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An analysis was carried out to investigate the time period of the thermally induced vibration of clamped and simply supported
circular plates with circular variation both in thickness and density. Prior to this study, the variations considered were either
linear, quadratic, parabolic, or exponential in nature. To study thermal effect, one-dimensional linear temperature variation on the
plates is taken into consideration. Rayleigh–Ritz method is applied to compute the time period of the first three modes of vibration
for both plates by varying tapering parameter, thermal gradient, and density. Convergence study of frequency modes for both
plates conducted suggests that the convergence rate in case of circular variation is faster than the other studies done. A comparison
of time period with the available published results is done. ,e comparison done concludes that time period obtained in the
present study by varying thermal gradient and tapering parameter is found to be less than the other studies done for the same set of
parameters. ,is study helped to establish the fact that, by using circular variation in plate parameters, we can get less time period
of frequency modes in comparison to other variations considered till date.

1. Introduction

Vibration, sometimes, is described as a kind of waste energy.
In modern days, vibrational study is involved in a wide range
of industrial applications and research. Study of natural
vibration of nonuniform plates is very essential because
vibration is used in many engineering and science appli-
cations. Different shapes of plates are the choices of many
engineering applications, depending on the requirement of
the systems. Also, different shapes of plates with different
types of variations in plate parameters are used according to
the choices of researchers in order to make good structural
designs. ,e study of the vibration of plates such as circular,
elliptical, square, rectangular, and skew plates with linear
and nonlinear variations in thickness, density, and tem-
perature has been carried out by many researchers and is
well documented in the literature. To the best of our
knowledge, vibration of circular plates with circular

variations in both thickness and density has not been
considered yet.

,e problem of bending and vibration of a simply
supported rectangular plate with linearly varying thickness is
discussed in [1]. ,e differential quadrature method was
implemented to study the natural vibrations of clamped,
simply supported, and free circular plates (nonhomoge-
neous and isotropic) of nonlinear thickness variation and
computed first three frequencies [2]. An exact solution of
inhomogeneous circular plates has been discussed by using
the novel analytical method, and the effect of Poisson’s ratio,
rotatory inertial, and shear deformation is examined [3].,e
Rayleigh–Ritz method along with characteristic orthogonal
polynomials has been applied to study the fundamental
mode of vibrations of circular or elliptic plates [4]. An
analysis of the vibration of circular annular disks on the
clamped, free, and flexible boundary at the inner and outer
edges has been studied, and the studies focused on frequency
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parameters for various plate parameters [5]. ,e Ritz
method along with Chebyshev polynomials has been used to
study the effect of different material compositions, Poisson’s
ratio, and the plate geometry on the frequencies and mode
shapes of FGM plates [6]. ,e vibration of FG isotropic
circular plates with exponential thickness has been studied
using the displacement method on two edge conditions [7].
,e effects of material heterogeneity and multifield coupling
on the static behavior of the FG circular plate made of MEE
materials under tension and bending have been discussed
[8]. Levy approach and quintic spline method have been
used to examine the effect of damping, elastic foundation,
and taperness on damped vibrations of the homogeneous
rectangular plate of linearly varying thickness resting on an
elastic foundation [9]. Vibrations of FG annular plates on
the ring support have been analyzed and presented nu-
merically on the basis of classical plate theory [10]. ,e effect
of exponential Young’s modulus and density on the
asymmetric vibrations of nonhomogeneous, clamped,
simply supported, and free circular plates with parabolic
thickness has been studied using the Ritz method, and the
first three natural frequencies have been presented [11]. ,e
vibration of the nonuniform skew plate with both circular
variation in density and Poisson’s ratio and the natural
vibration of the nonuniform skew plate with both circular
variation in thickness and Poisson’s ratio have been analyzed
using the Rayleigh–Ritz method under the temperature field,
and frequency modes comprising the effect of various plate
parameters have been computed [12, 13]. ,e effect of
circular variation in Poisson’s ratio on frequencies of the
nonuniform rectangle plate and effect of circular variation in
density on frequencies of the nonuniform square plate have
been presented using the Rayleigh–Ritz method under the
temperature field [14, 15]. Rayleigh–Ritz method is used to
analyze the vibration of the circular plate with linearly
varying thickness and temperature; and deflection, time
period, and logarithmic decrement have been computed for
different values of plate parameters [16]. Generalized dif-
ferential quadrature method is applied to study free thermal
vibrations of FGM; clamped and simply supported circular
plates and first threemodes of vibration have been computed
[17].

