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A new nonconvex smooth rank approximationmodel is proposed to deal with HSI mixed noise in this paper.'e low-rankmatrix
with Laplace function regularization is used to approximate the nuclear norm, and its performance is superior to the nuclear norm
regularization. A new phase congruency lp normmodel is proposed to constrain the spatial structure information of hyperspectral
images, to solve the phenomenon of “artificial artifact” in the process of hyperspectral image denoising.'ismodel not onlymakes
use of the low-rank characteristic of the hyperspectral image accurately, but also combines the structural information of all bands
and the local information of the neighborhood, and then based on the Alternating Direction Method of Multipliers (ADMM), an
optimization method for solving the model is proposed. 'e results of simulation and real data experiments show that the
proposed method is more effective than the competcing state-of-the-art denoising methods.

1. Introduction

Due to the influence of many factors in the process and
transmission of hyperspectral images, the acquired hyper-
spectral images often contain some complex mixed noises,
including gauss noise, salt-and-pepper noise, and dead-line
noise. It is very difficult to analyze and apply the hyperspectral
image to high-level applications. In the early days, a great
number of methods were proposed to remove noise, such as
Fourier Transform, Wavelet Transform, nonlocal means
(NLM) filter, block-matching, and 3D filtering (BM3D).
However, most of the above methods require some prior
knowledge of noise and can only deal with one or two types of
noise. In addition, HSI data in the real-world are often mixed
into the real data by various noise combinations. To solve this
problem, some multidimensional methods are proposed to
deal with both spectral and spatial information. In [1], a
multidimensional wiener filtering (MWF) algorithm was
proposed, which represents the histogram of an image as a
three-dimensional tensor and uses tensor analysis to remove
the noise. In addition, spectral and spatial information [2] 3D
wavelets have obtained good performance.

In recent years, low-rank Matrix Recovery (LRMR) [3]
has been used in HIS denoising. Different from the tradi-
tional method, LRMR can process different types of noise
without any prior information of noise; many methods of
HSI image denoising [4–7] based on low rank and spectral
correlation have been proposed. Due to the difficulty in
solving the low-rank constraint model directly, the kernel
norm is used to approximate the low-rank model, and the
good results of HSI mixed noise removal are obtained. 'e
representative methods include weighted low-rank model
(WLRM) [8], rank minimization (RM) [9], structure tensor
total variance weighted nuclear norm minimization (STTV-
WNNM) [10], weighted nuclear norm minimization
(WNNM) [11], and nonlocal low-rank approximation
(NLRA).

'ese methods mainly have taken advantage of the low-
rank feature of low-rank description image with nuclear
norm approximation and preserving edge structure of image
with total variation regularization. However, the low-rank
model based on nuclear norm approximation is not a good
approximation rank function but lacks image edge sparsity
and structure smoothness regularization. If NSS prior
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cannot be well used to represent the structure of the image in
the low-rank model, the important structure will inevitably
be lost, and an “artificial artifact” will appear.

'erefore, it is necessary to approach the rank function
better. To overcome the above limitation, the method based
on nonconvex smooth rank approximation (SRA) is studied
in this paper. 'e key idea is to use nonconvex smooth
functions to approximate rank functions directly and to
provide a more rigorous approximation than traditional
methods.

In addition, the method based on the fractional band
total variation regularization has the following defects: (1)
'e total variation regularization is essentially a first-order
partial differential equation, which is a kind of ill-posed first-
order inversion problem; if the original image is disturbed, it
is possible to have a large oscillation on the partial derivative.
(2)'e total variation model is based on the assumption that
the image is piecewise linear continuous, and the sharp edges
of the image can be effectively preserved. However, only the
gradients of adjacent pixels are used in the total variation
model discretization; it cannot describe the true edge and
structure information of the image accurately and effectively,
which may lead to the phenomenon of “artificial artifact.”
Total generalized variation (TGV) [12], high-order total
variation (HOTV) [13], and Schatten p-norm constraint
models [14] are used to deal with the “artificial artifacts”
caused by the total variation model; it is more accurate to
describe image edge information in a natural image, but this
kind of method is not suitable for hyperspectral image
processing.

