3( ( 

− f t, x
v
(t), x

v
t − δ1( , y

v
(t), y

v
t − δ2( , v(t), v t − δ3( ( |

2dt

≤E 
T

0
A1(t) x

u
(t) − x

v
(t)



2

+ B1(t) x
u

t − δ1(  − x
v

t − δ1( 



2

+ C1(t) y
u
(t) − y

v
(t)



2



+ D1(t) y
u

t − δ2(  − y
v

t − δ2( 



2

+ E1(t)|u(t) − v(t)|
2

+ F1(t) u t − δ3(  − v t − δ3( 



2
dt.

(9)

Using variable substitution and paying attention to the
initial conditions, we can get the following conclusions:

E 
T

0
x

u
t − δ1(  − x

v
t − δ1( 


dt

� E 
T−δ1

−δ1
x

u
(t) − x

v
(t)


dt

≤E 
T

0
x

u
(t) − x

v
(t)


dt.

(10)

Similarly,

E 
T

0
y

u
t − δ2(  − y

v
t − δ2( 


dt

� E 
T−δ2

−δ2
y

u
(t) − y

v
(t)


dt

≤E 
T

0
y

u
(t) − y

v
(t)


dt,

(11)

E 
T

0
u t − δ3(  − v t − δ3( 


dt

� E 
T−δ3

−δ3
|u(t) − v(t)|dt

≤E 
T

0
|u(t) − v(t)|dt.

(12)
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+en, substitute inequalities (10)–(12) into (9). Under
the assumption (A1), there is a constant C> 0 such that

E 
T

0
|f t, x

u
(t)( , x

u
t − δ1( , y

u
(t), y

u
t − δ2( , u(t), u t − δ3( 

− f t, x
v
(t)( , x

v
t − δ1( , y

v
(t), y

v
t − δ2( , v(t), v t − δ3( |

2dt

≤C E 
T

0
x

u
(t) − x

v
(t)



2dt + E 

T

0
y

u
(t) − y

v
(t)



2dt +|u(t) − v(t)|

2
 

� C E 
T

0
x

u
(t) − x

v
(t)



2dt + E 

T

0
y

u
(t) − y

v
(t)



2dt + d(u, v)

2
 .

(13)

Similarly, for the second term in (8), we have

E 
T

0
|g t, x

u
(t)( , x

u
t − δ1( , y

u
(t), y

u
t − δ2( , u(t), u t − δ3( 

− g t, x
v
(t)( , x

v
t − δ1( , y

v
(t), y

v
t − δ2( , v(t), v t − δ3( |

2dt

≤C E 
T

0
x

u
(t) − x

v
(t)



2dt + E 

T

0
y

u
(t) − y

v
(t)



2dt + d(u, v)

2
 .

(14)

Using Gronwall’s inequality and Lemma 3.1 in [9], we
can deduce conclusion (7) directly. □

Similarly, using the same method and Proposition 2.5 in
reference [24], we can deduce the following conclusion
directly.

Lemma 3. Assume (A1), then there exists a constant C> 0
satisfying

E sup
0≤t≤T

p
u
(t) − q

v
(t)



2

+ 
T

0
p

u
(t) − q

v
(t)



2dt ≤C d(u, v)

2
.

(15)

Lemma 4. Assume (A1–A3), then there exists a constant
C> 0 satisfying

|J(u) − J(v)|≤C d(u, v), (16)

for all u, v ∈ U.

Proof. From (3) and the elementary inequality, we have

|J(u) − J(v)|≤ E 
T

0
l
u

x
u
(t), y

u
(t), u(t)(  − l

v
x

v
(t), y

v
(t), v(t)(  dt





+ Φ x
u
(T)(  −Φ x

v
(T)( 


.

(17)

From condition (A2), Lemma 2, and Cauchy–Schwartz
inequality, we find that

Φ x
u
(T)(  −Φ x

v
(T)( 


 � 

1

0
〈Φx x

v
(T) + λ x

u
(T) − x

v
(T)( ( , x

u
(T) − x

v
(T)〉dλ





≤Cd(u, v).

