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With the development of e-commerce and information technology, new modes of distribution are emerging. A new type of
distribution tool, UAV (unmanned aerial vehicle), has entered into the public’s field of vision. In the background of growing
e-commerece, this paper proposes a new delivery mode of joint delivery of trucks and UAVs which particularly has been popular in
recent years, with the advantages of prompt delivery, low cost, and independence from terrain restrictions, while traditional
transportation tools such as trucks have more advantages in terms of flight distance and load capacity. Therefore, the joint delivery
mode of trucks and UAVs proposed in this paper can well realize the complementary advantages of trucks and UAVs in the
distribution process and consequently optimize the distribution process. Moreover, the growing e-commerce promotes cus-
tomers’ higher needs for delivery efficiency and the integrity of the delivered goods which urges companies to pay more attention
to customers’ satisfaction. This paper analyzes the joint delivery mode of trucks and UAVs, aims to minimize total delivery cost
and maximize customer satisfaction, and builds a multiobjective optimization model for joint delivery. Furthermore, an improved
ant colony algorithm is proposed in order to solve the mode in this paper. In order to effectively avoid prematurity of the ant
colony algorithm, the limited pheromone concentration and the classification idea of the artificial bee colony algorithm are
introduced to improve the ant colony algorithm. Finally, some experiments are simulated by MATLAB software, and the
comparison shows that the joint delivery of trucks and UAVs has more advantages, and the improved ant colony algorithm is

more efficient than the traditional ant colony.

1. Introduction

Recently, the application of UAVs has remained high heat
and has been widely used in people’s daily life and public
services. On one hand, UAVs are not restricted by geo-
graphical conditions or road conditions and can greatly
expand the efficiency of space usage. In urban areas with
traffic congestion, remote areas with complex terrain, or
disaster areas with dynamic environmental changes, they
can respond quickly. On the other hand, UAVs are highly
flexible and do not require a dedicated pilot, making them
easy to operate and significantly reducing manpower costs.
In addition, UAVs use batteries as a power source, making
them more energy efficient and environmentally friendly.
Being battery-powered and the small size make the UAVs
limited in range and vulnerable to outside interference [1].
However, some tasks require ground coordination, such as
logistics delivery, rescue, and target tracking, which require

vehicles and UAVs to work together [2]. In the logistics
distribution process, the joint delivery model of trucks and
UAVs not only reduces the delivery tasks of trucks but also
improves the efficiency. It has significant economic ad-
vantages. Trucks and UAVs can complement each other to
better and accomplish tasks such as logistics delivery, di-
saster area rescue, and target tracking.