Aiming at the shortcomings of the existing subband TV
regularization and low-rank tensor denoising methods,
which cannot effectively utilize the local neighborhood in-
formation, it is easy to cause the “artificial artifact” phe-
nomenon, especially in the curved edge.'e gradient cannot
accurately describe the true structure of the image. 'ere-
fore, in this paper, a new phase congruency lp norm con-
straint is proposed to constrain the spatial structure
information of hyperspectral images, to solve the phe-
nomenon of “artificial artifact” in the process of hyper-
spectral image denoising.

2. State of the Art

2.1. Phase Congruency. Phase congruency (PC) [12] is a
phase-based frequency-domain feature detector proposed by
Morrone and Owens, which can detect a wide range of visual
features and is invariant to local smooth illumination var-
iations. Unlike the gradient in the spatial domain, the PC
uses the frequency domain to get the spectrum information
at the maximum overlap of the phases, for the high-order
edge and corner, line, step edge and roof Ridge, and other
visual sensitive important image feature capture more
complete. In [12], the phase consistency of signal x is defined
by Fourier series expansion shown as

PC(x) � maxϕ′(x)∈[0,2π]

􏽐nAn cos ϕn(x) − ϕ′(x)( 􏼁

􏽐nAn

, (1)

where An is the Fourier series of the n term, and ϕn(x) is the
local phase information of the Fourier series for signal x, and
the PC value is the maximum value of equation (1) for the
parameter ϕ′(x), which is the weighted average of all the
amplitudes corresponding to the Fourier terms. Because the
PC function defined by equation (1) is greatly influenced by
noise, it is easy to produce edge offset, which leads to the loss
of part of image structure and contour features.

A phase congruency (MPC) [13] was presented for
extracting three orthogonal characteristic components of an
image, namely, amplitude, direction, and phase, from a single-
pass signal theory and applied to image quality evaluation [14]
and image denoising applications, and the satisfactory results of
time efficiency and detection effect were obtained.

'e phase congruency based on single-pass signal theory
is defined as follows:

MPC(x) � W(x)⌊1 − ξ × a cos
E′(x)

A′(x)
􏼠 􏼡⌋ ⌊E′(x) − T⌋

A′(x) + ε
,

(2)

where Weight(x) is the weight function, ξ is an approximate
gain factor for sharpening the edge response, and the value
range [1, 2], T� 􏽐θTθ is the compensation noise effect. W
(X) is defined by

W(x) �
1

(1 + exp(c(s − c(x))))
, (3)

where c is the gain factor, S is the cut-off value of the filter
response expansion, and c(x) is the fractional scatter
measure, whose value is divided by the response amplitude
and the highest response value c(x) � A′(x)/(N∗
(Amax(x) + ε))), ∈ (0, 1), where N is the scale quantity.

Phase consistency lp norm (PCSP) is defined as the
Schatten p norm of the PC value on the definition of the
singleton phase consistency function in equation (2).

PCSP(Y)p � 􏽘
MN

i�0,j�0
PC yi,j􏼐 􏼑

�����

�����p
, (4)

where M and N are the height and width of the image,
respectively, P≥ 1. Equation (4) is difficult to optimize the
Schatten p norm due to the existence of convolution kernel
operation. To solve this problem, equation (4) needs to be
transformed into an equivalent form that is easy to be solved.

Given a Matrix Y ∈ RM×N, then the singular value of the
Matrix can be decomposed into Y � U 􏽐 VT, where U and V
are the left and right singular value eigenvectors of Y, re-
spectively, and the diagonal element σ of the Matrix Y is the
singular eigenvalue. 'e Schatten P norm of a Matrix is
defined by

‖Y‖Sp � 􏽘

min M,N{ }

i�0
σp⎛⎝ ⎞⎠

1/p

, (5)

where σi is the ith singular eigenvalue of the Matrix Y,
corresponding to the (i, i) element value. From equation (5),
the PCTV equivalent of equation (4) can be defined by
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‖PC(Y)‖1,p � 􏽘

min M,N{ }

i�1
σMPC

����
����Sp

. (6)

2.2. Nonconvex Low-Rank Approximation Functions.
Because the nuclear norm cannot approximate the rank
function well, it is unreasonable to replace the rank function
with the nuclear norm directly. In the field of image res-
toration, the method of approximating rank minimization
by nonconvex substitution has received extensive attention.
'e common nonconvex functions and corresponding
hypergradients are shown in Table 1.