In this study, time period of frequency modes (first
three) comprises the effect of various plate parameters
(circular variation in both density and thickness and
linear variation in thermal gradient) for clamped and
simply supported circular plates, and the result is pre-
sented in the form of tables and graphs. As far the
knowledge of the authors, prior to this work, the effect of
circular variation in plate parameters on the circular plate
was not examined. In order to authenticate the findings of
the present study, a comparative study of time period is
conducted with the available published results for the
clamped circular plate.

,is paper has been organized in the following manner.
First, mathematical formulation of the problem has been
discussed, and then the numerical results have been re-
ported. In the end, the main conclusions of the studies have
been discussed.

2. Analysis

Consider a circular plate of radius r1 having circular
thickness l(r), circular density ρ(r), and Poisson’s ratio ]
referred to cylindrical polar coordinates (r, θ, z) (refer to
Figure 1)

,e maximum strain energy Vs and kinetic energy Ts of
the plate are given by the expression derived in [18]:
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(1)

where D � El3/12(1 − ]2) is the flexural rigidity, E is
Young’s modulus, and ϕ is known as the transverse
deflection.
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where ω is the circular frequency.
Applying the Rayleigh–Ritz method, the variable J is

represented in the following manner:

J � δ Vs − Ts(  � 0. (3)

Substituting equations (1) and (2) in equation (3), we get
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Introducing nondimensional variable Φ � ϕ/r1 and R �

r/r1 along with circular variation in both density ρ and
thickness l, we get
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  ,

(5)

where ρ0 and l0 are nonhomogeneity and tapering param-
eters of the plate, respectively.
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In [16], the temperature was assumed to be linear in the
radial direction. In this study, we also assumed the same.
Under this assumption, the temperature of the plate takes
the form

η � η0(1 − R), (6)

where η and η0 are the temperature on the plate and at the
center of the plate, respectively. ,e temperature-dependent
modulus of elasticity is taken as in [19] and can be expressed
in the following manner:

E � E0(1 − ϱη), (7)

where ϱ is the slope of variation and E0 is Young’s modulus
at η � 0. Substituting equation (6) in equation (7),

E � E0 1 − κ(1 − R){ }, (8)

where κ � ϱη0 is the thermal gradient.
Using nondimensional variables Φ andR and

substituting equations (5) and (8) in equation (4), we get
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where D0 � E0l
3
0/12(1 − ]2) and λ2 � ρ0a4ω2l0/D0.

Now, assuming the mode shape function as in [20], we
have

Φ(R) � Φ1(R)cos nθ. (10)

As the functional in equation (9) contains the negative
power of R, takeΦ1(R) � RΦ1(R) as in [16], and using this
relation and substituting equation (10) in equation (9), we
get
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We choose deflection function, Φ1, in the radial direc-
tion which satisfies the geometric boundary condition as

Φ1 � (1 − R)
p



N

i�0
Ci(1 − R)

i
, (12)

where p can be 0, 1, and 2 in accordance to free, simply
supported, and clamped boundary conditions, respectively.
Ci, i � 0, 1, 2, . . . , N, are arbitrary constants.

In order to minimize equation (11), we require the
following condition:

zJ Φ1( 

zCi

� 0, i � 0, 1, 2, . . . N. (13)

From equation (13), we have a system of homogeneous
equations in Ci whose nonzero solution gives the frequency
equation as

P − λ2Q


 � 0, (14)

where P � [pij]N+1 and Q � [qij]N+1 are square matrices and
i, j � 0, 1, 2, . . . , N.