(18)
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For the convenience of proof, we denote symbol

ς(t) � t, x
v
(t) + λ x

u
(t) − x

v
(t)( , y

v
(t) + λ y

u
(t) − y

v
(t)( , v(t) + λ(u(t) − v(t))( . (19)

+en, we have

l
u

x
u
(t), y

u
(t), u(t)(  − l

v
x

v
(t), y

v
(t), v(t)( 




� 
1

0
〈lx(ς(t)), x

u
(t) − x

v
(t)〉 +〈ly(ς(t)), y

u
(t) − y

v
(t)〉 +〈lu(ς(t)), u(t) − v(t)〉dλ




.

(20)

By using the same method, from the assumption (A3),
Lemmas 2 and 3, and the Definition 4, we can deduce that

E 
T

0
l
u

x
u
(t), y

u
(t), u(t)(  − l

v
x

v
(t), y

v
(t), v(t)(  dt




≤Cd(u, v). (21)

Combining inequalities (18) and (21), we can prove the
conclusion directly. □

Ekeland’s variational principle is an important tool for
our study which can be seen in [25].

Lemma 5. (Ekeland’s variational principle). Let (S, d) be a
complete metric space and ρ(·): S⟶ R1 be a lower-semi-
continuous and bounded from below. For ε≥ 0, suppose uε ∈ S

satisfies

ρ u
ε

( ≤ inf
u∈S

ρ(u) + ε. (22)

+en, for any λ> 0, there exists uλ ∈ S such that

ρ u
λ

 ≤ ρ u
ε

( ,

d u
λ
, u

ε
 ≤ λ,

ρ u
λ

 ≤ ρ(u) +
ε
λ

d u, u
λ

 , for all u ∈ S.

(23)

Assume that uε ∈ U is a ε-optimal control; from Defi-
nition 2, we have |J(uε) − V|≤ ε, that is, J(uε)≤V + ε. +en,
from Definition 1, we have J(uε)≤ infv∈UJ(v) + ε. From
assumption (A2), we know that J(·) is a continuous bounded
function and (U, d) is a complete metric space. From

Lemma 5, we know that there is a uλ ∈ S, such that
J(uλ)≤ J(uε), ∀λ> 0. Take λ �

�
ε

√
and then uλ � uε. We

have J(uε)≤ J(uε) and d(uε, uε)≤ λ �
�
ε

√
.

+en, we have

J u
ε

( ≤ J(u) +
�
ε

√
d u, u

ε
( , ∀u ∈ U. (24)

We discuss uε first and pay attention to uε. Let
u ∈M2(−δ′, T)(δ′ � min δ1, δ2, δ3 ) satisfy uε + u ∈ U. In
the previous assumptions, we know that u(t) � 0 for
−δ3 ≤ t≤ 0. Define uθ: � uε + θu, θ ∈ [0, 1]. +en, we have
uθ � uε + θ(u − uε) � (1 − θ)uε + θu. From the convexity of
U, we can deduce that uθ ∈ U for any θ ∈ [0, 1]. +en,
d(uθ, uε) � [E 

T

0 (uθ − uε)2dt](1/2) � [E 
T

0 (θu)2dt](1/2)

� θ[E 
T

0 (u)2dt](1/2). From the bounded of U, we know that
there exist a constant β independent of ε and θ, such that
d(uθ, uε)≤ βθ.

From inequality (24), we have

J u
ε

( ≤ J u
θ

  +
�
ε

√
d u

θ
, u

ε
 

≤ J u
θ

  + β
�
ε

√
θ.

(25)

+at is,

J u
θ

  − J u
ε

( ≥ − β
�
ε

√
θ. (26)

Let us introduce variational equations.
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dx1(t) � A1(t)x1(t) + B1(t)x1 t − δ1(  + C1(t)y1(t) + D1(t)y1 t − δ2( 

+E1(t)u(t) + F1(t)u t − δ3( dt + A2(t)x1(t) + B2(t)x1 t − δ1( 

+ C2(t)y1(t) + D2(t)y1 t − δ2(  + E2(t)u(t) + F2(t)u t − δ3( dW(t)
�����→

− y1(t)dB(t)
←

,

t ∈ [0, T],

x1(t) � 0, t ∈ −δ1, 0 ,

y1(t) � 0, t ∈ −δ2, 0 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

In order to simplify the symbols in proof, we denote
ξθ(t) :� (t, xθ(t), yθ(t), uθ(t)) and ξε(t) :� (t, xε(t), yε(t),
uε(t)).

