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In this paper, we study the generalized Riemann–Liouville fractional integral for the functions with fractal support.*e aim of this
article is to investigate reverse Minkowski’s inequalities and certain other related inequalities by employing the generalized
Riemann–Liouville fractional integral for the functions with fractal support.

1. Introduction

Fractional calculus involves integrals and derivatives of
arbitrary order. *e applications of fractional calculus have
been found in the field of several sciences and engineering
[1–8]. In [1, 2], the nonlocal fractional integrals and de-
rivatives are utilized to model the processes with memory
effect. In [9–11], the researchers used the nonlocal deriva-
tives to model more appropriately the dynamics of the
nonconservative systems in formulation of Hamilton and
Lagrange.

Fractal analysis has been studied by many researchers by
using measure theory, harmonic analysis, stochastic process,
fractional spaces, and other techniques [12–35].

Recently, Parvate and Gangal [36–41] proposed the
Fα-calculus on the fractal subset of real line and fractal
curves. *e researchers have applied transport materials on
disordered systems such as fractal sets and fractal curves
[42–44]. In [45], the researchers established Schrödinger’s
equation on a fractal curve.

Such new developments in fractional calculus encourage
future research to investigate new innovative ideas to unify
the fractional operators and establish inequalities involving
new fractional operators. *e fractional integral inequalities

(FII in short) and their applications play an important role in
the field of applied mathematics. A wide number of integral
inequalities and their extensions were built in the sense of
classical fractional integral and fractional derivative oper-
ators (see, e.g., [46–50]).

*e inequalities, especially the Hölder, the reverse
Minkowski, the arithmetic, and geometric inequalities, have
played a key role in the field of both pure as well as applied
mathematics. *ese and several other essential inequalities
are now in common use and, therefore, it is not surprising
that several studies associated to these areas have been made
in order to accomplish a diversity of desired goals. In the past
few decades, the theory of inequalities has established
rapidly and unexpected results were investigated, along with
simpler new proofs for existing results, and, accordingly,
new direction for research has been opened up. Recently, the
theory of inequalities has gained more considerable interest
from many mathematicians, and a large number of new
inequalities have been estimated in the literature. It is
recognized that, in general, some specific inequalities pro-
vide a useful and important device in the development of
different branches of mathematics. In [51], Dahmani has
investigated the reverse Minkowski fractional integral in-
equalities. Sousa and Capelas de Oliveira [52] have
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investigated the reverse Minkowski inequalities and certain
other related inequalities for Katugampola fractional Inte-
gral operators. In [53, 54], the authors have studied the
reverse Minkowski inequalities by considering Hadamard
fractional integral operators. In this present article, we study
the said inequalities by considering the generalized Rie-
mann–Liouville fractional integral for the functions with
fractal support.

*e structure of the paper is follows.
In Section 2, we have given some known results and basic

definitions. In Section 3, the nonlocal reverse Minkowski
inequalities are presented for nonlocal fractal integrals on
fractal subset of real line. In Section 4, some other related
inequalities for nonlocal fractal integrals on fractal subset of
real line are presented.

2. Preliminaries

Some well-known basic definitions and results associated
with classical fractional integrals and generalized fractional
integrals are presented in this section. *e reverse Min-
kowski’s integral inequalities can be found in the work of
[27, 55]. *e reverse Minkowski’s inequalities are the mo-
tivation of the work performed so far, involving the classical
Riemann integrals which are presented by the following
theorems.

Theorem 1 (see [55]). Let the two functions U1 and U2 be
positive on [0,∞) and δ ≥ 1. If 0< k≤ (U1(ζ)/h1(ζ))≤K,
ζ ∈ [x1, x2], then the following inequality holds:

􏽚
x2

x1

U
δ
1(ζ)dζ􏼠 􏼡

(1/δ)

+ 􏽚
x2

x1

U
δ
2(ζ)dζ􏼠 􏼡

(1/δ)

≤
1 + K(k + 2)

(k + 1)(K + 1)
􏽚

x2

x1

U1 + U2( 􏼁
δ
(ζ)dζ􏼠 􏼡

(1/δ)

.

(1)

Theorem 2 (see [55]). Let the two functions U1 and U2 be
positive on [0,∞) and δ ≥ 1. If 0< k≤ (U1(ζ)/h1(ζ))≤K,
ζ ∈ [x1, x2], then the following inequality holds:

􏽚
x2

x1

U
δ
1(ζ)dζ􏼠 􏼡

(2/δ)

+ 􏽚
x2

x1

U
δ
2(ζ)dζ􏼠 􏼡

(2/δ)

≥
(K + 1)(k + 1)

K
− 2􏼠 􏼡 􏽚

x2

x1

U
δ
1(ζ)dζ􏼠 􏼡

(1/δ)

· 􏽚
x2

x1

U
δ
2(ζ)dζ􏼠 􏼡

(1/δ)

.

(2)

Definition 1 (see [5, 6]). *e well-known classical fractional
integrals of order λ> 0 are, respectively, defined by

x1
T

λ
U1􏼐 􏼑(ζ) �

1
Γ(λ)

􏽚
ζ

x1

(ζ − ρ)
λ− 1

U1(ρ)dρ , x1 < ζ,

(3)

and

T
λ
x2
U1􏼐 􏼑(ζ) �

1
Γ(λ)

􏽚
x2

ζ
(ρ − ζ)

λ− 1
g(ρ)dρ, ζ <x2, (4)

where λ ∈ C with R(λ)> 0.