,e time period K is calculated as

K �
2π
λ

, (15)

where λ is the frequency obtained from equation (14).

3. Numerical Results

In this section, we will report the results obtained from
numerical simulations.

3.1. Time Period Analysis. ,e time period, K, comprising
the effect of circular variation in both thickness and density
is calculated for clamped and simply supported circular
plates under the linear temperature variation effect, and
results are presented with the help of tables. ,e value of
Poisson’s ratio ] � 0.345 throughout the calculation.

Table 1 shows the time period K for clamped and simply
supported circular plates corresponding to tapering parameter
ϖ, for the variable value of thermal gradient κ and

Figure 1: Circular plate with circular variation in thickness.
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nonhomogeneity φ, i.e., κ � 0.0,φ � 0.2 and κ � 0.4,φ � 0.6.
It can be easily seen that time period K is increasing for the
increasing value of tapering parameter ϖ for all the afore-
mentioned values of thermal gradient κ and nonhomogeneity
φ.,e time periodK is also increasingwhen thermal gradient κ
as well as nonhomogeneity φ increases from 0.0 to 0.4 and 0.2
to 0.6, respectively. ,e time period K of the simply supported
circular plate is higher when compared with the time period K

of the clamped circular plate. Also, the rate of increment in time
periodK for the simply supported circular plate is much higher
in comparison to the rate of increments in time period K for
the clamped circular plate.

Time period, K, for clamped and simply supported
circular plates corresponding to thermal gradient κ, for the
variable value of tapering parameter ϖ and nonhomogeneity
φ, i.e., ϖ � 0.0,φ � 0.2 and ϖ � 0.4,φ � 0.6, is presented in
Table 2. One can conclude that increasing value of thermal
gradient κ causes the increase in time period K for all the
aforementioned values of tapering parameter ϖ and non-
homogeneity φ. ,e time period K is also increasing when
thermal gradient κ as well as nonhomogeneity φ increases
from 0.0 to 0.4 and 0.2 to 0.6, respectively. ,e behavior of
time period K of the simply supported circular plate is the
same as the behavior of time period K reported in Table 1,
but for the clamped plate, the time period K of the first mode
is slightly less for ϖ � 0.0,φ � 0.2 than the time period K of
the first mode onϖ � 0.4,φ � 0.6 at κ � 0.0. Here, the rate of
increment in time period K for the clamped circular plate is
much lesser in comparison to the rate of increments in time
period K for the simply supported circular plate.

Table 3 displays the time period K for clamped and simply
supported circular plates corresponding to nonhomogeneity φ,
for the variable value of thermal gradient κ and tapering pa-
rameter ϖ, i.e., κ � 0.0,ϖ � 0.2 and κ � 0.4,ϖ � 0.6. Table 3
concludes that increasing value of nonhomogeneityφ causes the
decrease in time periodK for the aforementioned variable value
of thermal gradient κ and tapering parameter ϖ, but the time
periodK for both clamped and simply supported circular plates
increases when the value of thermal gradient κ and tapering
parameter ϖ varies from 0.0 to 0.2 and 0.2 to 0.6, respectively.
,e rate of decrement in time periodK for the clamped circular
plate is much lesser when compared to the rate of decrement in
time period K for the simply supported circular plate.

In view to understand the obtained results as discussed
in this section, a graphical illustration of results is given
(refer to Figures 2–7).

3.2.Convergence Studies. In this section, we will focus on the
convergence studies done for clamped and simply supported
circular plates computed for plate parameters in the range
specified. ,e results are shown in Figure 8 for φ � ϖ � κ �

0.0 and ] � 0.345.
,e convergence study is done for two modes λ1 and λ2

of vibrations for both clamped and simply supported cir-
cular plates. It was observed that, for approximately N � 7
onwards, the value of the modes was constant up to five
decimal places. ,e aforementioned results show that the
modes converge.