To provide more rigorous approximations than the nuclear
norm, we have conducted numerical experiments on one-di-
mensional data. We selected five experiments of rank approx-
imation of regularization terms with the best performance, as
shown in Figure 1. As can be seen from Figure 2, nonconvex
optimization is often superior to convex optimization.

As can be seen from Figure 2, the nuclear norm deviates
from the true rank, so all singular values are treated equally.
'e weighted nuclear norm and the Garman norm are the
neutralization between the rank minimization and the
kernel norm, which can increase the penalty to the small
value and decrease the penalty to the large value. 'e Logdet
norm is poor at small singular values, especially those close
to 0. 'e exponential function is used to deal with different
singular values, so that Laplace modules and real rank have
obvious consistency. To maintain accuracy and speed, the
Laplace norm is the best choice for approximating the actual
rank of the NSS matrix composed of a similar patch.

In this section, the Laplace function is chosen to ap-
proximate the rank function. Compared with other tensor
nuclear norms, the Laplace function proxy norm is a better
method to measure the rank of the tensor. We introduce the
proposed proxy into a low-rank tensor separationmodel and
solve the model by using the ADMM algorithm, which can
effectively complete the missing elements in the tensor, to
achieve the goal of hyperspectral image denoising. A large
number of experiments show that this method is better than
the existing methods.

3. HSI Denoising Based on Nonconvex
Low-Rank Tensor Approximation

3.1. 7e Motivation of the Model. 'e method based on
tensor nuclear norm minimization and TV regularization
has achieved some noise reduction results in hyperspectral
denoising applications, but due to the limitation of TV total
variation and the fact that the kernel norm cannot accurately
describe the feature of low tensor rank, as a result, its noise
removal performance is limited, and it is difficult to meet the
demand of hyperspectral image denoising ability for prac-
tical applications. Based on the minimization of nonconvex
low-rank approximation, the weight of singular value can be
adjusted according to the main features of the image, and the
global low-rank characteristic of the HSI image can be used
well. In addition, phase congruency can describe and capture
image visual features more comprehensively than TV

constraints based on gradient information.'erefore, in this
subsection, nuclear norms are replaced by tensor-based
nonconvex proxy functions. Because of the limitation of
low-rank feature detection, phase consistency is used to
preserve image edge structure. 'erefore, a new HSI
denoising method based on nonconvex low-rank tensor
approximation and phase consistency constraints is pro-
posed in this section.

3.2. Model Description

3.2.1. Constraint Term of Nonconvex Function and Its
Properties. Before elaborating on the denoising model, we
first review the definition of the normalized Laplace func-
tion, which is shown as

‖Y‖μ � 􏽘
B

k�1
􏽘

min(W,H)

i�1
gki Y

(k)
􏼐 􏼑, (7)

and g(σi(Y(k))) � sgn(σi(Y(k)))(1 − eσi(Y(k))/σ1(Y(k))/μ).
Laplace functions have the following useful properties.

Proposition 1. limμ⟶0‖Y‖μ � 􏽐
B
k�1 rank(Y(k))

Proof. for g(σi(Y(k))) � sgn(σi(Y(k)))(1 − eσi(Y(k))/σ1(Y(k))/μ)

And lim
ε⟶0

g(σ1(X
(K)

)) �
0, if σ1(X

(K)
) � 0,

1, if σ1(X
(K)

)> 0.

⎧⎨

⎩

So limμ⟶0 􏽐
min(W,H)
i�1 g(σ1(X

(k)
)) � rank(X

(K)
) come

to the conclusion. □

Proposition 2. ‖UXV‖ � ‖X‖μ,
For any tensor, U ∈ Rm1×m1×m3 and V ∈ Rm2×m2×m3 hold.

Proof. U
(K) and V

(K) are orthogonal matrices, because the
singular value of the Matrix does not change with the
multiplication of the orthogonal Matrix, and X

(K) and
U(K)X

(K)
V(K) have the same individual value; thus,

‖UXV‖ � ‖X‖μ can be obtained. □

Proposition 3. ‖X‖μ ≥ 0 holds for any tensor X ∈ Rm1×m2×m3 ,
‖X‖μ � 0 if and only if X � 0.

