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Topological indices or coindices are one of the graph-theoretic tools which are widely used to study the different structural and
chemical properties of the under study networks or graphs in the subject of computer science and chemistry, respectively. For
these investigations, the operations of graphs always played an important role for the study of the complex networks under the
various topological indices or coindices. In this paper, we determine bounds for the second Zagreb coindex of a well-known family
of graphs called F-sum (S-sum, R-sum, Q-sum, and T-sum) graphs in the form of Zagreb indices and coindices of their factor
graphs, where these graphs are obtained by using four subdivision-related operations and Cartesian product of graphs. At the end,

we illustrate the obtained results by providing the exact and bonded values of some specific F-sum graphs.

1. Introduction

A topological index (TI) is a function from the set of graphs
to the set of real numbers that assigns the different numerical
values to the different graphs unless the graphs are iso-
morphic. Moreover, TIs are essential tools to discuss various
physical and chemical properties of the graphs such as
volume, density, connectivity, boiling point, freezing point,
and heat of formation and evaporation [1, 2]. TIs are also
used to study the quantitative structure property relation-
ships (QSPRs), quantitative structure activity relationships
(QSARs), and clinical practices of various medications in
the subject of cheminformatics and pharmaceutical in-
dustries, respectively (see [3-5]). Mainly TIs have three types
such as degree, distance, and polynomial based but the
degree-based TIs are more studied than others (see the most
recent review [6]).

Firstly, an American Chemist Harry Wiener (1947) used
a distance-based TI to calculate the boiling point of paraftin
(see [7]). First and second Zagreb indices are introduced by
Gutman and Trinajsti in 1972; these indices are used to

calculate total 7-electron energy of alternant hydrocarbons
[8]. Kinkar and Gutman calculated different relations be-
tween the second Zagreb index of a graph and its com-
plement (see [9]). Yan et al. computed sharp bounds for the
second Zagreb index of different unicyclic graphs [10].
Carlos et al. calculated the second Zagreb index of the graphs
with minimum and maximum vertex degrees. They also
investigated trees with the maximum value of the second
Zagreb index among all trees with maximum vertex degree
[11].

Recently, Zagreb coindices are introduced by Ashrafi
et al,, and they studied them for the derived graphs obtained
by the operations of joining, union, disjunction, Cartesian
product, and corona product (see [12, 13]). Kinkar et al.
calculated the first Zagreb index and multiplicative Zagreb
coindices of tree (see [14]). Gutman obtained coindices of
graphs and their complements (see [15]). Nilanjan et al.
calculated F-coindex of some graph operations (see [16]).
Javaid et al. calculated the first Zagreb connection index and
coindex of some derived graphs [17]. Ramane et al. calcu-
lated coindices for the transmission and reciprocal
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transmission-based graphs (see [18]). Mansour and Song
computed a and (a,b)-analogs of Zagreb indices and
coindices of graphs [19]. For further studies of Zagreb in-
dices, see [20].

There are various operations on graphs such as union,
intersection, complement, product, and subdivision. These
operations on graphs are useful to obtain the new graphs
from the old ones. Yan et al. listed five new graphs L(G),
S(G), Q(G), R(G), and T (G) with the help of five operations
L,S,Q, R,and T on a graph G, respectively, and studied the
behavior of Wiener index of these graphs (see [4]). Eliasi and
Taeri computed the Wiener indices of the F-sum graphs
obtained by the Cartesian product of F(G,) and G,, where
F € {S,R,Q, T} [21]. Later on, many researchers worked on
these F-sum graphs such as Deng et al. [22] computed first
and second Zagreb indices, Akhtar and Imran calculated the
forgotten index [23], Liu et al. computed first general Zagreb
index [24], Ahmad et al. calculated sharp bounds of general
sum-connectivity index [11], and Alanazi et al. calculated
Gutman indices [25].

In this paper, we compute the bounds for the second
Zagreb coindex of F-sum graphs in the form of Zagreb
indices and coindices of their factor graphs. At the end, the
obtained results are additionally illustrated with the assis-
tance of examples of the exact and bonded values for some
specific F-sum graphs. The rest of the paper is settled as
follows: Section 2 contains the basic definitions and notions,
Section 3 covers the main results, and Section 4 presents
conclusion with specific examples related to the derived
results.

2. Preliminaries

A graph denoted by G = (V(G), E(G)) is formed by set of
vertices V (G) and edges E (G), where edge set is subset of the
Cartesian product of set of vertices, i.e., E(G)CV (G) x V (G).
In a simple connected graph G = (V(G),E(G)), total
number of vertices is called its order (denoted by |V (G)|) and
total number of edges is called its size (presented by |E (G)|).
The degree of a vertex u € V(G) is number of its neigh-
borhood vertices that is denoted by d (). The complement of
G is denoted by G and defined as V (G) = V (G), and any two
vertices (say u and v) imply that uv € G iff uv ¢ G. Gutman
and Trinajsti in 1972 [8] introduced the first and second
Zagreb indices (denoted by M, and M,) as follows:
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M, (G) = Z [dg (p1) +dg (p2)]s

P1P2€E(G) (1)
M, (G) = Z [dg (p1)ds (p2)]-

P1P2€E(G)

The second Zagreb coindex M, (G) is defined in [13] as
follows:

My(G)= ) [dg(p1)ds(p.)]- (2)

P1P2#E(G)

It is important to note that the above defined coindex
uses degrees of G but run over E(G).
Let G be a graph, then

(i) S(G) is a graph obtained by inserting one vertex in

every edge of G

(ii) R(Q) is a graph obtained from S(G) by joining the
adjacent vertices of G

(iii) Q(G) is a graph formed from S(G) by joining the
pairs of new vertices which are on the adjacent edges
(the edges with one common vertex) of G

(iv) T (G) is obtained by performing both operations of
R(G) and Q(G) on S(G), respectively

Let G, and G, be two simple connected graphs, then
their F-sum graphs are denoted by G, ;G, having vertex set
V(GG = V(G) UE(Gy) x V(G,) and (uy,u,) (v, v,)
€ E(G,5G,) iff

(1) uy =v; € V(G;) and u,~v, € G,

(i) u, =v, e V(G,) and uy~v; € F(Gy),
F e {S,R,Q,T}

where

For details, see Figures 1-3.