3. Main Results

Theorem 1. Let (A1)–(A3) hold.@en, there exists a constant
β> 0 independent of ε, such that

E 
T

0
〈EFt F

⊤
1 t + δ3( p

ε
t + δ3(  + F

⊤
2 t + δ3( q

ε
t + δ3(  

+ E
⊤
1 (t)p

ε
(t) + E

⊤
2 (t)q

ε
(t) − lu

ξ
ε
(t) , v − u

ε
(t)〉dt≤ β

�
ε

√
, ∀v ∈ U.

(28)

Proof. From the definition of function J(·) and inequality
(26), we have

lim
θ⟶0

J u
θ

  − J u
ε

( 

θ

� lim
θ⟶0

E 
T

0 l ξθ(t)) − tln ξ
ε

 (t)  dt

θ
+ lim

θ⟶0

E Φ x
θ
(T)  −Φ x

ε
(T)(  

θ

� E 
T

0
〈lx ξ

ε
(t) , x1(t)〉 +〈ly ξ

ε
(t) , y1(t)〉 +〈lu ξ

ε
(t) , u(t)〉 dt +〈Φx x

ε
(T)( , x1(T)〉 

≥ − β
�
ε

√
.

(29)

Next, we will deal with the term 〈Φx(xε(T)), x1(T)〉.
We connect it with the solution of the adjoint equation.
Using the Itô–Doeblin formula, we have

E〈x1(T), −Φx x
ε
(T)( 〉

� E 
T

0
〈 − x1(t), E

Ft B
⊤
1 t + δ1( p

ε
t + δ1(   + E

Ft B
⊤
2 t + δ1( q

ε
t + δ1(   − l

∗
x

ξ
ε
(t) 〉

+〈B1(t)x1 t − δ1(  + D1(t)y1 t − δ2(  + E1(t)u(t) + F1(t)u t − δ3( , p
ε
(t)〉

+〈B2(t)x1 t − δ1(  + D2(t)y1 t − δ2(  + E2(t)u(t) + F2(t)u t − δ3( , q
ε
(t)〉

+〈y1(t), l
∗
y

ξ
ε
(t)  − E

Ft D
⊤
1 t + δ2( p

ε
t + δ2(   − E

Ft D
⊤
2 t + δ2( q

ε
t + δ2(  〉dt.

(30)

Let us deal with the first term.
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E 
T

0
〈 − x1(t), E

Ft B
⊤
1 t + δ1( p

ε
t + δ1(  〉dt

� E 
T+δ1

δ1
〈 − x1 t − δ1( , E

Ft−δ1 B
⊤
1 (t)p

ε
(t) 〉dt � E 

T+δ1

δ1
〈 − x1 t − δ1( , B

⊤
1 (t)p

ε
(t)〉dt

� E 
T

0
〈 − x1 t − δ1( , B

⊤
1 (t)p

ε
(t)〉dt − 

δ1

0
〈 − x1 t − δ1( , B

⊤
1 (t)p

ε
(t)〉dt

+ 
T+δ1

T
〈 − x1 t − δ1( , B

⊤
1 (t)p

ε
(t)〉dt.

(31)

From the definition of adjoint equation (5) and variation
equation (10), we have

E 
T

0
〈−x1 t − δ1( , B

⊤
1 (t)p

ε
(t)〉dt � 0, (32)

E 
T+δ1

T
〈−x1 t − δ1( , B

⊤
1 (t)p

ε
(t)〉dt � 0. (33)

Combining equalities (31)–(33), we deduce the following
equality:

E 
T

0
〈−x1(t), E

Ft B
⊤
1 t + δ1( p

ε
t + δ1(  〉 +〈B1(t)x1 t − δ1( , p

ε
(t)〉 dt � 0. (34)

Similarly, we have

E 
T

0
〈−x1(t), E

Ft B
⊤
2 t + δ1( q

ε
t + δ1(  〉 +〈B2(t)x1 t − δ1( , q

ε
(t)〉 dt � 0. (35)