3.2.2. NLRTAPC Model. To eliminate the mixed noise of
HSI, considering the global low-rank and local piecewise
smooth characteristics of the band image, and combined
with the PCTV regularization term in the nonconvex low-
rank tensor approximation model, the mixed noise reduc-
tion method based on Nonconvex Low-Rank Tensor Ap-
proximation and Phase Consistency for Mixed Denoising
(NLRTAPC) is presented by

argmin
L,I,G

‖L‖μ + β‖pc(Y)‖1,p + λ‖I‖1 + c‖G‖
2
F,

s.t. L + I + G � Y,

(8)

where β, λ, c are nonnegative parameters, L is the restoring
low-rank tensor, I is the sparse noise component, and G is
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Table 1: Common nonconvex proxy functions.

Nonconvex proxy function Gθ(x), x≥ 0, θ> 0 Supergradient ∇Gθ(x)

Logdet θ/log(c + 1)log(cx + 1) c/(cx + 1)log(c + 1)

Gamma θx/x + c θc/(x + c)2

Lap θ(1 − exp(− x/c)) θ/c exp(− x/c)

Ep θ/1 − exp(− c)(1 − exp(− cx)) θc/1 − exp(− )exp(− cx)

Scad θx, x< 0,

− x
2

+ 2cθx − θ2/2(c + 1)θ, x≤ cθ,

θ2(c + 1)/2, x> cθ.

⎧⎪⎨

⎪⎩

θ, if x< θ,

cθ − x/c − 1, λ< x≤ cθ,

0, fx> cθ.

⎧⎪⎨

⎪⎩

(a) (b) (c)

(d) (e) (f )

Figure 1: Comparison of Image restoration at 58 bands with noise type 4. (a) Noisy image. (b) BM4D. (c) NonLRMA. (d) GSSTV. (e)
WGLRTD. (f ) NLRTAPC.
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Figure 2: Approximating rank functions with different proxy functions.
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the gauss noise component.'e first term of the model is the
low-rank tensor approximated by a nonconvex function
with formula 2.1. 'e second term is the Schatten p norm
constraint term based on phase congruency, and the last two
are for noise error constraints. 'e NLRTAPC model not
only preserves the low-rank features of the image more
accurately than the tensor kernel norm model, but also uses
the phase consistency to preserve the structural information
such as edge and texture in the band restoration component.

3.3. Solution of NLRTAPC Model. NLRTAPC model is a
nonconvex optimization problem, which is solved by

decomposition subproblem. 'e ADMM algorithm can be
used to solve the corresponding model iteratively. By in-
troducing the secondary variable Z, the NLRTAPC model
can be expressed as

argmin
L,I,G,Z

‖L‖μ + β‖Z‖1,p + λ‖I‖1 + c‖G‖
2
F,

s.t. L + I + G � Y,Z � pc(Y).

(9)

Since the four variables L, I, G and Z in the model are
separable, the objective function can be solved by ADMM
with formula 2.2, which is expressed as

M(L, I,G,Z;W,B) � ‖L‖μ + β‖Z‖1,p + λ‖I‖1 + c‖G‖
2
F +〈L + I + G − Y,

W
ρ
〉

+
ρ
2

L + I + G − Y +
W
ρ

��������

��������

2

F

+〈Z − pc(Y),
B
ρ
〉 + Z − pc(Y) +

B
ρ

��������

��������

2

F

􏼠 􏼡,

(10)

whereW and B are the Lagrange multiplier with L + I + G �

Y and Z � pc(L) constraints, respectively, and ρ is the
penalty parameter. Iterating through the NLRTAPC model
according to the ADMM framework can be broken down
into the following five steps, each of which solves the cor-
responding variable, as follows:

(1) fix other tensor variables I, G, Z, W and B, and
update the estimator L. Under the iterative frame-
work of (k+ 1), the estimated true image is as follows:

Lk+1 � argmin
L

Mρ L, Ik,Gk,Zk;Wk,Bk( 􏼁

� argmin
L

‖L‖μ +
1
ρk

L − Dk

����
����
2
F
.

(11)

where Dk � 1/2(Y − Ik − Gk − Zk) − Wk/ρk.
According to Proposition 2, given any given tensor Z,
it can be decomposed into Z � U∗ S∗VT by T-SVD,
and argmin

Y
‖Y‖μ + λ/2‖Y − Z‖2F can be solved by a

weighted tensor singular threshold method.
'e tensor rank approximation problem of non-
convex normalized μ is used. 'e problem can be
solved by the singular threshold operator of tensor
t-SVD decomposition. WhenDk is decomposed into
Dk � U∗ S∗VT by T-SVD, the optimal solution is
Lk+1 � U∗D∇g(σ)/ρk

∗VT, where D∇g(σ)/ρk
is the di-

agonal tensor of f, and the elements of the diagonal
tensor are obtained by Fourier domain calculation;
that is, &CapitalDifferentialD;∇g(σ)/ρk

(i)(i, k) �

max((S(i)(i, k) − ∇g(σi,k)/ρk), 0).
(2) fix the other tensor variables D, I, G, W and B,

update the lp norm constraint Z of PC, and save the
spatial smoothness and edge information.