3. Main Results

In this section, main results of the second Zagreb coindex for
the F-sum graphs are discussed.

Theorem 1. Let G, and G, be two simple connected graphs,
then second Zagreb coindex of G,,sG, is given as follows:

a; <M, (G1,5G,) < ay, (3)

where

o = 2”2‘3? ((m =2) +ny(n, - 1)) + 2(”%‘3% - ”2‘31) +4eye, [(n) = 2) + 1y (ny = 1)] +2(e, + €)M, (G)) +2¢,M, (G,)

+(ny +2(ey + ;) )M, (G)M, (G,) + (e, + €)M, (G,) +2e, M, (G,) +2(e; + €)M, (G,)

+(n +2(e; + €)M, (G,) + (M, (G,) + M, (G,)) (M, (Gy) + M, (Gy)),

(4)

a, = 4me, E(S(Gy)) (1, — 1 +ny(ny = 2)) + 2(”53% - ”231) +4eye [(ny —2) +ny(ny = 1)] + 2 (e, + €)M, (Gy)

+2e,M, (Gy) + (1, +2(e; +€,))M, (G)M, (G)) + (e, + €)M, (G,) +2e,M, (G,) +2 (e, + €)M, (G,)

+(n +2(e; + €)M, (G,) + (M, (G,) + M, (G,)) (M, (G,) + M, (G))).
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(a)
Ficure 1: (a) G = Cy; (b) S(G) = S(Cy); (¢) Q(G) = Q(Cs); (d) R(G) = R(C,); (e) T(G) = T(Cs).

(2:2)

(3.b)  (2,b)! ALA

(2,b) (3,b)

(g:b)

(G+ oH) (G +,H)

FIGURE 3: C3,oP, and Cs, 1 P,.

Proof. Using equation (2), we have

M, (G,,5G,) = Z [d(p1q1)d (P2 )]
(Pl’Pz) (71>‘12)¢E (G1+SG2)
M, (G,,5G,) = Z [d(p1a1)d(prra2)] = ZA+ZB+ZC>

(p1-p2) (91:92)¢E (G145G,)

D A= > Y [d(pra) (pray)]

P1p2€V (S(Gy)-V (Gy)) 1192V,

- Z Z [ds(cl)(Pst(Gl)(Pz)]: Z Z (2x2),

P1p2eV (S(G1)-V(G))) 1:92€Ve, Pup2€V (S(G))-V (G))) 1092V,
Z A= Z(nief - nzel),

(5)

(6)



Mathematical Problems in Engineering

YB=YB +)B,+) By+) B+ ) B+ ) B,
ZB = Z Z d(t,q,)d(t.q,)]

PV, a19:¢EG,

= Z Z [(dcl(P)+dG2(q1)dGl(P)+dG2(q2))]

PV, q19:¢Eg,

= Z Z [dG1 (p)g, (p) +dg, (pdg, (42) + dg, (p)dg, (a1) + dg, (%)dcz (QZ)]
PV, 419:¢Eg,

= M, (G,)e, +2¢;M, (G,) + m M, (G,),

ZBZZ Z Z [d(p1>2)d (P2 q)]

PuP2€Va, qEVGZ

=Y Y ldpvdesal+ ) Y [d(pna)d(psa)]
q<Vg, Pll’zEEG1 q€V, p1p2#Eq,
= Z Z [(dcl (p1) + dg, (‘1))(dc1 (p2) + dg, (q))] + Z Z [(dc1 (p1) + dg, (q))(dc;1 (p2) + dg, (q))]
q<Ve, p1p2€Eg, q€Vg, P1p2#Eq,

= Z Z [dG] (p1)dg, (t,) +dg, (p1)dg, (@) +dg, (p2)dg, (9) +dg, (q)z]

q<Ve, P1P2€Eg,
+ Z Z [dG1 (1’1)dcl (p2) + dg, (Pl)dc2 (@) +dg, (Pz)dcz (q) +dg, (q)z] (7)
q<Ve, prp2#Eg,
=mM,(G,) +2e;,M, (G,) + e;M, (G,) + n,M, (G,) + 2e,M, (G,) + &, M, (G,),
]

233 = Z Z d(p1-q1)d (P2 q2)

P1P2€EG, 019:€Eq,

Z Z [(dcl (p1) + dg, (511))(6161 (p2) + dg, (%))]

P1P2€EG, 419:€Eg,

= Z Z [dGl (P1)dg, (p2) +dg, (p1)dg, (q2) +dg, (p2)dg, (41) + dg, (91)dg, (%)]
P1P2€EG, 419:€Eg,

=2e,M,(G;) + M, (G,)M, (G,) + 2¢,M, (G,),

234 = Z Z [d(p1>a1)d (P2 2)]

PrP2#EG, 4192€EG,

= Z Z [(dcl (p1) + dg, (‘11))(51G1 (p2) + dg, (‘lz))]