From an application perspective, UAVs and the joint
delivery model of trucks and UAVs are already widely used in
various fields. Firstly, in the agricultural sector, UAVs are
mainly used for seed sowing and pollination, agricultural
irrigation, and plant protection [3]. Torres et al. [4] conducted
the first study of early weed management using UAVs. They
pointed out that the number and resolution reflected in the
images are a contradiction and the relationship between the
two needs to be further optimized. Zhang et al. [5] studied the
use of UAVs to apply pesticides to rice, which included re-
ducing droplet floating, improving pesticide utilization, and
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increasing droplet deposition. Ayaz et al. [6] allowed the
collaboration of UAVs with seeders to achieve more efficient
seeding. Han et al. [7] gave a technical system for the ap-
plication of UAVs in precision irrigation technology and
suggested that, to meet the needs for efficient detection and
precise dynamic management at different scales, UAVs
should be combined with microsensing and ground moni-
toring systems. Secondly, in the field of rescue, Li et al. 8]
proposed a new way of air-ground search and rescue with
high altitude reconnaissance aircraft, groups of UAVs, and
groups of unmanned vehicles for earthquake search and
rescue scenarios. Zhang et al. [9] proposed a multi-UAV
mission planning method for firefighting and rescue of
multifire scenes. A multi-UAV mission planning model with
changing target values over time is established to achieve a
rational rescue according to the commander’s decision intent.
Furthermore, the first issue that needs to be addressed when
UAVs and vehicles work together on policing patrols is
energy resupply. Kim [10] used multiple shared static
charging stations at different geographical locations to solve
the UAV energy constraint problem and established a path
planning model based on MILP (mixed integer linear pro-
gram) to find the optimal flight path for UAVs through
genetic algorithms. Maini et al. [11] transformed collaborative
air-ground coverage monitoring into a two-stage optimiza-
tion problem and built a complex mixed integer linear
programming model to optimize the path of UAV and se-
quence of refueling points. Hu et al. [12] established an air-
ground collaborative patrol path planning model to optimize
the UAVS’ patrol path and the unmanned vehicle energy
resupply path. Finally, in the field of logistics distribution,
Murray and Chu [13] proposed the joint delivery model of
trucks and UAVs, where trucks carry UAVs from a distri-
bution center to sequentially pass by some customer points
where UAVs take off from the trucks to deliver packages for
the customers in their vicinity. Ham [14] extended PDSTSP,
considering the multitruck, multiwarehouse, and multi-UAV
joint delivery that can be delivered and picked up by UAVs
and using constraint planning solutions. Agatz et al. [15]
modeled the travelling salesman problem with UAV (TSP-D),
considered the same take-oft and return positions of the
UAV, and proposed a dynamic programming solution. Mario
et al. [16] studied the TSP-D where the takeoff and return
positions of the UAVs can be different and designed a greedy
algorithm to solve the problem. Poikonen et al. [17] analyzed
that the time for joint parallel delivery of trucks and UAVs is
less than the delivery time of trucks alone in the worst case.
Chu et al. [18] proposed a rural e-commerce logistics delivery
model in which a soft time window and simultaneous pickup
and delivery of trucks and UAVs were considered. With the
goal of minimizing the total cost and using intelligent opti-
mization algorithms, the total cost of terminal logistics is then
significantly reduced compared to the delivery method using
trucks alone. Han et al. [19] studied the delivery model of
“vehicle + UAV” joint transportation of military materials in
alpine mountain environment and wrote CTDEA algorithm
to solve the problem. Among various application fields, lo-
gistics distribution is the most popular, which is also the main
research field of this paper.
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The vehicle routing problem is an NP-hard problem
[20]. The more complex problem of joint delivery model of
trucks and UAVs is also an NP-hard problem. Modern
heuristic algorithms are the main method for solving such
problems. These include genetic algorithm (GA), simulated
annealing (SA), artificial bee colony algorithm (ABC), neural
network (NN), and ant colony algorithm (ACA). Different
algorithms have different solving performances, and they are
the most important methods for solving vehicle routing
problems at present. William et al. [21] introduced genetic
algorithms for the study of vehicle routing problem and to
solve the VRPTW problem. Shim et al. [22] designed a
hybrid genetic algorithm to solve the vehicle routing
problem for multiple vehicle models in multiple warehouses.
The simulated annealing algorithm was first applied to
combinatorial optimization problems by Tarantilis et al.
[23]. Osman et al. [24] used the simulated annealing al-
gorithm to solve the vehicle routing problem effectively. Li
et al. [25] designed a multistage solution of the hybrid
variable neighbourhood artificial bee colony algorithm to
solve the dynamic demand vehicle routing problem with
continuously updated customer points. Pei and Yu [26]
proposed an improved artificial bee colony algorithm based
on probability matrix model and elite retention strategy for
solving perishable product distribution routing optimization
problems in logistics industry. Li et al. [27] combined the ant
colony system (ACS) with the maximum and minimum ant
system (MMAS) to design an improved ant colony algo-
rithm to solve the vehicle routing problem with time win-
dows. Aiming at the “last mile” problem of fresh produce
delivery, Fu and Liu [28] constructed an open time-varying
vehicle routing optimization model with the objective of
minimizing the total delivery cost and designed an improved
ant colony algorithm to solve the problem according to the
characteristics of the model.

Recently, in China, the e-commerce industry has been
growing rapidly with the scale of online shopping users
increasing gradually year by year. Data showed that, by
December 2020, the scale of China’s online shopping users
has reached 782 million, increasing 72.15 million from
March 2020, accounting for 79.1% of the total Internet
users. With the booming economy, the disposable income
per capita increasing, the scale of online shopping
expanding, and online retail increasing year by year, online
retail sales grew from RMB 5,155.6 billion in 2016 to RMB
1,176.01 billion in 2020, with a compound annual growth
rate of 22.89% and online sales are expected to reach RMB
1,375.93 billion in 2021 indicating that the e-commerce is
growing at an incredible speed. E-commerce makes
shopping more convenient for customers which is an es-
sential factor that enables e-commerce to develop at a rapid
pace. However, the key aspect of the development of
e-commerce is the delivery of logistics. After placing or-
ders, the top concerns for the customers are the delivery
time and the integrity of the delivered goods, which means
the distribution process fundamentally determines the
service level of e-commerce. Therefore, it is crucial to
optimize the delivery efficiency and deliver goods with
integrity in time for customers, while optimizing routes
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and reducing distribution costs for logistics companies are
the top priorities. Therefore, it is of great significance to
study e-commerce logistics delivery patterns with the aim
of minimizing total delivery cost and maximizing customer
satisfaction.

To sum up, the joint mode of trucks and UAVs is fea-
sible. It has been widely used in agriculture, rescue, public
security patrol, and logistics distribution, and the application
of various modern heuristic algorithms in solving vehicle
routing problems is discussed. This paper mainly studies the
path optimization problem of the joint delivery mode of
trucks and UAVs under the background of e-commerce.
From the above analysis, it can be seen that the current
researches mostly consider trucks carrying UAVs and UAV's
can only serve one customer point and do not consider that
UAVs will be limited by load capacity and mileage, resulting
in some customer points not being able to get delivery
services; also customer satisfaction was not taken into ac-
count. Therefore, in the joint delivery process of trucks and
UAVs in this paper, the UAVs take off from the joint
distribution transfer station to provide delivery services for
nearby customer points, and, after completing the delivery
task, they can return to other transfer stations that are closer.
In addition, while trucks supply goods to be delivered at the
joint distribution transfer station, they must also provide
delivery services for those customer points that cannot be
reached by UAVs due to UAV load capacity and mileage
restrictions. Based on this, a mathematical model is estab-
lished with the goal of minimizing total distribution cost and
maximizing customer satisfaction, which is solved by the
ABC-ACO algorithm. The results show that the joint de-
livery mode of trucks and UAV's has lower costs with higher
customer satisfaction compared to trucks alone, and the
improved ant colony algorithm is more efficient than the
traditional ant colony algorithm.