Zk+1 � argmin
Z

1
2
‖Z‖1,p +

1
ρk

Z − Tk

����
����
2
F
. (12)

where Tk � pc(Yk) + Bk/ρk. First, we use singular
value decomposition tensor Tk with T-SVD,
Tk � U1

k ∗ S
1
k ∗V

1T
k . 'en, lp norm approximation is

performed for the f diagonal tensor S1k, denoted as
proxρk/2(σ(S1k)). Finally, Zk+1 is reconstructed, and
Zk+1 � U1

k ∗ dialog(proxρk/2(σ(S1k)))∗V1T
k , where

dialog (·) means that the vector elements are
expressed in a matrix form, is a diagonal matrix
convenient operation.

(3) To remove impulse noise, other tensor variables L,G,
W, B and Z are fixed, and I is updated.

Ik+1 � argmin
I

λ
ρk

‖I‖1 +
1
2
I − Qk

����
����
2
F

� 􏽘
B

i�1
argmin

I(i)

λ
ρk

I
(i)

�����

�����1
+
1
2

I
(i)

− Q
(i)
k

�����

�����
2

F
.

(13)

where Q
(i)
k � Y(i) − L

(i)
k+1 − G

(i)
k − W

(i)
k /ρk, and then

the closed-form solution Ik+1 � sign(Qk)

max |Qk| − λ/ρk, 0􏼈 􏼉 of formula (13) is obtained by
using the contraction operator of Matrix elements.

(4) To remove gauss noise, fix L, I, W, B, and Z, and
update G.

Gk+1 � argmin
G

c‖G‖
2
F +

ρk

2
G − Rk

����
����
2
F

� 􏽘
B

i�1
argmin

G(i)

c G
(i)

�����

�����
2

F
+
ρk

2
G

(i)
− R

(i)
k

�����

�����
2

F
.

(14)

where R
(i)
k+1 � Y

(i)
k − L

(i)
k+1 − I

(i)
k+1 − W

(i)
k /ρk, and Wk is

the Lagrange multiplier of the k-th iteration.
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Formula (14) is a standard least square regression
problem, which is easy to solve.

(5) Update Lagrange multiplier and penalty parameters.

Wk+1 � Wk + ρk Lk+1 + Gk+1 + Ik+1 − Y( 􏼁,

Bk+1 � Bk + ρk Zk+1 − pc Yk( 􏼁( 􏼁,

ρk+1 � min κ × ρk, ρmax􏼈 􏼉.

⎧⎪⎪⎨

⎪⎪⎩
(15)

where κ is the contraction parameter; set κ> 1 to
accelerate the rate of convergence and ρmax to be the
maximum value of ρ.

'e NLRTAPC model is described by ADMM in Al-
gorithm 1. To obtain good phase consistency, the front slice
of the HSI image is a waveband image, and the phase
consistency is extracted in Matrix form to get pc (y).

4. Experimental Results and Analysis

In this section, experiments were carried out to demon-
strate the mixed noise removal capability of our model. To
better illustrate the superiority of the combination of the
nonconvex smooth rank approximation model and the lp
norm constraint, the validity of the proposed method is
verified by simulation and real experiments, and the
quantitative and visual performance of the four advanced
HSI denoising methods are compared with the denoising
results of this method. 'ese methods include block-
matched 4D filtering (BM4D), Nonlrma [14], global spatial
something spectral total variation (GSSTV) [15], and
weighted group sparse regularized low-rank tensor de-
composition (WGLRTD). 'e code of all comparison
methods is Matlab Code. All experiments of comparison
method are carried out on Intel Core i7-4970 CPU
(3.60 GHz) and 16GB RAM computer using Matlab
R2018a.'e parameters of these methods in the experiment
are set according to the method suggestions to obtain the
best performance.