P1p2#EG, 419:€EG,

= Z Z [dcl (Pl)dc1 (p2) + dg, (Pl)dc2 (92) + dg, (Pz)dG2 (q1) + dg, (‘Jl)dc2 (‘b)]
P1P2%EG, 919:€EG,

=2e,M, (G,) + M, (G, )M, (G,) + 2, M, (G,),

ZB5= Z Z [d(p1>01)d (P2 )]

P1P2%#EG, 91924,

= Z Z [(dG1 (p1) + dg, (ql))(dG1 (p2) + dg, (‘b))]

P1p2¢EG, 419:¢EG,

= Z Z [dcl (P1)dc1 (p2) + dg, (Pl)dG2 (92) + dg, (P’z)dc2 (a1) + dg, (611)6162 (‘12)]
P1P2#EG, 192¢EG,

=2e,M, (G,) + M, (G, )M, (G,) + 2¢, M, (G,),

ZBsz Z Z [d(p1>91)d (P2 2)]

P1P2€EG, 192¢EG,

= Z Z [(dcl (p1) +dg, (‘11))(5161 (p2) +dg, (CIZ))]

P1P2€EG, 419:¢EG,

= Z Z [dG1 (I’l)dG1 (p2) + dg, (Pl)dc2 (92) + dg, (Pz)dc2 (q1) + dg, (%)dc2 (‘12)]

P1p2€Eg, 919:¢EG,
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=2e,M, (G,) + M, (G,)M, (G,) +2¢, M, (G,),
Z B=2[(e, + )M, (G,) + e&; M, (G,)] + (1, + 2 (e, + &))M, (G, )M, (G;) + (e; + &;)M, (G,)
+2[e\ M, (Gy) + (e) + €)M, (Gy)] + (my +2(ey + €)M, (G,) + (M, (G,) + M, (G,)) (M, (Gy) + M, (Gy)),
YC=YC+)YC+)C,
2.Ci= ) > ld(pia)d(py )] = > > (e, (p) +de, @)(do, ()]

pipatE(S(G))) 4V, PiptE (S(Gr)) Ve,
PV (Gy) nev(G))
P2V (8(G))-V (G))) P&V ($(G1)-V (G1))
= Z Z [(dc1 (p1) +dg, (‘D)Z] + Z Z [z(dc1 (p1) +2d, (61))]
pipofE(5(GL)) qeve, P1p2¢E (S(Gy)) 9€Vq,
PV (Gy) Pev(G)
peV (8(G))-V (G))) PV (8(G1)-V (Gr))
=2n, Z d(p,) +4ese, (n, - 2).
pipatE (S(G1))
rev(G))

P2V (8(G1)-V (Gy))

(8)

Note that

(S Z [d(p1)] <2e, (n, - 2)E(S(G))),
P1P2¢E (S(Gl))
pev(G))
eV (5(G)-V(Gr))

2mye; +4eye, (n, —2) < Z C, <4mye, (n, - 2)E(S(G,)) + 4eye, (n, - 2),

Zcz = Z Z [d(p1-91)d (P2 22)] =
P1P2¢E (S(Gl)) 1:9:¢Vg, Pipa2E (S (Gl))
peV(Gy) 1€V (Gy)
PV (S(G))-V (G))) PV (S(G1)-V (G))
Y (e, () + (@) (ds e (p) )|
9:4:€V g,

Z [(dG1 (p1) + d(‘h))z] = Z Z [chl (p1)+2 d(‘h)]

pp2¢E(S(G))) 91-9:V, p102¢E (S(G))) 192V 6,
pev(Gy) pev(Gy)
eV (8(G))-V (G))) P2V (8(G1)-V (G))

=2m, (1, — 1) Z [dcl (Pl)] +2(2e,)e; (m —2) (n, — 1)
P1p2¢E (S (Gl))
PV (Gy)
226V (S(G))-V (G)))

(9)
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Note that

e s Z d(py)<2e, (n, - 2)E(S(G))),
Ple‘fE(S(Gl))
eV (Gy)
P&V (5(G)-v(G1))

2ny (ny — ey +4deyey (m = 2) (1, — 1) < Zcz <dn, (n, — 1)e, (n, = 2)E(S(G))) + 4eze, (n, - 2) (1, - 1),

2G= ) S [d(pea) +d(pras)]
PiP2#E (S(Gy)) 919V,
rev(G))
PV (S (Gl)_v (Gl))

= ¥ [, () + d(@))ds ) (1)
Pipa#E (S(G))) 419V,
rev(G))
2V (S(G))-V (G))) (10)

= 2. Y (e, (p) +d(a))2]
P1P2#E (S(Gy)) 419V,
rev(G))
PEV (S (Gl)_v (Gl))

_ y > [2de, (p) +2d(a)]

PlegE(S (Gl)) ql’qZEVGZ
Pev(G
P,€V (8(G)-V(G)))

=2m,(n, - 1) Z [d(p1)] +2(2¢,) (n, - 1)2e,.

Pll’zeE(S(Gl))
eV (G,

€V (S(G)-V(Gy))

Note that
2e, < > d(p) <2¢,E(S(G))),
Pi1P2¢E (S (Gl))
piev(Gy) (11)
PV ($(Gi)-v(G))
dein,(n, — 1) + 8ejey(n, — 1)< ZC3 <4en,(n, - 1)E(S(G,)) + 8eye, (n, — 1).
Consequently,

2mye; +4eye, (n; —2) +2n, (n, — 1)e; + 4eye; (n, —2) (n, — 1) + 4eyn, (n, — 1) + 8eye, (n, — 1)
< Z C<4n,e, (n, —2)E(S(G,)) + 4ese; (n, —2) + 4n, (n, — 1)e; (n, — 2)E(S(G,)) (12)
+4eye, (n; —2)(ny — 1) + 4eyn, (ny — 1)E(S(G,)) + 8ee, (n, — 1).