The major contributions of this study are as follows:

(1) This paper proposes and analyzes a joint delivery
mode of trucks and UAVs which is different from the
existing research.

(2) Ajoint delivery multiobjective optimization model is
developed with the objectives of minimizing total
delivery cost and maximizing customer satisfaction
with delivery time and integrity of goods.

(3) To avoid prematurity, the classification idea of the
artificial bee colony algorithm is introduced into the
ant colony algorithm and the ant colony algorithm is
improved. Limits are placed on the upper and lower
limits of pheromone concentration to prevent the
algorithm from stopping iterations after prematurity
has occurred. Finally, the ABC-ACA is used to solve
the model in this paper.

Section 2 describes the problem of joint delivery of
trucks and UAVs and builds the mathematical model.
Section 3 is dedicated to algorithm design. Section 4 is
dedicated to calculation examples analysis and Section 5
gives a summary of this paper and prospects for future
research.

2. Problem Description and
Model Establishment

The traditional truck-alone delivery mode is shown in
Figure 1. In the traditional model, the truck departs from the
distribution center carrying goods needed by several cus-
tomer points, in order to serve each customer point in turn,
and finally returns to the distribution center from which it
departs. With the continuous development of urban
e-commerce, the range of customers to be served is getting
wider and wider, and how to achieve customer satisfaction in
terms of time window and integrity of goods has gradually
become the goal pursued by logistics enterprises. Presently,
there are a series of problems in e-commerce distribution,
such as urban traffic congestion, scattered customer points,
and numerous distribution points with small delivery vol-
ume. These problems make the traditional delivery model of
trucks not able to complete the delivery tasks efficiently. In
order to make delivery more efficient, this paper proposes a
joint delivery mode of trucks and UAVs based on the
characteristics of UAVs with less affection by terrain, low
delivery cost, and high distribution efficiency, which com-
bines the advantages of trucks and UAVs to make delivery
process more efficient and competitive for logistics
companies.

2.1. Problem Description. The joint delivery mode of trucks
and UAVs is shown in Figure 2. Joint distribution transfer
stations are established near congestion-prone roads, and a
certain number of UAVs are equipped in these transfer
stations, which will deliver to customers near the transfer
stations. Analogous to the two-level vehicle routing prob-
lem, the first-level distribution is the truck routing problem;
that is, the truck departs from the distribution center, when
the truck is loaded with goods for the customers near the
joint distribution transfer station and goods for customer
points beyond the UAV load or range, then the truck visits
these transfer stations and customer points in turn and fi-
nally returns to the distribution center. Secondary distri-
bution is a delivery mission for UAVs. Each UAV departs
from a joint distribution transfer station and then provides
delivery services to customer points near the transfer station
which accord with the UAVS’ loading capacity and flight
range. What needs to be emphasized is that, after the UAVs’
completion of the delivery tasks, they can return to the
transfer stations from which they departed or other available
transfer stations nearby.

As the issue requires logistics companies to consider
both minimizing delivery costs and maximizing customer
satisfaction, this paper builds a multiobjective optimization
model for joint delivery.

Without losing generality, this paper makes the fol-
lowing assumptions:

(1) There is only one distribution center.

(2) Each customer point can only be served by one
UAV or one truck, because each customer point can
only be served once in real life.
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FiGgure 1: Traditional truck-alone delivery mode.
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(3) Distribution centers have multiple trucks of the
same type and multiple UAVs of the same type in
each joint distribution transfer station.

(4) The maximum payload and the longest flight dis-
tance of the UAV are known.

(5) Each UAV can load multiple packages at once. In
other words, the UAV can serve multiple customers
at a time. This assumption is reasonable based on
real-life UAV delivery experience and the load of
the UAVs.

(6) The UAV can continue delivery after battery re-
placement or charging at the joint delivery transfer
station.

(7) UAV battery changes time and loading time at joint
distribution transfer station are disregarded.

(8) The location coordinates of the distribution center,
customers, and joint distribution transfer stations
are known. These are known in the actual distri-
bution process.

(9) The time windows of all customers are known.

(10) UAVs and trucks move at uniform speed.

2.2. Customer Satisfaction Function

2.2.1. Time Satisfaction Function. Unlike considering soft
time windows or hard time windows, in the actual delivery
process, customers may prefer to get the delivery service at a
specific time period within the time window, and earlier or
later than this time period can lead to different degrees of
dissatisfaction [29]. As a result, this paper blurs the time
windows of each customer point. This fuzzy time window
includes the time range in which the customer most wants to
get the delivery service and the service time range that can be
tolerated. Specifically, the level of satisfaction is 100% if the
delivery service is received within the time range [e;, ;] by
consumer i. The time window within this time range is called
the most satisfactory time window. Satisfaction would
gradually decrease as the gap with the most satisfactory time
window increases if the delivery service is received within
the time ranges [E;, ¢;] and [E;, ¢;] by consumer i. The time
window [E;, L;] is called tolerable time window. Completely
unsatisfied or satisfaction is 0 if the delivery service is re-
ceived beyond the time range [E;, L;] by consumer i. The
time satisfaction function is shown in Figure 3.