4.1. Simulation Data Experiment. Two data sets, namely,
WDC and Indian data sets, are used in the simulation data
experiment. 'e WDC data set was collected by a hyper-
spectral digital image acquisition experiment (HYDICE)
sensor at a mall in Washington, D. C., at 191 wavelengths.
'e “Indian” is a collection of 145∗145 pixels and 224
spectral reflectivity bands collected by the AVIRIS sensors
over the Indian pine proving ground in northwestern
Indiana. Since the data set contains a portion of atmospheric
absorption bands that are not useful for subsequent appli-
cations, the 200-band noise-free images were selected for the
experiment. Experiment parameters are set by
β � 0.1, λ � 1, c � 0.001, μ � 0.02, ρ � 0.1, κ � 1.02.

To simulate the complex noise situation in the real scene,
Matlab is used to generate 4 kinds of mixed noise in the two
clean HSI data sets. For noise type 1 to noise type 9, the
intensity of gauss noise, random noise, and band noise is
shown in Table 2.

4.2. Analysis of Simulation Experiment Results. 'ere are
four methods in the experiment, BM4D, NonLRMA,
GSSTV, and WGLRTD. 'ree noise types (noise types 1, 4,
and 7) are chosen randomly to compare the performance of
each algorithmmodel. Figure 1 shows the result of a 58 band
data recovery from a mall in Washington, D. C., under noise
Type 4 conditions. For better visual contrast, some areas of
the image are deliberately magnified, as shown in Figure 1:

As can be seen from Figure 1, BM4D has a serious mold
and loss of image detail due to oversmoothing. NonLRMA and
GSSTV still retain a small amount of noise, and the image is
darkened due to the offset of the whole pixel value. In the
enlarged area, theWGLRTD left a lot of random noise, and the
details of the image were not well preserved. On the contrary,
the NLRTAPC model can eliminate all the mixed noises and
preserve the edges and details of the image effectively, which
shows that the NLRTAPC method has better performance in
recovering WDC data set than other current typical methods.

Figure 3 shows a comparison of restoration at the 165
bands of the Indian dataset under noise type 1, from the
overall view of Figure 3; since the damage to the image
structure caused by noise type 1 is not very serious, several
methods can ensure that the overall structure recovers well,
but it can be found that NLRTAPC, the Algorithm model
designed in this chapter, has a clear structure in the edge
region, while it still keeps the smooth effect in the smooth
region and presents a better visual effect.

In Figure 4, the 165 band data recovery results are for the
Indian Dataset. By comparing and analyzing the recovery
results of all the comparison methods, a more direct-viewing
result is obtained. A more direct result can be obtained from
Figure 4. Because the original image has been destroyed se-
riously, the recovery result of theGSSTVmethod is ambiguous,
the recovery result of the NonLRMA method still has an
“artificial gradient” phenomenon, and bM4D and WGLRTD
methods have some modulus on the edge of the image
structure. In this chapter, HLRTD-SSTV Algorithm is pre-
sented to restore the result of the overall structure clear and
smooth, and the visual effect is good; overall, it is superior to
other methods. To demonstrate the excellent performance of
the NLRTAPC algorithm model, two objective quantitative
evaluation indexes are introduced to prove the performance of
the NLRTAPC algorithmmodel in all simulation experiments,
which are average Peak signal-to-noise ratios (MPSNR) of all
bands and average structural similarity (MSSIM) of all bands.

Tables 3 and 4 show the MPSNR and MSSIM values of
the Indian and WDC datasets under various mixed noise
types, respectively. In the experiment, MPSNR and MSSIM
were evaluated as the average of all bands of the data set, and
NLRTAPC gets good indicator values. From the evaluation
data of nine different noise types, the NLRTAPC model
achieves the best performance in most cases. With the in-
crease of noise level, the performance degradation is rela-
tively slow compared with other methods. In particular, the
MSSIM Algorithm can improve the performance obviously,
and the key is that the phase consistency constraint is used to
capture the edge information of the image more compre-
hensively and more accurately than TV.
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4.3. Real Dataset Experiment. In the simulation experiment,
the performance of the NLRTAPC under various noise
conditions is evaluated by visual, quantitative, and quali-
tative methods. 'is section performs a hyperspectral digital
image acquisition experiment (HYDICE) on a real urban
dataset to verify the effectiveness of NLRTAPC’s real
hyperspectral image restoration.'e whole dataset is applied
in the experiment of denoising algorithm. Some brands of
the dataset are heavily polluted by the atmosphere, hygro-
scopicity, and some thermal noise; in addition, some bands
are polluted by striations, gauss noise, and random noise. As
a preprocessing, the pixel values for each band are nor-
malized to [0,1].