We obtained the required result by putting the values of ~ Theorem 2. Let G, and G, be two simple connected graphs,

> A+ B+ ) C in equation (5). O  then second Zagreb coindex of Gy, xG, is given as follows:
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o <M, (G, xGy) < @, (13)  where

o =4me, (3n, —2) + Z(ngef - nzel) +deye, [ny(n; —2) +2(ny, — 1)] + 46, M, (G,) + 4e,M, (G, )+
8(e, + €)M, (G)) +4n, + 2(ey + e, )M, (G,) + e, M, (G,) + 4e, M, (G,) + 2 (e, + e;)M, (G,)
+(ny +2(ey + €)M (Gy) +2(M, (Gy) + M, (Gy)) (M, (G)) + M, (Gy)),
a, = 8me E(R(G)))(n; -2+ (n, —1)(n, — 1)) + Z(ngef - nzel) +4eye, [ny(n; —2) +2(n, — 1)]
+4e,M, (G)) +4e,M, (G)) +8(ey + €)M, (Gy) + 4my + 2 (e, + )M, (Gy) + ;M (Gy) + 4, M, (Gy)
+2(e; +e)M, (Gy) + (n, +2(e; + €)M, (G,) +2(M, (G,) + M, (G,)) (M, (G,) + M, (G,)).

(14)

Proof. Using equation (2), we have Using equation (6), we directly have

M, (GixG) = Z [d(pra1)d (P2 a5)]
(p1-p2) (4182 )¢E (Gy.2Gs)
= Z A+ Z B+ Z C.

(15)

ZA = Z(ngef - nzel),
ZB_ZBI+ZBZ+ZB3+ZB4+ZB5+ZB6
231 Z Z [d(p.q1)d(p>q)] Z Z [(dR(p)+dG2 ‘h)dR(P)‘*dGz(‘b))]

PV, @4:¢Eq, PV, a1a#EG,

= Z Z [dR (p)dg (p) +dgr(p)dg, (42) +dpg (p)dg, (q1) + dg, (‘11)dcz (‘12)]

PV, a19:2%Eg,

= Z Z [4‘7161 (P)Z +2dg, (P)(dGZ (92) + dg, (‘11)) +dg, (ql)dc2 (42)]
PV, a192¢Eq,

=4e,M, (G,) +2(2¢;)M, (G,) + n,M, (G,),

szz z Z [d(p1-9)d (P2 q)]

Ve, P1P2€Va,

= Z Z [d(p1-9)d(prrq)] = Z Z [(dR(pl)+dG2(q))(dR(P2)+dG2(q))]

q<Ve, PiP2#EG, q€Vq, p1P2¢EG,

YT [ () e )2, () + o, ()]

q<V, p1p2#Eg,

= Z Z [(4‘1(;1 (Pl)dcl (p2) + 2dg, (171)dcz (q) +2dg, (Pz)dc2 (q) +dg, (‘1)2)]
q€Vg, P1p2#Eq,

= 4m,M, (G,) +2(2¢,)M, (G,) +&,M, (G,),

233: Z Z [d(p1>a1) +d (P2 a2)]

P1P2€EG, 019:€Eq,

Z Z [(dR (p)dr (p) +dg (p)dg, (92) +dr (p)dg, (q1) + dg, (%)dcz (‘12))]

P1P2€EG, 9192€Eq,

Y Y (dr(p)r(p) + dr(p)dg, (0,) + dr (P)dg, (a1) + g, (41)de, (4))]

P1P2€EG, 419:€Eq,
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=2 Z z [4dG (p)* + 2dg, P)(dG2 (22) +d, (%)) +dg,(41)d, (‘12)]

P1P2€EG, 419:€EG,

= 2[4e,M, (G,) + &M, (G,)] + 2M, (G,)M, (G,),

234 = Z Z d(pya1)d (P2 a,)]

P1P2#EG, 19:€EG,

= Z Z [(dR(P1)+dG2(‘Z1))(dR(P2)+dG2(‘12))]

P1P2#EG, 192€EG,

= Z Z [(2d61 (p1) + dg, (511))(-7~dc1 (p2) + dg, (‘b))]

P1p2#EG, 919:€EG,

= Z Z [4‘71G1 (1171)6161 (p2) +2 [dcl (Pl)dc2 (92) + dg, (Pz)d62 (‘11)] +dg, (‘11)‘1G2 (42)]
P1p2#EG, 19:€EG,
= 2[4e,M, (G,) + &, M, (G,)] +2M, (G,)M, (G,),
(16)

ZBSZ Z Z [d(p1>91)d (P2 )]

P1P2#EG, 419:¢EG,

= Z Z [(dR (p1) +dg, (‘11))(dR (p2) +dg, (%))]

P1P2#EG, 419:¢EG,

= Z Z [(chl (p1) +dg, (%))(chl (p2) +dg, (‘12))]

P1P2#EG, 019:¢EG,

= Z Z [4dcl (191)dcl (p2) +2 [dGl (Pl)dc2 (2) + dg, (Pz)dG2 (41)] +dg, (‘h)dcz (42)]
PP2#EG, 419:¢EG,

=2[4e,M, (G,) +&,M, (G,)] +2M, (G,)M, (G,),

ZBsz Z Z [d(p1>91)d (P2 2)]