In the same way, we have

E 
T

0
〈D1(t)y1 t − δ2( , p

ε
(t)〉 +〈y1(t), −E

Ft D
⊤
1 t + δ2( p

ε
t + δ2(   〉 dt � 0, (36)

E 
T

0
〈D2(t)y1 t − δ2( , q

ε
(t)〉 +〈y1(t), −E

Ft D
⊤
2 t + δ2( q

ε
t + δ2(  〉 dt � 0. (37)

Substituting (34)–(37) into equality (30), we have

E〈x1(T), −Φx(x(T))〉

� E 
T

0
〈x1(t), lx

ξ
ε
(t) 〉 +〈E1(t)u(t) + F1(t)u t − δ3( , p

ε
(t)〉

+〈E2(t)u(t) + F2(t)u t − δ3( , q
ε
(t)〉 +〈y1(t), ly

ξ
ε
(t) 〉dt.

(38)

Let us deal with delayed control variables.
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T

0
〈F1(t)u t − δ3( , p

ε
(t)〉dt

� 
T−δ3

−δ3
〈F1 t + δ3( u(t), p

ε
t + δ3( 〉dt

� 
0

−δ3
〈F⊤1 t + δ3( p

ε
t + δ3( , u(t)〉dt + 

T−δ3

0
〈F⊤1 t + δ3( p

ε
t + δ3( , u(t)〉dt.

(39)

From the remark, we know that u(t) � 0 when
−δ3 ≤ t≤ 0. From the adjoint equation (5), we have the

terminal condition that p(t) � 0 for T≤ t≤T + δ,
δ � max δ1, δ2, δ3 . +en, we have

E 
T

0
〈F1(t)u t − δ3( , p

ε
(t)〉dt

� E 
T

0
〈F⊤1 t + δ3( p

ε
t + δ3( , u(t)〉dt − 

T

T−δ3
〈F⊤1 t + δ3( p

ε
t + δ3( , u(t)〉dt 

� E 
T

0
〈EFt F

⊤
1 t + δ3(  p

ε
t + δ3( , u(t)〉dt.

(40)

Equation (38) can be written as

E〈x1(T), −Φx(x(T))〉

� E 
T

0
〈x1(t), lx

ξ
ε
(t) 〉 +〈E1(t)u(t), p

ε
(t)〉 +〈E2(t)u(t), q

ε
(t)〉 +〈y1(t), ly

ξ
ε
(t) 〉

+〈EFt F
⊤
1 t + δ3(  p

ε
t + δ3( , u(t)〉 +〈EFt F

⊤
2 t + δ3(  q

ε
t + δ3( , u(t)〉dt.

� E 
T

0
〈x1(t), lx

ξ
ε
(t) 〉〈〈E⊤1 (t)p

ε
(t) + E

⊤
2 (t)q

ε
(t), u(t)〉 +〈y1(t), ly

ξ
ε
(t) 〉

+〈EFt F
⊤
1 t + δ3( p

ε
t + δ3(  + F

⊤
2 t + δ3( q

ε
t + δ3(  , u(t)〉dt.

(41)

According to inequality (29) and equation (41), we can
deduce that

E 
T

0
〈lu ξ

ε
(t)  − E

⊤
1 (t)p(t) − E

⊤
2 (t)q(t) − E

Ft F
⊤
1 t + δ3( p t + δ3( 

− F
⊤
2 t + δ3( q t + δ3( , u(t)〉dt≥ β

�
ε

√
.

(42)

We know that u is a variable such that uε + u ∈ U.
Assume that uε + u � v ∈ U, then the desired conclusion
(28) is deduced directly, that is,

E 
T

0
〈EFt F

⊤
1 t + δ3( p

ε
t + δ3(  + F

⊤
2 t + δ3( q

ε
t + δ3(  

+ E
⊤
1 (t)p

ε
(t) + E

⊤
2 (t)q

ε
(t) − lu

ξ
ε
(t) , v − u

ε
(t)〉dt≤ β

�
ε

√
, ∀v ∈ U.