The time satisfaction function can be expressed as follows:

'[ti_Ei]a
, E;<t;<e,
e;— E;
1, e<t;<l,
fi(t;) =1 (1)
B
L —t;
|, <t <L,
L-1
0, else,

where t; is the time when the truck or UAV starts service for
customer point i and a, 8 is the customer’s sensitivity factor
for time.

2.2.2. Goods Damage Satisfaction Function. Throughout the
delivery process, the degree of damage to the goods after they
are received by the customer affects customer satisfaction to
some extent. E-commerce goods may be damaged to a
certain extent in the process of distribution due to goods
extrusion, improper operation of handling staff, or goods
collision. Therefore, goods damage comes as another im-
portant issue for logistics enterprises to consider. There is a
negative correlation between the goods damage rate and
customer satisfaction: the higher the damage rate is, the
lower the customer satisfaction is. This paper only considers
the goods damage caused by the accumulation of trans-
portation time during the transportation process. The goods
damage rate can be calculated as follows:

yi=q(t;i = ty)s (2)

where y; is the damage rate of customer point i, ¢, is the
departure time from the distribution center or joint dis-
tribution transfer station, and q is the goods damage co-
efficient per unit time.

The most satisfied or the satisfaction is 100% if the goods
damage rate is within the range [0,h] by consumer i.
Customer satisfaction decreases as the rate of cargo damage
increases if the goods damage rate is within the range [h, n]
by consumer i. When the damage rate exceeds #, the cus-
tomer satisfaction is 0. Therefore, the damage satisfaction
function is shown in Figure 4.

The goods damage satisfaction function can be expressed
as follows:

0, y;>n,
n—Yi

u; () = n—);z’ h<y;<n, (3)
I, 0<y;<h

2.3. Definition of Parameters and Variables. The joint de-
livery problem of trucks and UAVs can be defined on an
undirected graph G = (P, E, F), where P = {P,UPgUP_} is
the set of points, P is distribution center, Py is the set of
joint distribution transfer stations, P = {P UP,,} is the set
of customer points, P is the set of customer points that
cannot be visited by UAV due to load and range restrictions
and can only be served by trucks, P_, is the set of customer
points that are serviced by UAVs, and Mg = PgU P, is the
set of customer points accessible by UAVs and joint dis-
tribution transfer stations. E = { (i, j)|i, j € P,i# j} is the set
of trucks driving edges, and F = {(i, j)li, j € Mg,i# j} is the
set of UAVs flighting edges.

K: the set of trucks;
V: the set of UAVs;
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Qg: the maximum load of each truck;

D,,: the maximum flight distance of each UAV;
g;: the demand of consumer i;

S,: the transfer station for the i-th UAV;

% (0< Wi <Qy): the load capacity of UAV v taking
off from station S, when leaving customer point i;

v: the truck speed;
vI: the UAV speed;
d;;: the linear distance between nodes i and j;

#: the multiple of the distance of the truck greater than
the straight line distance;

tf.‘: the time when the truck karrives at node i;
t/: the time when the UAV varrives at node i;
t;;: the time for the truck to serve the customers;

t,;: the time for the UAV to serve the customers;

[e;,];]: the most satisfying time window of customer i
[E;, L;]: the tolerable service time of customer i;
fi(t;): the time satisfaction function;

[0,h]: the range of damage rate acceptable to
customers;

[h,n]: the range of damage rate that customers can
tolerate;

u; (y,): the function of satisfaction of goods damage;
Cy: the fixed cost of single truck;

C¢: the fixed cost of single UAV;

CZ: the transport cost per unit distance of the truck;
CY: the flight cost per unit distance of the UAV;

Py,: the set of the n-th distribution routes of truck k,
where P,,,CP,0<n<num l,num 1 = |P|; that is, num 1
is the number of elements in P;
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P, the set of the m-th distribution routes of UAV v,

where P, CP.,0<m<num2,num?2 = |P_|; that is,
num 2 is the number of elements in P_;
ok = 1, Truckk runsfromnodeitonode j,
10, else. ’
» _ | 1, UAV vflights from nodeitonode j,
YiiT 70, else. ’
Pf.‘j ={1, Inthepathoftruck K, nodei

precedes node j (but not necessarily continuous)
,0, else.