Figure 5 shows the results of band 76 recoveries in this
data. As can be seen from the graph, the original band image
is corrupted by various noises, including gauss noise and
unknown noise. After using different HSI reconstruction

methods, the noise was removed, BM4Dmodewas burnt, and
the WGLRTD method still had some noise in the denoising
band image. From the enlarged area and the whole image, it
can be seen that the NLRTAPC Algorithm in this chapter is
effective to remove the mixed noise while preserving the
image structure. Figure 6 shows the results of band 136 re-
coveries in this data. In contrast, the NLRTAPC approach can
completely suppress all kinds of noise, effectively preserving
details. Compared with other methods, the image restored by
this method is smoother.'ese visualization results show that
the NLRTAPC method can remove more complex noises
hidden in HSI than other methods.

To demonstrate the results of image reconstruction,
Figure 7 uses different methods to estimate spectral char-
acteristic curves for 76 band images in real-world urban
datasets. In Figure 7, the ordinal of bands is shown on the
horizontal axis, and the average of the estimated spectral

input: Observational data Y, Index set Ω, Parameters β> 0, λ> 0, c> 0
Initializing: L � Y, I � 0,G � 0,Z � pc(Y),W � 0,B � 0, k� 0, num� 1000 and ε � 10− 5,i� 0.
(1) when ‖Ll+1 − Ll‖F/‖Ll‖F ≥ ε or k< num.
(2) k ++;
(3) Y

k
� fft(Y(k), , 3);

(4) Cycle (I� 1) until the maximum band number B of the observed data
(5) 'e updated estimate L(i) is calculated according to formula (11);
(6) 'e updated estimate Z(i) is calculated according to formula (12);
(7) 'e updated estimate I(i) is calculated according to formula (13);
(8) 'e updated estimate G(i) is calculated according to formula (14);
(9) According to formula (15), the Lagrange multiplier and the penalty parameters are updated respectively.
(10) End;
(11) Using fold(unfold(•)) to restore the tensor structure L, I, G and Z, Y(k+1) � L(k+1);
(12) YK+1 � ifft(Yk+1, , 3);
End;
output: denoising tensor L(k+1).

ALGORITHM 1: Solve the proposed NLRTAPC model with ADMM

Table 2: Description of noise type.

Noise type Gaussian noise Random noise Band noise

Type 1 Mean:0 10% impulse random noise Band:50–60
Noise variance:10 Stripe width:2 pixels

Type 2 Mean:0 10% impulse random noise Band:50–60
Noise variance:20 Stripe width:2 pixels

Type 3 Mean:0 10% impulse random noise Band:50–60
Noise variance:30 Stripe width:2 pixels

Type 4 Mean:0 20% impulse random noise Band:50–60
Noise variance:10 Stripe width:2 pixels

Type 5 Mean:0 20% impulse random noise Band:50–60
Noise variance:20 Stripe width:2 pixels

Type 6 Mean:0 20% impulse random noise Band:50–60
Noise variance:30 Stripe width:2 pixels

Type 7 Mean:0 30% impulse random noise Band:50–60
Noise variance:10 Stripe width:2 pixels

Type 8 Mean:0 30% impulse random noise Band:50–60
Noise variance:20 Stripe width:2 pixels

Type 9 Mean:0 30% impulse random noise Band:50–60
Noise variance:30 Stripe width:2 pixels
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characteristics of each band is shown on the vertical axis. As
shown in Figure 5(a), there are many fluctuations in the
spectral characteristic curve of the original band image due
to striations and other noises. It can be observed that the
comparison method suppressed the volatility to some extent

after the recovery of the different methods shown in
Figures 5(b)–5(f). 'e results of spectral characteristic
curves show that the NLRTAPC recovery curve is more
smooth than other methods, which indicates that NLRTAPC
has a better denoising effect. As shown in Figures 7(b) and

(a) (b) (c)

(d) (e) (f )

Figure 3: Comparison of Image restoration at 165 bands with noise type 1. (a) Noisy image. (b) BM4D. (c) NonLRMA. (d) GSSTV. (d)
WGLRTD. (f ) NLRTAPC.