3.3. Results’ Comparison. In order to validate the findings of
the present study, a graphical comparison of time period K

of the clamped circular plate is given with the available
published results corresponding to tapering parameter ϖ
and nonhomogeneity φ.

Figure 9 presents the comparison of time period K of the
clamped circular plate with the time period K obtained in
[16] corresponding to tapering parameter ϖ for fixed values
of thermal gradient κ � 0.0 and nonhomogeneity φ � 0.0.
From Figure 9, one can easily conclude that time period K as
well as variation in time period (rate of increment) K of the
present study is less when compared with the time period K

obtained in [16] for both fixed values of thermal gradient κ
and nonhomogeneity φ.

A comparison of time period K of the clamped circular
plate with the time period K obtained in [16] corresponding
to nonhomogeneity φ for fixed values of thermal gradient
κ � 0.0 and tapering ϖ � 0.0 is presented in Figure 10. Here,
the time period K of the present study is higher than the time
periodK obtained in [16] for fixed values of thermal gradient
κ and tapering parameter ϖ, but the variation in time period
K (rate of decrement) of the present study is much lesser
when compared with the variation of time periodK obtained
in [16].

Table 1: Time period K of clamped and simply supported circular plates vs. tapering parameter ϖ.

ϖ
κ � 0.0,φ � 0.2 κ � 0.4,φ � 0.6

K1 K2 K3 K1 K2 K3

Clamped

0.0 0.039 83 0.098 67 0.291 13 0.045 83 0.103 51 0.308 45
0.2 0.040 40 0.10616 0.314 57 0.047 03 0.111 64 0.332 60
0.4 0.040 80 0.11416 0.343 00 0.047 97 0.120 81 0.361 94
0.6 0.041 03 0.122 23 0.377 53 0.048 63 0.130 56 0.397 82
0.8 0.041 11 0.129 78 0.418 08 0.049 02 0.14017 0.440 80

Simply supported

0.0 0.041 07 0.110 52 0.441 02 0.040 24 0.121 79 0.46317
0.2 0.045 79 0.115 31 0.464 45 0.045 67 0.126 09 0.487 83
0.4 0.050 91 0.12215 0.490 88 0.052 04 0.131 82 0.515 35
0.6 0.055 95 0.132 37 0.521 69 0.059 08 0.140 33 0.546 92
0.8 0.060 25 0.147 54 0.560 30 0.066 05 0.153 70 0.58519
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Table 3: Time period K of clamped and simply supported circular plates vs. nonhomogeneity φ.

φ
κ � 0.0,ϖ � 0.2 κ � 0.4,ϖ � 0.6

K1 K2 K3 K1 K2 K3

Clamped

0.0 0.040 91 0.108 30 0.319 34 0.050 53 0.138 73 0.417 61
0.2 0.040 40 0.10616 0.314 57 0.049 93 0.13612 0.411 11
0.4 0.039 86 0.103 94 0.309 72 0.049 30 0.133 40 0.404 51
0.6 0.039 27 0.101 62 0.304 82 0.048 63 0.130 56 0.397 82
0.8 0.038 65 0.099 20 0.299 86 0.047 91 0.127 60 0.391 03

Simply supported

0.0 0.047 09 0.117 64 0.473 88 0.064 27 0.150 46 0.581 89
0.2 0.045 79 0.115 31 0.464 45 0.062 65 0.147 22 0.570 48
0.4 0.044 40 0.112 88 0.454 87 0.060 95 0.143 85 0.558 80
0.6 0.042 88 0.110 33 0.445 07 0.059 08 0.140 33 0.546 92
0.8 0.041 20 0.107 64 0.435 08 0.057 03 0.136 63 0.534 83

Table 2: Time period K of clamped and simply supported circular plates vs. thermal gradient κ.