2.4. Mathematical Model. According to the above analysis,
the total cost Z, is composed with the fixed cost and delivery
cost of trucks and UAVs as follows:

Z,=C,+C, (4)

where C, is the total start-up cost of trucks and UAVs and
C, is the total delivery cost of trucks and UAVs. Since the
start-up cost is related to the number of trucks and UAVs
dispatched and the delivery cost is related to the moving
distance of trucks and UAVs, C, and C,, can be expressed as
follows:

Co=Ci Y Y xp+Ciy Y Yy (5)

Jj€PgUP keK

Gy =Ci Z

i,jePy UPgUP . keK

Based on the above description and hypotheses, the
multiobjective optimization model for the joint delivery of
trucks and UAVs can be established as follows:

minZ, = C, + C,

Y (1+p)d

i€Pg jeP,, veV

k| b
ij%ij +C,

Y 2 dyyiy (6)

i,jePgUP_, veV

(7)

minZ, = w, {1 —% > fi (ti)jl +w, |:1 —% D u; ()’i)]» (8)

i€Pq i€ePq

sty Yxi+y Yyi=1, VjeP,, 9)

ieP keK ieP veV

ZZx'.“<K, Vk € K,

1] =
i€P jeP

Z xf(): Z xlgi, Vk € K,

i€PgU P, i€PgU P,

Y oxf=Y x<1, VjePVkeK,i#j,

ieP ieP

Z fojqiSQK, Vk € K,

i€P jeP

Y yi= yi<l, VjeP,US,¥veV,

i€P,, i€P,,

DTN RIS

ieP keK ieP veV

Y Y xfi=1, VjePy

i€P keK

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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Y = Y Yi=0, ViePgpWeV, (17)
i€ePgUP,, i€ePgUP,,
dgi+ Z Z dij+dngDV’ VgEPS7 (18)
i€P,, jeP,,

Y yu=0, VgeP,WveV, (19)

i€P,,
Yy, =0, VgePyWreV, (20)

i€P,,
> S - T Yo wev a

i€Pg jeP,, i€P,, jePg

Wes, =495~ Q1= p5,;) SWis SWis —aps;+Q(1-y5,). Vi€Py,WveV, 22
Wi — a5 - Qu(1-y))<Wis <Wis =g,y +Qy(1-y};), VieP,VjeP,¥veV, (23)
Y Y xi<|Py|-1, VkeK,VP,cP,0<n<numl, (24)

i€Py, jePy,
Z Z yii < |P,| -1, VveV,V¥P, CcP.,0<m<num2, (25)

i€P,, jeP,,

d..(1+n)
t’; = (tf+”7n+tki), Vk € K, (26)
i,jeP, UPgUP,, v
d.
t}f: Z ti+—2L+t, |, VeV, (27)
i,jeP UP,, v

where equations (7) and (8) are objective functions.
Equation (7) implies the minimum total cost of delivery.
Equation (8) implies that the average customer dissatis-
faction is minimal. Equation (9) implies that any customer
point can only be served once by an UAV or a truck.
Equation (10) indicates the limit of the number of trucks
used. Equation (11) indicates that the truck departs from the
distribution center and returns to the distribution center
after completing the delivery task. Equation (12) implies that
the truck drives into a node and then drives out from this
node. Equation (13) indicates that the good loaded by the
truck cannot exceed its maximum load constraint. Equation
(14) indicates that after the UAV flies into a certain customer
point, it will fly out from the customer point. Equation (15)
shows that the UAVs at the joint delivery transfer station can
perform delivery services only after the trucks have visited
the joint delivery transfer station. Equation (16) indicates
customer points that cannot be visited by UAVs due to load
and range restrictions and can only be served by trucks for
delivery. Equation (17) indicates customer points that exceed
the load and mileage constraints of the UAV and therefore
cannot be accessed by the UAV. Equation (18) implies the
flight distance constraint of the UAV. Equation (19)

indicates that the UAV cannot be launched directly from the
distribution center to the customer points. Equation (20)
indicates that the UAV cannot fly directly from the customer
point to the distribution center. Equation (21) indicates that
the UAV departs from a joint distribution transfer station
and can return to any transfer station after completing its
delivery task. Equation (22) represents the load capacity of
the UAV from the joint delivery transfer station to the
customer point j after the delivery is completed. Equation
(23) represents the load capacity of the UAV from customer
point i to customer point j after completing this delivery
task. Equation (24) is the detrucking branch constraint,
which is the removal of incomplete routes from the truck
routes. Equation (25) is the de-UAV branch constraint,
which is the removal of incomplete routes from the UAV
routes. Equation (26) indicates the time when truck k arrives
atnode j. Equation (27) represents the time when the UAV v
arrives at node j.

In this paper, a multiobjective optimization model is
established. In order to make the solution more convenient,
the two objective functions are transformed into a single-
objective optimization model by assigning weights. The
transformed objective function can be expressed as follows:
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minZ = w, (C, + C,) + w, [1 —% Y fi (ti)] + w3 |:1 —% Y u; ()’i)]~ (28)

3. Algorithm Design

This paper studies the multiobjective optimization problem,
which belongs to the NP-hard problem. When solving such
problems, heuristic algorithms have been widely used [30].
This paper presents the joint delivery model of trucks and
UAVs as a two-level path planning problem that requires a
heuristic algorithm with parallel computing mechanisms to
solve, and, due to the complexity of the problem, sufficient
stability needs to be maintained in the solution process. The
ant colony algorithm uses a distributed parallel computer
system, which has the advantages of positive feedback and
good robustness and can get a more satisfactory feasible
solution within an acceptable time range. However, the ant
colony algorithm tends to be premature and inefficient in the
solving process [31]. Therefore, in this paper, the ant colony
algorithm is improved by combining the idea of artificial bee
colony algorithm, and the upper and lower limits of the
global pheromone concentration are given to prevent the
algorithm from affecting the optimization effect due to
prematurity.