(a) (b) (c)

(d) (e) (f )

Figure 4: Comparison of Image restoration at 165 band with noise type 7. (a) Noisy image. (b) BM4D. (c) NonLRMA. (d) GSSTV. (e)
WGLRTD. (f ) NLRTAPC.
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(a) (b) (c)

(d) (e) (f )

Figure 5:'e effect comparison chart of recovering the 76th band image of Hydice Dataset with 5 algorithms. (a) Real image. (b) BM4D. (c)
NonLRMA. (d) GSSTV. (e) WGLRTD. (f ) NLRTAPC.

Table 3: MPSNR and MSSIM values of Indian dataset under mixed noise types.

Noise type BM4D NonLRMA GSSTV WGLRTD NLRTAPC
Type 1 35.29/0.9628 35.30/0.9541 35.74/0.9386 35.49/0.9309 36.40/0.9701
Type 2 33.31/0.9110 34.10/0.9350 33.50/0.9214 33.28/0.9154 35.20/0.9521
Type 3 28.10/0.8630 30.90/0.8769 29.09/0.8795 29.05/0.8580 30.95/0.8798
Type 4 34.30/0.9326 34.25/0.9381 34.51/0.9379 34.43/0.9239 35.61/0.9481
Type 5 32.57/0.9089 32.12/0.9101 32.29/0.9091 32.16/0.9030 32.59/0.9162
Type 6 28.21/0.8689 30.41/0.8990 30.13/0.8921 30.05/0.8849 29.99/0.8879
Type 7 28.12/0.8541 28.50/0.8979 28.19/0.8897 28.10/0.8789 29.98/0.9169
Type 8 26.39/0.9089 26.53/0.9101 26.59/0.9119 26.40/0.9081 26.59/0.9131
Type 9 24.73/0.8529 24.86/0.8515 24.81/0.8430 24.69/0.8351 24.99/0.8579

Table 4: MPSNR and MSSIM metric values of WDC dataset under mixed noise types.

Noise type BM4D NonLRMA GSSTV WGLRTD NLRTAPC
Type 1 36.23/0.9653 36.29/0.9680 36.64/0.9689 36.64/0.9639 36.95/0.9801
Type 2 34.67/0.9220 35.76/0.9469 35.95/0.9508 35.84/0.9500 36.03/0.9527
Type 3 30.31/0.8970 31.87/0.9171 32.13/0.9194 32.05/0.9166 32.26/0.9210
Type 4 35.31/0.9190 35.80/0.9349 35.90/0.9419 35.79/0.9411 36.10/0.9521
Type 5 32.89/0.9081 33.61/0.9221 33.81/0.9259 33.78/0.9250 33.98/0.9289
Type 6 29.42/0.8740 30.41/0.9094 30.81/0.9102 30.51/0.9102 31.08/0.9126
Type 7 32.51/0.9082 33.41/0.9279 33.65/0.9296 33.52/0.9271 33.97/0.9319
Type 8 29.61/0.9094 30.36/0.9118 30.90/0.9154 30.71/0.9139 31.25/0.9189
Type 9 27.81/0.8677 28.80/0.8862 28.94/0.8893 28.81/0.8861 29.21/0.8980
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Figure 7: 'e spectral characteristic curves of 76 band images in Hydice Dataset are estimated by different methods. (a) Real image. (b)
BM4D. (c) NonLRMA. (d) GSSTV. (e) WGLRTD. (f ) NLRTAPC.

(a) (b) (c)

(d) (e) (f )

Figure 6: 'e effect comparison chart of recovering the 136th band image of Hydice Dataset with 5 algorithms.
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7(c), there are also small fluctuations in the curve, indicating
that some of the mixed noise in the image remains in the
image.

5. Conclusion

In this paper, a hybrid noise removal method based on
nonconvex low-rank tensor approximation is proposed,
based on the optimization method ADMM proposed to
solve the model by using the structural information of all
bands and the local information of the neighborhood.
NLRTAPCmodel can make use of the structure information
of all bands and local neighborhood information more ef-
fectively, promote the removal of mixed noise, and greatly
alleviate the “artificial ladder” phenomenon. 'e results of
simulation and real data experiments show that the pro-
posed method is more effective than the competing state-of-
the-art denoising methods.'e future improved direction of
this approach is to optimize parameters of NLRTAPC to
improve model adaptability.
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