P1P2€EG, 91924,

= Z Z [(dR (p1) + dcz (‘11))(5112 (p2) + dGz (‘12))]

P1P2€EG, 19:¢EG,

= Z z [(2dG1 (p1) +dq, (611))(2‘16l (p2) +dg, (%))]

P1P2€EG, 419:¢EG,
= Z Z [4dG] (Pl)dcl (p2) +2 [dcl (Pl)dGz (92) + dg, (Pz)dG2 (%)] +dg, (‘Zl)dG2 (‘12)] (17)
P1P2€EG, 91924,
=2[4e,M, (G,) + ,M, (G,)] + 2M, (G,) M, (G,),
ZB = 4e,M, (G,) +4e;,M, (G,) + 8(e, + €, )M, (Gy) +4n, +2(e, + €)M, (G) + e, M, (G,)
+4e,M,(G,) +2(e; + €, )M, (G,) + (n; + +2(e; +€7))
M, (G,) +2(M,(G,) + M, (G,)) (M, (G,) + M, (G))),

ZC = ZCI +ZC2 +ZC3,
ch = Z Z dp,,qdp,,q = Z Z [(dR (1) + dcz(q))(dR (Pz))]>

pipatE(R(G)) 4V, PipatE(R(G)) 4V,
pLev (Gy) 1€V (Gy)

P2&V (R(G1)-V (G1)) P&V (R(G1)-V(G1))

. Z C, Z Z [(chl (p1) +dg, (‘1))2]

P1po¢E (R (Gl)) 9€Vg,
p1ev(Gr)
P2¢V (R(G1)-V (G1))

= Y Y [4(d, (p)) +2dg, @) =4n, > [d(p))] +4ese, (n, - 2).
pipa¢E(R(G))) 45Ve, pipa¢E(R(G)))

1€V (Gy) 1€V (Gy)
P&V (S(G1)-V (G1)) P&V ($(G1)-V(G1))
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Note that )

e = Z [d(p1)] <2e, (n, —2)E(S(Gy)),
p1po¢E (R (Gl)) (18)
p1ev(Gr)
P2¢V (8(G1)-v(G1))

dnye; + 4eye, (n; —2) < Z C, <8me, (n, —2)E(R(G,)) + 4e,e; (n, — 2),

Zcz = Z Z [d(p1q1)d (P2 22)]

p1p2¢E (R(G))) 9092€Va,
p1€V(Gy)
P2V (R(G1)-V (G1))

=YY @)+ @)k (e (p)]

p1p:#E (R(G))) 9:9:€V,
p1€V(G)
P&V (R(G1)-V (G1))

= Z Z [(ZdQ (p1) + d(‘h))z]

Pip2¢E (R(Gy)) 91:4:€V,

pev(G) (19)
PzEV(R (Gl)’v (Gl))

= Z Z [4dGl (p1) +2 d(‘h)]

Pip2¢E (R(Gy)) 91:4:€Vg,
pIEV(Gl)
P&V (R(G)-V (G))

=4y (n, - 1) Z [CIGl (Pl)] +2(2e;)e (ny —2)(n, - 1).
y2¥2322) (R (Gl))
PeV(G))
PV (R(G1)-V (G1))

Note that

e < Z d(py) <2e,(n, - 2)E(R(G))),
P1P2¢E (R (Gl))
rev(G)) (20)
peV (R(G)-V (Gy))
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SO

4ny (n, — L)ey +4deye; (ny —2) (1, - 1) < Z C,<8m, (n, — 1)e; (n; = 2)E(R(G))) +4eze; (1, —2) (n, - 1),
ch = Z Z [d(p1>a1)(d(p2 )]
p102¢E (R(G))) 91:9:€V,
PV (Gy)
P2V (R(Gy)-V (Gl))

-y Y [@elp)+d@))(dr(e) (p2)]
P1po¢E (R (Gl )) 919V,
PV (G))

P2V (R(G1)-V(G)))

= Z Z [(ZdCh (py) + d(%))z] (21)

p1p:¢E (R(G))) 9:0:€V g,
1€V (G))
PV (R(G1)-V(G1))

= ) Y [ade, (p) +2 d(a)]

p1pa¢E (R(G))) 9:9:€V 6,
PV (G))

P2V (R(G1)-V (G))

= 4n, (n, - 1) Z [d(p1)] +2(2e,) (1, — 1)2e.

e

PV (R(G)-V(G)))

Note that o
2e, < Z d(p,)<2¢,E(R(G,)), 8eym, (n, — 1) + 8eye, (n, — 1) 3
\p2¢E (R(G,
RO (22) <Y Cy<8en,(m— 1)E(R(G))) +8eye, (n, — 1).
PV (R(G1)-V (G1)) Consequently,
8eyn, (n, — 1) + 8eye, (n, — 1) + 4n, (n, — 1)e, + deye, (n; —2) (n, — 1) + 4nye; + 4eye; (ny — 2)
<)C
Z (24)

<8mpe, (n; —2)E(R(G))) +4eye; (1, —2) +8ny (1, — 1)e; (n; = 2)E(R(G,)) + deye, (ny —2) (n, — 1)
+8e;m, (n, — 1)E(R(G,)) + 8eye, (n, — 1).