(43)
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+eorem 1 is proved. □

Next, we will show the necessary condition for the near
optimal control of the delayed doubly stochastic control
system.

First, we give the definition of the Hamiltonian function
of general delayed doubly stochastic system (1).

H t, x(t), x t − δ1( , y(t), y t − δ2( , u(t), u t − δ3( ( 

� f
⊤

t, x(t), x t − δ1( , y(t), y t − δ2( , u(t), u t − δ3( ( p(t)

+ g
⊤

t, x(t), x t − δ1( , y(t), y t − δ2( , u(t), u t − δ3( ( q(t).

(44)

For linear system (2), we have

Hu � E
⊤
1 (t)p(t) + E

⊤
2 (t)q(t),

Huδ
� F
⊤
1 (t)p(t) + F

⊤
2 (t)q(t),

Huδ
t + δ3(  � F

⊤
1 t + δ3( p t + δ3(  + F

⊤
2 t + δ3( q t + δ3( .

(45)

Assume that

H � Hu + E
Ft Huδ

t + δ3(  . (46)

+en, we have the following conclusion.

Theorem 2. Assume (A1)–(A3). @ere exists a constant β> 0
such that for any ε> 0, c ∈ [0, (1/2)], and the ε−optimal

control triple (xε, yε, uε) of the delayed doubly stochastic
control problems (2)–(4), we have

E 
T

0
〈Hε

u, v − u
ε
t〉dt≤ βεc

, ∀v ∈ U. (47)

Proof. From the definition of function H, we have

H
ε
u � E
⊤
1 (t)p

ε
(t) + E

⊤
2 (t)q

ε
(t) − lu ξε(t)(  + E

Ft F
⊤
1 t + δ3( p

ε
t + δ3(  + F

⊤
2 t + δ3( q

ε
t + δ3(  . (48)

+en, inequality (47) can be written as

E 
T

0
〈EFt F

⊤
1 t + δ3( p

ε
t + δ3(  + F

⊤
2 t + δ3( q

ε
t + δ3(  

+ E
⊤
1 (t)p

ε
(t) + E

⊤
2 (t)q

ε
(t) − lu ξε(t)( , v − u

ε
(t)〉dt≤ β

�
ε

√
, ∀v ∈ U.

(49)

We find that inequalities (28) and (49) are very similar.
We need to focus on the differences between them.

We denote

Δ1 � E 
T

0
〈E⊤1 (t)p

ε
(t), v − u

ε
(t)〉 −〈E⊤1 (t)p

ε
(t), v − u

ε
(t)〉 dt

� E 
T

0
〈E⊤1 (t) p

ε
(t) − p

ε
(t)( , v − u

ε
(t)〉 +〈E⊤1 (t)p

ε
(t), u

ε
(t) − u

ε
(t)〉 dt

� Δ11 + Δ12,

(50)

where
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Δ11 � E 
T

0
〈E⊤1 (t) p

ε
(t) − p

ε
(t)( , v − u

ε
(t)〉dt,

Δ12 � E 
T

0
〈E⊤1 (t)p

ε
(t), u

ε
(t) − u

ε
(t)〉dt.

(51)

Next, we will deal with these two terms. From the as-
sumption (A1), Lemma 3, and the bounded of the control
domain, there exist a series of constants
C′, C″, C1, C11, C12, C2, . . ., which are all independent of ε.
We have

Δ11 ≤C′E 
T

0
E
⊤
1 (t) p

ε
(t) − p

ε
(t)( dt

≤C11E 
T

0
p
ε
(t) − p

ε
(t)


dt

≤C11d u
ε
, u

ε
( 

≤C11
�
ε

√
.

(52)

And then from the assumption (A1), Lemmas 1 and 3,
and the Cauchy–Schwartz inequality, we can deduce that

Δ12 ≤C″E 
T

0
p
ε
(t)


 u

ε
(t) − u

ε
(t)


dt

≤C12
�
ε

√
.

(53)

Combining (52) and (53), we have

Δ1 � Δ11 + Δ12 ≤C1
�
ε

√
, whereC1 � max C11, C12 .