3.1. Principle of Ant Colony Algorithm. Ant colony algorithm
(ACA) was first proposed by Italian scholar Dorigo and
colleagues [32] in the 1990s. They found that single ant
behaved simply when foraging, while ants exhibited an
intelligent behavior when they foraged in groups. For ex-
ample, the ant colony will search for the shortest path for
food, because the ants in the ant colony will transmit in-
formation to each other through an information mecha-
nism. After further research, it was found that ants would
release “pheromone” on the path they passed during the
foraging process. Ants within a colony have the ability to
perceive “pheromones” and will follow paths with high
concentrations of “pheromones.” Besides, each ant will leave
“pheromones” on the path it passes. This is known as a
positive feedback mechanism. It is because of such a process
that the entire colony will follow the shortest path to the food
source.

3.2. Principle of Artificial Bee Colony Algorithm. The artificial
bee colony (ABC) algorithm was proposed by the group of
Karaboga and Basturk [33] in 2005. It is an algorithm in-
spired by the behavior of bee colonies. The artificial bee
colony algorithm imitates the process of honey collection by
bees. This algorithm divides all bees into leading bees,
detecting bees, and following bees, and these bees can
complete their missions in the process of finding the optimal
honey source [34]. In the process of solving the artificial bee
colony algorithm, firstly leading bees look for nectar sources
based on existing information and tell onlooker bees about
the sources they have found. Following bees then select a
nectar source based on the information obtained with a

i€ePc

i€Pc

certain probability and find a candidate nectar source to
compare with the previous one. Finally, when a nectar
source is not renewed after a finite number of cycles, the bees
associated with that source are transformed into leading bees
to continue the search for potential new nectar sources.

3.3. Algorithm Improvement. Based on the ACA, the clas-
sification idea of ABC algorithm is introduced to dynami-
cally divide the ant colony into two types, leading ants and
detecting ants, according to the fitness value. Among them,
leading ants search for a better path, and detecting ants
search for other paths and more feasible solutions. Secondly,
the weighting coeflicients and fitness values are used to
dynamically update the local pheromone concentrations.
Finally, the pheromone concentration on each path was
limited to [7;,, Tma in order to prevent all ants from
rapidly aggregating and stalling the search with too high a
pheromone concentration on a particular path.

3.3.1. Ant Colony Classification. Combining the classifica-
tion idea of artificial bee colony algorithm, the dynamic
classification operation is introduced on the basis of ant
colony algorithm. The purpose is to divide the entire ant
colony into two ant forms, leading ants and detecting ants,
and search in parallel. The specific operation is to divide the
ant colony into leading ants and detecting ants according to
the different pheromone concentrations of the paths taken
by different ants. Leading ants are responsible for searching
for a better path, highlighting the pheromone concentration
on this path, which speeds up the convergence of the al-
gorithm. Detecting ants are responsible for searching for
feasible solutions with better quality in addition to these
better paths. This operation ensures the diversity of the
algorithm, so that it will not fall into a local optimum and at
the same time improve the quality of the solution.

The ant colony classification formula can be expressed as
follows:

1
fi= Z (29)
detectingant, 0< f,<M, (30)
a leading ant, M< f;<1.

In equation (29), Z; is the objective function of the
model, and f; is the fitness of each ant, which is the re-
ciprocal of the objective function. According to the different
fitness value f; of each ant, the ant colony was divided into
two types: detecting ant and leading ant. It can be expressed
as equation (30), where M is the classification boundary
point that divides ants into two classes (0 <M <1): when
0< f;<M, it is the detection ant; when M < f; <1, it is the
leading ant.
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3.3.2. Dynamic Updating of Local Pheromone. In order to
better maintain the diversity of the population and improve
the convergence speed of the algorithm, the weighted co-
efficient and fitness value are introduced to update the local
pheromone [35], so that different types of ants can imple-
ment different local pheromone update strategies. They can
be expressed as follows:

‘r,-j(t +1)=(1 —p)‘rij(t) +pTij (31)
Tij = Mfi (32)
Tij = A S (33)

where A, and A, are weighting coeflicients, f; is the fitness of
the i-th ant, and p is the rate of pheromone volatilization.
Equation (32) is the local pheromone update formula of
leading ants. Equation (33) is the local pheromone update
formula of detecting ants. Two kinds of ants perform dif-
ferent updating strategies of dynamic pheromone, and
A, > A,, to shorten the optimization time by highlighting the
pheromone concentration on the optimal solution path.

3.3.3. Pheromone Concentration Limit. In order to avoid
prematurity and stagnant phenomena, the pheromone
concentration on each path is controlled within [, Tyaxl-
The pheromone less than 7, is assigned as 7,,;,, and the
pheromone greater than 7., is assigned as 7., The
purpose of this method is to avoid the fact that the pher-
omone concentration is too high to iterate, which will attract
most ants to gather quickly and lead to premature phe-
nomenon. The value formulas of pheromone upper and
lower limits can be expressed as follows:

(1) = 1 o

Tt =50 e T ewy (34)
~_ Tinax ()

Tmin (t) = T, (35)

where p is the pheromone volatilization rate, C(t) is the
optimal objective function in the ¢-th iteration, and o is the
number of optimal solutions of the ¢-th iteration.