We obtained the required proof by putting the values of =~ Theorem 3. Let G, and G, be two simple connected graphs,
Y A+ ) B+ ) C in equation (14). O then second Zagreb coindex of G,qG, is given as follows:
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o < Mz(GHQGz) <a,, (25)  where

o) = 4e,[6, +(n, = 1) (g, + ¢,)] + M, (G,) + n, (n, = 1)M, (G,) + (n, — 1 +&,) (M, (G,) + 2M, (G,))
+(2e; + €)M, (Gy) + 2, M, (Gy) + (ny +2(e; + €,) )M, (G )M, (Gy) + (e; + €)M, (G,) +2¢, M, (G,)
+2(e; + €)M,y (Gy) + (ny +2(e; +€))M,(Gy) + (M, (G,) + M, (Gy)) (M, (Gy) + M, (G))),
a = 4e;|eq(g,) + (12— 1)(EQ(GI) + eQ(GJ)] +mM, (Q(G))) + 1, (n, — 1)M, (Q(Gy))
+(ny +2(n, = 1+4,))M,(Q(G))) + (n, - 1 +&)M (Q(G))) +2(1n, — 1 +2,)M, (Q(G))) + (2, + €)M, (Gy)
+26, M, (G) + (11, + 2 (e + €,) )M, (Gy) M, (G, ) + (e + €)M, (G,) +2¢, M, (G,) +2(e; + €)M, (G,)
+(ny +2(e; + €)M, (Gy) + (M, (G,) + M, (G,)) (M, (G,) + M, (Gy)).
(26)

Proof. Using equation (2), we have

M,(Gy1qG) = ¥ [d(prx)d(prx,)] = Y A+ Y B+ C,
(Pl’Pz) (xl,xz)éE (G1+QG2)

VA=Y A +Y A+ Y A+ ) A+ ) As+ ) Ag+ ) Ay

ZAI = Z Z [dpl’deZ’x] =n Z [dchpldQGlpz]'
PipatE(Q(G1)) Ve, P1pafE(Q(G1))

Pp2ev (Q(G)~(Gy)) PPV (Q(G)-(G))

(27)

Note that )

0< Z [dQ(Gl)(pl)dQ(Gl)(pZ) <M, (Q(Gy)),
P1p2¢E (Q (Gl))
P1p2€V (Q(G1)~(Gy))

(28)

0 ) A <nM,(Q(G))),
YA, = D Y [d(p.x)d(p.x,)]

pev (Q(G)—~(Gy)) ¥1x%2€Eg,

= Z Z [dQ(Gl)(P)dQ(GI)(P) =(n-1) Z [dQ(GI)(P)Z]-

pev (Q(G))—(Gy)) ¥1%2€Eqg, pev (Q(G))—(G)))

(29)
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Note that
M, (Gy)< [y (0] <M, (@(G))
pev (Q(G)~())
(30)
O
(m, = 1)M, (G,) < ZAz < (n, - 1)M, (Q(Gy))s
A= Y. [d(px)d(p.x,)]
pev (Q(G1)~(G))) ¥1%2#E, (31)
= > [dQ(GI) (P)q(q) (P)] =& [dQ(GI) (P)z]'
peV (Q(G))-V (G))) x1x2¢EG, eV (Q(G,)-V (G)))
Note that )
M, (Gy)< > [dQ(Gl)(P)Z] <M, (Q(G))),
pev (Q(G))-V(G)))
(32)
&M, (G,)< Z Ay <e, M, (Q(Gy))s
ZA4 = Z [d(p1>x1)d (P2 x,)]
P102€E(Q(G))) x%,€Eq,
P1P2€V (Q (Gl)’v (Gl))
(33)
= Z [dp1, x1dpy, 5] = 21, — 1 [doclplquPz]-
P102€E(Q(G))) xx%,€Eg, Pip2¢E(Q(GY))
Pip2€V (Q (Gl)’V(Gl)) Pipa€V (Q (Gl)*V (Gl))
Note that
M, (Gy)< > [dQ(Gl)(pl) +dq(a,) (P2) | SM,(Q(G))),
p1p2€eE(Q(G))) (34)

P1p2eV (Q(G1)-V (Gy))
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SO

2(n, - 1)M, (G)) < ZA4 <2(n, - )M, (Q(Gy)),

2 As = >
pip2€E (Q (GJ))
P1p2€V (Q (Gl)’v (Gl))

= 2
Pip2€E(Q(G)))
P1P2€V (Q (Gl)’v (Gl))

X, x,€Eq,

X, %,€EG,

Note that
M, (Gy)< > [dQ(G
P1PZEE(Q(G1))
P1p2eV (Q(G1)-V (Gy))
SO
26,M,(G,) < ) A5 <26,M,(Q(G))),
ZAs = Z Z [d(p1>x1)d (P2 x,)]
plpzeE(Q(Gl)) x1x255G2
PJ»PzeV(Q(Gl)’V(Gl))
= Z Z [d(prx1)d (P2, x3)] = 2(n, -
Pp2€E(Q(G))) x1%,€EG,
Prp2eV (Q(G1)-V (Gy))
Note that )

0< Y |4 M, (Q(G)):

Pp€E(Q(G)))
Pup2V (Q(G1)-V (Gy))

(@) (P1)dq(c,) (P2) | <

(38)

0< ) Ag<2(n, - 1)M,(Q(G))),

ZA7 = Z Z [d(p1>x1)d (P2, x5)]
P1P2#E (Q (Gl)) x1%,€Eg,
j20 2314 (Q (Gl )’V (Gl))

= >
Pi1P2¢E (Q (Gl))
PPtV (Q(G1)-V (Gy))

Z [d(p1>x1)d (P2 x,)] = 28,

X1%,€EG,

Z [d(prx1)d (P x,)]

Z [d(p1>x1)d(prr x,)] = 22, Z

1) D

P1p2cE(Q(Gy))
25294 (Q (Gl)’v (Gl ))