(54)

We denote Δ2 and prove it like Δ1. +en, we have

Δ2 � E 
T

0
〈E⊤2 (t)q

ε
(t), v − u

ε
(t)〉 −〈E⊤2 (t)q

ε
(t), v − u

ε
(t)〉 dt

≤C2
�
ε

√
.

(55)

Set

Δ3 � E 
T

0
〈EFt F

⊤
1 t + δ3( ( p

ε
t + δ3( , v − u

ε
(t)〉

−〈EFt F
⊤
1 t + δ3( ( p

ε
t + δ3( , v − u

ε
(t)〉dt.

(56)

Using variable substitution, we can deduce that

Δ3 � E 
T+δ3

δ3
〈F⊤1 (t)p

ε
(t), v t − δ3(  − u

ε
t − δ3( 〉 −〈F⊤1 (t)p

ε
(t), v t − δ3(  − u

ε
t − δ3( 〉 dt

� E 
T

δ3
〈F⊤1 (t)p

ε
(t), v t − δ3(  − u

ε
t − δ3( 〉 −〈F⊤1 (t)p

ε
(t), v t − δ3(  − u

ε
t − δ3( 〉 dt

� E 
T

δ3
〈F⊤1 (t) p

ε
(t) − p

ε
(t)( , v t − δ3(  − u

ε
t − δ3( 〉 +〈F⊤1 (t)p

ε
(t), u t − δ3(  − u

ε
t − δ3( 〉 dt.

(57)

Similar to the proof of Δ1, the results can be obtained by
using the boundedness of control domain and coefficients.
We can deduce the result directly, that is,

Δ3 ≤C3
�
ε

√
. (58)

Similarly, we have

Δ4 � E 
T

0
〈EFt F

⊤
2 t + δ3( p

ε
t + δ3( ( , v − u

ε
(t)〉

−〈EFt F
⊤
2 t + δ3( p

ε
t + δ3( ( , v − u

ε
(t)〉dt

≤C4
�
ε

√
.

(59)

+en, we have

Δ5 � E 
T

0
〈 − lu ξε(t)( , v − u

ε
(t)〉 −〈 − lu

ξ
ε
(t) , v − u

ε
(t)〉 dt

� E 
T

0
〈lu ξ

ε
(t)  − lu ξε(t)( , v − u

ε
(t)〉 −〈lu ξε(t)( , u

ε
(t) − u

ε
(t)〉 dt.

(60)

Mathematical Problems in Engineering 11



Set

Δ51 � E 
T

0
〈lu ξ

ε
(t)  − lu ξε(t)( , v − u

ε
(t)〉dt,

Δ52 � E 
T

0
〈lu ξε(t)( , u

ε
(t) − u

ε
(t)〉dt.

(61)

+en, Δ5 � Δ51 + Δ52.
We deal with the term Δ51 firstly. Similar to the previous

proof, by the boundedness of U and inequality of (21), we
have

Δ51 ≤C51d u
ε
, u

ε
 ≤C51

�
ε

√
. (62)

From assumption (A3), we know that the partial de-
rivative of function l is bounded, so we have

Δ52 ≤C52
�
ε

√
, (63)

Δ5 ≤C5
�
ε

√
. (64)

According to inequalities (54), (55), (58), (59), and (65),
we can deduce that

Δ1 + Δ2 + Δ3 + Δ4 + Δ5 ≤C
�
ε

√
, whereC � max C1, C2, C3, C4, C5 . (65)

Applying +eorem 2, we can deduce the conclusion
directly. □

Generally speaking, optimal control is limited by many
conditions. Near optimal control is relatively easy to obtain and
can be selected, analyzed, and applied to a wider range of fields.
When the time delay variables δ1 � δ2 � δ3, this is a special near
optimal control problem with the same time delay variables.
When the time delay variables δ1 � δ2 � δ3 � 0, we can deduce
the conclusions directly for the common system which is de-
scribed by doubly stochastic differential equations. In either case,
we find that the results depending on the adjoint equation of the
system. +e adjoint equation is a new kind of equation which
can be called anticipated double stochastic equations. Using the
properties of this kind of equation, we deal with the delay terms
reasonably. In the future, we should pay attention to the study of
this kind of equation which can help us solve such problems
relatively easy.
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