3.4. Algorithm Steps
Step 1. Initialize parameters.

Step 2. Create a tabu list and put m ants in the distribution
center.

Step 3. Provided that the constraints are satisfied, each ant
calculates the transfer probability according to equation (36)
and selects the next visited node according to the transfer
probability. In this equation, « is the relative importance
factor of pheromone concentration, and f3 is the importance
factor of heuristic function, which reflects the importance of
ant to heuristic information. J; (i) is the set of cities that ant
k is allowed to visit in the next step.
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(0 (1Z,) (1) )
bl e bl
] T mowzfe T
Pij= jeli () (36)
0, else.

Step 4. According to the transition probability, roulette is
used to select the next node to visit.

Step 5. According to the ant colony classification, the fitness
value is calculated and the ants are classified.

Step 6. Update the pheromone of leading ant and detecting
ant.

Step 7. Exchange high-quality solution. If
Z detectingants < Zleadingants> 1€t two kinds of ants exchange
high-quality solutions. This step is done by swapping the
identity functions of the two types of ants, with the better
detecting ant transforming into the new leading ant and the
replaced leading ant converting into a detecting ant and
performing the functions of a detecting ant. If the solution of
the detecting ant is not better than the solution of the leading
ant during the iteration, which means the algorithm does not
perform a high-quality solution exchange, then proceed
directly to Step 8.

Step 8. Update global pheromone. It is limited to
[Tmin’ Tmax] .
Step 9. Judge whether the end condition is satisfied at this
time. If not, go to Step 3 and start a new cycle. Otherwise, go
to Step 10.

Step 10. If the maximum number of iterations is reached,
the iteration is terminated.

The flow-process diagram of ABC-ACA is shown in
Figure 5.

4. Analysis of Calculation Examples

4.1. Background Analysis and Parameter Setting. This paper
takes the order of a distribution center of an e-commerce
logistics enterprise in city A as the customer sample. The
ABC-ACO algorithm is used to plan the joint delivery of
trucks and UAVs, so as to minimize the delivery cost and
maximize customer satisfaction under the above constraints.
The location coordinates of 15 customer points, 1 distri-
bution center, and 5 joint distribution transfer stations, the
time window requirements of customer points, and the
requirement and service time of each customer point are
shown in Table 1.

The distance between nodes is measured by vector
distance, which can be expressed by the following equation:

1/2
d;; z[(x,-—xj)2+(y,- ‘Yj)z] (37)
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FiGure 5: ABC-ACA flow chart.

The relevant parameters of trucks and UAVs are shown
in Table 2.

In addition, the multiple of the distance of the truck
greater than the straight distance # = 0.3, time sensitivity
coefficient «=0.5,4=0.8, goods damage coefficient
q = 0.1%, the range of goods damage rate acceptable to
customers is [0,0.2%], the range of goods damage rate
tolerable to customers is [0.2%, 1], and the weight of ob-
jective function is w, = 0.5, w, = 0.3, w5 = 0.2.

4.2. Result Analysis. According to the ABC-ACA described
above, using MATLAB software, the joint delivery model of
trucks and UAVs is solved. Through multiple simulations of

the example, the parameters are set as follows: a« = 1, = 3,
p =04, Ant.num =20, M =0.7, A, =4, and A, = 2.

Figure 6 shows the route map of the optimal delivery
scheme for the joint delivery model of trucks and UAVs by
using ABC-ACA.

Figure 7 shows the optimal delivery scheme when only
trucks are used for delivery by using ABC-ACA.

Figure 8 shows the optimal delivery scheme when only
trucks are used for delivery by using ACA.

Table 3 shows the optimization results of using ABC-
ACA to solve the joint delivery mode and the trucks-alone
delivery.

As can be seen from the above table, when using joint
delivery of trucks and UAVs, only 2 trucks need to be
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TaBLE 1: Information table of each node.

Time windows

No. Node Position coordinates (X,Y) Demandsg;/kg

e;/h I;/h E;/h L;/h
0 Distribution center (94,100) 0 7 20 7 20
1 Customer point 1 (60,135) 4 10 11 7 12
2 Customer point 2 (40,36) 17 8 11.5 7.5 12.5
3 Customer point 3 (48,96) 3 8 12 7 12.5
4 Customer point 4 (92,154) 25 8.5 13 8 13.5
5 Customer point 5 (97,50) 10 10 16 11 17
6 Customer point 6 (120,90) 11 9 13.5 8 16
7 Customer point 7 (44,160) 22 9.5 14 9 14.5
8 Customer point 8 (20,54) 20 9.5 15 9 15.5
9 Customer point 9 (108,32) 5 10 16 9 17
10 Customer point 10 (130,88) 5 11 16.5 10 17
11 Customer point 11 (56,100) 5 11.5 17 11 17.5
12 Customer point 12 (50,68) 6 10 17.5 9.5 18
13 Customer point 13 (43,110) 18 13 15 10 16
14 Customer point 14 (135,24) 31 17 19 15 9.5
15 Customer point 15 (23,108) 8 10 19 9.5 20
A Joint distribution transfer station A (124,103) 0 7 20 7 20
B Joint distribution transfer station B (52,120) 0 7 20 7 20
C Joint distribution transfer station C (30,114) 0 7 20 7 20
D Joint distribution transfer station D (50,50) 0 7 20 7 20
E Joint distribution transfer station E (105,43) 0 7 20 7 20

TaBLE 2: Description of relevant parameters.