) (P1) +do 6 (P2) | <M, (Q(G)));

p1p2€E (Q (Gl))
Prp2eV (Q(G1)-V(Gy))

> [de(c

Pi1P2¢E (Q (Gl))
P1p2eV (Q(G1)-V (Gy))

[dQ(Gl)(pl)dQ(G

) (pl)dQ(Gl)(pZ) :

13

[dQ(Gl)(pl)dQ(Gl)(PZ) :

(35)

(36)

l)(Pz) :

(37)

(39)
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Note that )
0< ) [dQ(GI)(pl)dQ(Gl)(Pz) <M, (Q(Gy)), 0< ) A,<28,M,(Q(G))). (41)
P1p2#E(Q(G)))
pip2eV (Q(G1)-V (G)) Consequently,
(40)

26,M, (Gy) +2(n, = 1)M, (G,) + (n, = 1)M, (G;) + &;,M, (G,)

<YA

<, M, (Q(Gy)) + (n, = )M, (Q(G))) + &M, (Q(G,)) +2(n, - 1)M, (Q(G,)) + 2&,M, (Q(G,))
+2(n, - )M, (Q(Gy)) + 26, M, (Q(Gy)).

(42)

Using equation (7), we directly have

ZB =2[(e; + €)M, (G)) + e, M, (G,)] + (1, + 2 (e, + €,)) M, (G, )M, (G)) + (e, + )M, (G,)
+2[e; M, (Gy) + (e + €)M, (G,)] + (1, +2 (e +¢1))M, (G,)
+(M,(G,) + M, (G,)) (M, (G,) + M, (G))),

=Y C+) C+ )G,

Z dpy,xdp;, x = Z Z [(dcl (p1) + d(x))dQ(Gl)(Pz)]
2¥2332) (Q (Gl )) XGVGZ y2y 233 (Q (Gl)) xesz
1€V (Gy) eV (Gy)
2,€V(Q(G)-V(G))) PV (Q(G1)-V (Gy))

=m Z [dGl (pl)dQ(Gl) (p2) + 2e5dq (G,) (Pz)]
P1P2¢E (Q (Gl))
pev(G))
7V (Q(G)-V(G1))

gl
o
| |

(43)

=M, Z dg, (P1)dq(c,) (p2) +d (x) Z dq (a,) (P2)-
P1p2¢E (Q (Gl)) P1P2¢E(Q(G1))
eV (Gy) eV (Gy)

226V (Q(G))-V (Gy)) P2eV (Q(G1)-V (G1))
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Note that

M,(Gy) < Z dq(c,) (P1) < MQ(Gy),
Pip2¢E (Q (Gl))
nev(G)
PzeV(Q (Gl)’v (Gl))

2, < > dq(c,) (P2) £ 28 (G,)
P1P2¢E (Q (Gl))
nev(G))
PV (Q(Gr)-V(Gy))

n,M, (G,) + 4eye, < Z C1<mM,(Q(G))) +4ex8q ()

Zcz = Z Z [d(p1>x1)d (P2, x,)]
P1P2¢E (Q (G1)) x1:%,€Vg,
rev(G)
PV (Q(G)-V(G1))

> Y [, (p) + d(x))dg(a) (p2)]

PL1po¢E (Q (Gl)) xl,xZEVGZ
peV (Gl)
PV (Q(G)-V(Gy))
D) Y [do,(p)doa) (p2) +d(x)dg(a,) (p2)]
P1P2¢E (Q (Gl)) x1:%,€Vg,
1€V (G))

Pev(Q(G))-V(G1))

Z dg, (P1)dg(c,) (P2) +d(x))
xl,xZEVGZ Pi1P2¢E (Q (Gl))
1€V (Gy)
PV (Q(G1)-V(Gr))

2

Pi1P2¢E (Q (Gl))
eV (Gy)
7V (Q(G)-V(G))

dq(a,) (p2)-

15

(44)
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Note that

M,(G)) < Z dq(a,) (P1) < MQ(Gy),
P1p2¢E (Q (Gl))
PV (Gy)
pr€V (Q (Gl)’V(Gl))

2e < Y > dq(c,) (P2) <286,y
P1P2¢E(Q(G1))
nev(G)
PV (Q(G)-V(Gr))

ny (ny = 1)M, (Gy) + e, (m, — 1)e; < Z Cy<my(m, = 1)M, (Q(G))) + 4e, (n, - 1)EQ(G1)’

zcs = Z Z [d(p1>x1)d (P> x5)]
P1P2¢E (Q (Gl)) x1,%,€V5,
1€V (Gy)
P2V (Q(G1)-V(G))

= Z Z [(dcl (p1) +d(xl))dQ(Gl)(p2)]

PleéE(Q (Gl)) xl’x2€vcz
eV (Gl)
PV (Q(G1)-V (Gy))
) Y [do,(p)doa) (p2) +d(x)dg(a,) (p2)]
P1p2¢E (Q (Gl)) x1:%,€Vg,
1€V (Gy)

7€V (Q(G1)-V (Gy))

= Z Z dg, (P1)dq(c,) (p2) +d(xy) Z dq(c,)(P2)-
X566, ppyeE (Q(G)) ipa¢E(Q(G1))
PV (G) Pev(G)
226V (Q(G))-V (Gy)) PV (Q(G)-V(G))

(45)
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Note that

M,(Gy) < Z dq(c,) (P1) < MQ(Gy),
Pip2¢E (Q (Gl))
eV (Gy)
P2€V (Q (Gl)’V (Gl))