κ
ϖ � 0.0,φ � 0.2 ϖ � 0.4,φ � 0.6

K1 K2 K3 K1 K2 K3

Clamped

0.0 0.039 83 0.098 67 0.291 13 0.039 72 0.109 37 0.331 94
0.2 0.04313 0.102 25 0.30311 0.043 27 0.114 58 0.345 61
0.4 0.047 36 0.107 99 0.317 49 0.047 97 0.120 81 0.361 94
0.6 0.053 07 0.114 87 0.335 37 0.054 58 0.128 69 0.382 21
0.8 0.061 18 0.125 76 0.359 05 0.064 81 0.140 00 0.409 00

Simply supported

0.0 0.041 07 0.110 52 0.441 02 0.047 93 0.116 44 0.470 30
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Figure 2: Time period K of the clamped circular plate vs. tapering parameter ϖ.
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Figure 3: Time period K of the simply supported circular plate vs. tapering parameter ϖ.
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Figure 4: Time period K of the clamped circular plate vs. thermal gradient κ.
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Figure 5: Time period K of the simply supported circular plate vs. thermal gradient κ.
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Figure 6: Time period K of the clamped circular plate vs. nonhomogeneity φ.
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Figure 7: Time period K of the simply supported circular plate vs. nonhomogeneity φ.
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4. Discussion and Conclusions

In this section, we will summarize our major findings. ,e
time period for the first three modes of vibration corre-
sponding to the plate parameters, nonhomogeneity, taper-
ing, and thermal gradient was discussed for both clamped
and simply supported plates.,e study done concluded that,
for the case of circular variation in plate parameters, namely,
nonhomogeneity and tapering, the time period calculated is
smaller in comparison to other variations studied in the
literature. Not only this, the change in time period is less
rapid as compared to other studies done. For these facts, the
mode convergence for circular variation is for a smaller
value of N in comparison to other studies where the value of
N is higher than our study. ,is further leads to the con-
clusion that, for circular variations, the required compu-
tational time is less in contrast to other studies.

Based on numerical illustration and comparison, the
authors would like to conclude the following facts:

(i) ,e time period K in case of circular thickness
(present study) is less when compared with the time
period K in case of linear thickness [16]. ,e rate of
increment in time period K in case of circular
thickness (present study) is also less when compared
with the rate of increment in time period K in case
of linear thickness [16]. ,e time period K of the
present study and that obtained in [16] coincide at
ϖ � 0.0 (Figure 9).

(ii) ,e time period K in case of circular density
(present study) is higher than the time period K in
case of linear density [16], but the rate of decrement
in time period K reported in case of circular density
(present study) is much less when compared with
the rate of decrement in time period K reported in
case of linear density [16]. Here also, the time period
K of the present study and that obtained in [16]
coincide at φ � 0.0 (Figure 10).

(iii) Time period K of clamped and simply supported
circular plates increases with increasing value to
tapering ϖ and thermal gradient κ (Tables 1 and 2),
but the time period K of clamped and simply
supported circular plates decreases with the in-
creasing value of nonhomogeneity φ (Table 3).

(iv) Time period K of the simply supported circular
plate is higher than the time period K of the
clamped circular plate, but the variation in time
period K (rate of increment/decrement) of the
clamped circular plate is less when compared with
the variation in time period K of the simply sup-
ported circular plate (Tables 1–3).

(v) Points (i) and (ii) emphasize that time period K as
well as variation in time period K can be controlled
by choosing an appropriate variation in plate pa-
rameters, while points (iii) and (iv) focus on how the
time period K is affected by plate parameters.

Symbols

l: ,ickness of the plate
r1: Radius of the plate
ρ: Mass density per unit volume of plate

material
]: Poisson’s ratio
Vs: Strain energy
Ts: Kinetic energy
D: Flexural rigidity
E: Young’s modulus
ϕ: Transverse deflection
ω: Circular frequency
Φ: Mode shape function
φ: Nonhomogeneity constant
κ: ,ermal gradient
ϖ: Tapering parameter
η: Temperature on the plate
Φ1: Deflection function
λ: Frequency
K: Time period
N: Number of terms
Ki, i � 1, 2, 3: Time period for the first three modes of

vibration.
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