Related parameters Trucks in distribution centers UAVs in joint distribution transfer stations
Quantity (vehicle, frame) 5 10
Maximum load (kg) 100 20
Maximum transport distance (km) — 30
Speed (km/h) 30 80
Transportation cost per unit distance (yuan/km) 5 1
Start-up cost (yuan/time) 100 20
Service hours (h) 0.5 0.5
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FIGURE 6: The optimal delivery scheme for joint delivery of trucks and UAVs by using ABC-ACA.

activated. There are three joint distribution transfer stations  on the path of the second truck, and three UAVs are used for
on the path of the first truck, and a total of six UAVsareused  delivery. The delivery and satisfaction cost incurred during
for delivery. There are two joint distribution transfer stations  the joint delivery of trucks and UAVs process was RMB
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FIGURE 7: The optimal distribution scheme of trucks-alone distribution by using ABC-ACA.
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FIGURE 8: The optimal distribution scheme of trucks-alone distribution by using ACA.

TaBLE 3: Comparison of results.

13

Delivery mode

Algorithm Truck

UAV

Truck routes UAV

routes

Distribution and satisfaction cost

(yuan)

Joint distribution of trucks and ABC-
UAVs ACA

1

2

0-4-7-B-C-8-D-0

0-A-14-E-0

B-1-B
B-3-11-B
C-13-B
C-15-C
D-12-D
D-2-D
A-6-10-A
E-9-E
E-5-E

O 0N QN Ul W N~

1991.9
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TaBLE 3: Continued.

Delivery mode Algorithm Truck Truck routes UAV UAV Distribution and satisfaction cost
routes (yuan)
1 0-4-7-1-0
ABC- 2 0-13-15-3-11-0
Trucks-only distribution ACA 3 0-8-2-12-0 — — 2431.5
4 0-5-14-9-0
5 0-6-10-0
1 0-1-4-7-0
0-3-15-13-11-12-8-
2 2-0
Trucks-only distribution ACA 3 0-5-9-0 — 2824.7
4 0-14-0
5 0-6-10-0

1991.9 yuan, the average time dissatisfaction was 8.9%, and
the average goods damage dissatisfaction was 6.3%. When
the trucks are used for single delivery by using ABC-ACA, it
necessarily starts five trucks, all of which start from the
distribution center and return to it after completing the
delivery tasks. The cost of delivery and satisfaction in the
process of trucks-alone delivery is RMB 2431.5 yuan, the
average time dissatisfaction is 45.2%, and the average goods
damage dissatisfaction is 36.4%. When the trucks are used
for single delivery by using ACA, it starts five trucks, all of
which start from the distribution center and return to it after
completing the delivery tasks. The cost of delivery and
satisfaction in the process of trucks-alone delivery is RMB
2824.7 yuan, the average time dissatisfaction is 47.8%, and
the average goods damage dissatisfaction is 38.6%. From the
above analysis, it is obvious that the cost of the joint delivery
mode of trucks and UAVs is lower than that of the trucks-
alone delivery model, and the customer satisfaction of the
joint delivery model is much higher than that of the trucks-
alone delivery mode. Based on the comparison results, it can
also be seen that the trucks-alone delivery mode solved by
the ABC-ACA has better solution results and lower cost than
the nonimproved ACA. Therefore, the joint delivery mode of
trucks and UAVs has advantages not only in cost but also in
meeting customer needs; that is, the ABC-ACA proposed in
this paper is more efficient.

5. Conclusion

This paper proposes a joint delivery mode of trucks and
UAVs for e-commerce delivery, which realizes the com-
plementary advantages of UAVs and traditional delivery
tools. A multiobjective optimization model for joint delivery
is developed and the proposed model is solved by an im-
proved ant colony algorithm. It proves that the joint delivery
mode of trucks and UAVs is able to achieve lower costs,
higher customer satisfaction, and better delivery results
compared to the traditional truck-alone delivery mode. With
e-commerce growing rapidly today, there is an urgent need
for an efficient and economical delivery mode to meet
market demand. As a new type of distribution tool, UAV's
form a perfect complementary advantage with trucks, so that
both distribution tools could give full play to their respective
advantages and work together to achieve efficient and

economic distribution. The joint delivery mode of trucks and
UAVs provides an important tool for logistics companies to
save resources, achieve economic benefits, and gain market
competitiveness. The results of the research have laid a solid
foundation for future research into the joint delivery of
trucks and UAVs.

Although the content of this paper provides a certain
reference value for the future joint delivery of trucks and
UAVs, the model constructed in this article is based on
certain assumptions and constraints and will face more
uncertainties in reality, for example, constraints on carbon
emissions and the existence of regional restrictions. Con-
sidering carbon emissions and regional restrictions in a joint
delivery mode of trucks and UAVs will be the focus of our
future research.
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