46
2e; < > dq(c,) (P2) S 2eq(c,) (1)
P1P2#E (Q (Gl))
nev(G))
P2V (Q(G1)-V (G1))

my (= )M, (Gy) + dey (ny = 1)ey < ) Cy <my (my = )M, (Q(G))) +4ey (my — eq ()

Consequently,

mM, (Gy) + 4ey8, + 1y (ny — 1)M, (Gy) + ey (my, — 1)8; + 1y (ny = 1)M, (Gy) + ey (m, — 1)ey
<YC
<m,M,(Q(G)) + 4e28q(G,) T M (= 1)M, (Q(G))) + 4e, (n, - I)EQ(GI) +1, (1, = 1)M, (Q(Gy)) + e, (n, — l)eQ(Gl)'
(47)
a; <M, (Gy7G,) < @, (48)

We obtained the required proof by putting the values of
Y A+ ) B+ ) C in equation (25). O  where

Theorem 4. Let G, and G, be two graphs, then second
Zagreb coindex of G,,1G, is given as follows:

ay =4ey[e) + (1, = 1) (&) +ey)] + 2y [M, (Gy) + (1, = 1) (M, (G) + M, (G)))] + (my = 1 +8,) (M, (Gy) + 2M, (Gy))
+4e;,M, (Gy) +4e;, M, (Gy) +8(ey + €)M, (Gy) +4(n, +2(e; +¢,)) M, (Gy) + e, M, (G,)
+4e; M, (G,) +2(e; + €)M, (Gy) + (1 +2(ey +¢1))M,(Gy) +2(M, (G,) + M, (G,)) (M, (Gy) + M, (Gy)),

@y = des[er (o) + (1 = D(er(6) +r(a) ) | + 2 (T (T (G) + (m2 = 1) (M, (T (G) + M (T(G))
ay = 4es er(G) + (= 1)(r 6+ er(a) )|+ 2 (M (T(G)))) + (= 1) (M, (T (G))) + M, (T (G))))
+8(ey + €)M, (Gy) +4(ny +2(e, +6,)) M, (G)) + ;M (G,) + e, M, (G,) +2(e; +e;)M,(G,)

+(n +2(e; + €)M, (G,) +2(M, (G,) + M, (G,)) (M, (Gy) + M, (G))-
(49)

Proof. Using equation (2), we have

M, (G, 1G,) = Z [d(p1>91)d (P2 q2)] ZA+ZB+ZC 0
(p1-p2) (9022 )¢E (G1.1G,)
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Using equation (40), we directly have

26, M, (Gy) +2(n, = 1)M, (Gy) + (1, - 1)M, (G;) + &, M, (G,)
< Y A<nyM, (T(Gy)) + (n, - 1)M, (T (G,)) (51)
+e,M; (T(Gy)) +2(n, =~ 1)M, (T (Gy)) +26,M, (T (G,)) +2(n, = 1)M, (T (G,)) + 2&,M, (T (Gy)).

Using equation (15), we directly have

ZB = 4e, M, (G) +4e; M, (Gy) + 8(ey + )M, (Gy) +4ny +2(e, + ;) M, (Gy)
+eM, (G,) + 4e,M, (G,)
+2(e; + €)M, (Gy) + (ny +2(e; + €)M, (Gy) +2(M, (G,)

+ M, (G,)) (M, (G,) + M, (G,)),

YC=YC+YC+)Cy
>Ci= ) Y [d(p1»9)d (P )]

t6,¢E(T(G))) 4%V,
PV (Gy)

€V (T (G))-G))

21, M, (G)) +4ee, < Z Cy<2m,M, (T (G,)) + 4esey (G (52)
zcz = Z Z [d(p1-91)d (P2 9)]
pip2#E (T (G))) 9192V,
nev(G))

eV (T(G))-V (Gy))

2ny (1, = 1)M, (G,) + e, (1, — 1)e; < Z C, <2my (1, = 1)M, (T (Gy)) + 4e, (n, — I)ET(GI)’

2.Cs= ) Y [d(pra)d(pra)]
P1p2€E(T(Gy)) 10V e,
PV (Gl)

pr€V (T (Gl)’v (Gl))

2y (ny = 1)M, (G,) + 4e, (n, — 1)e, < ch <2m, (n, = 1)M, (T (G,)) + 4e, (1, - 1)eT(Gl)'

Consequently,

2n,M, (G,) + 4eye, +2n, (n, — 1)M, (G,) + 4e, (n, — 1)e, + 2n, (n, — 1)M, (G,) + 4e, (n, — 1)e;

<YC

<2mM, (T (Gy)) + deser(g,) +2m (m, = )M, (T (Gy)) + 4e, (n, - I)ET(GI) +2n, (ny = )M, (T (Gy)) + e, (n, - l)eT(Gl)'
(53)
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TaBLE 1: Exact and bounded values of certain F-sum graphs.

F-sum operation Lower bounds Exact values Upper bounds

M, (Gy,5G,) 152 160 312
M, (G1,xG,) 216 232 728
M, (G,4G,) 106 220 338
M, (G,.1G,) 150 300 642

We obtained required results by putting the values of
> A+Y B+ ) C in equation (48). O

4. Conclusion

In this paper, we have computed second Zagreb coindex of
F-sum graphs such as M,(G,sG,), M, (G,G,),
M, (G,,G,), and M, (G,,;G,). The obtained results are
illustrated with the help of specific class graphs of F-sum
graphs. Let G, = P; and G, = P,, then the lower and upper
bounds of first Zagreb coindex for their F-sum graph are
given in Table 1.

Now, we close our discussion that the problem is still
open to compute the other generalized coindices (first
general Zagreb and general Randic coindices) for the F-sum
graphs.
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