Dahmani [51] has investigated the following inequalities
by using classical fractional integral.

Theorem 3 (see [51]). Let the two functions U1 and U2 be
positive on [0,∞) such that, for all ζ > 0, TτUδ

1(ζ)<∞,
TτUδ

2(ζ)<∞. If 0< k≤ (U1(ρ1)/U2(ρ1))≤K, ρ1 ∈ [x1, ζ],
then the following inequality holds:

T
τ
U

δ
1(ζ)􏼐 􏼑

(1/δ)
+ T

τ
U

δ
2(ζ)􏼐 􏼑

(1/δ)

≤
1 + K(k + 2)

(k + 1)(K + 1)
T

τ
U1 + U2( 􏼁

δ
(ζ)􏼐 􏼑

(1/δ)
,

(5)

τ ∈ C, R(τ)> 0, δ ≥ 1.

Theorem 4 (see [51]). Let the two functions U1, U2 be
positive on [0,∞) such that, for all ζ > 0, TτUδ

1(ζ)<∞,
TτUδ

2(ζ)<∞. If 0< k≤ (U1(ρ1)/U2(ρ1))≤K, ρ1 ∈ [x1, ζ],
then the following inequality holds:

T
τ
U

δ
1(ζ)􏼐 􏼑

(2/δ)
+ T

τ
U

δ
2(ζ)􏼐 􏼑

(2/δ)

≥
(K + 1)(k + 1)

K
− 2􏼠 􏼡 T

τ
U

δ
1(ζ)􏼐 􏼑

(1/δ)
T

τ
U

δ
2(ζ)􏼐 􏼑

(1/δ)
,

(6)

τ ∈ C, R(τ)> 0, δ ≥ 1.

In [1], it is shown that the geometry of fractal is the
geometry of real world. In [36, 37, 39], Parvate and Gangal
proposed the calculus on fractals which is related to Rie-
mann integrals.

Definition 2 (see [36, 37, 39]). For the thin Cantor set, the
following integral staircase function is defined by

S
α
F(ρ) �

c
α
F, x1, x2( 􏼁, if ρ≥ x0,

− c
α
F, x1, x2( 􏼁, otherwise,

⎧⎨

⎩ (7)

where α is the c-dimension of thin Cantor set.

Definition 3 (see [36, 37, 39]). *e Fα-derivative is defined
by

D
α
FU(x) �

F − limt⟶x

U(t) − U(x)

S
α
F(t) − S

α
F(x)

, if x ∈ F,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

when the limit exists.
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Definition 4. *e Gamma function with the fractal support
is defined by

ΓαF(τ) � 􏽚
∞

0
e

− Sα
F

(x)
S
α
F(x)

Sα
F

(τ)− 1
d
α
Fx, (9)

where e− Sα
F

(x) � F − limm⟶∞(1 − (SαF(t)/m))m.

Here, we review the following nonlocal fractal integral
operators for the functions with fractal support [56, 57].

Definition 5. If U1(x) ∈ Cα
F[x1, x2] (α-order differentiable

function on [x1, x2]) and τ > 0, then the left- and right-sided
Riemann–Liouville fractal integral operators of order τ are,
respectively, defined by [56, 57]

x1
T

τ
g􏼐 􏼑(ζ) �

1
ΓαF(τ)

􏽚
ζ

x1

S
α
F(ζ) − S

α
F(ρ)( 􏼁

τ− α
U1(ρ)d

α
Fρ, S

α
F x1( 􏼁< S

α
F(ζ) (10)

and

T
τ
x2

g􏼐 􏼑(ζ) �
1
ΓαF(τ)

􏽚
x2

ζ
S
α
F(ρ) − S

α
F(ζ)( 􏼁

τ− α
U1(ρ)d

α
Fρ, S

α
F(ζ)< S

α
F x2( 􏼁, (11)

where ΓαF(τ) is defined in (7), SαF is the staircase function,
andF is the fractal set with α-dimension (see, e.g., [56, 57]).

Remark 1. If we consider α � 1 in (10) and (11), then we get
(3) and (4), respectively.

One can easily prove the following lemma [56, 57].

Lemma 1.

T
τ
x1

S
α
F(ζ) − S

α
F x1( 􏼁( 􏼁

λ

�
ΓαF(λ + 1)

ΓαF(λ + τ + 1)
S
α
F(ζ) − S

α
F x1( 􏼁( 􏼁

λ+τ
, λ> − 1.

(12)

3. The Nonlocal Reverse Minkowski
Inequalities on Fractal Sets

In this section, we present the nonlocal fractal reverse
Minkowski integral inequalities in the fractal support by
using the generalized nonlocal fractal integral operator. *e
nonlocal reverse Minkowski fractal integral inequalities in
fractal support are presented in the following theorems.

Theorem 5. Let τ ∈ C, R(τ)> 0, δ ≥ 1, and U1 and
U2 ∈ Cα

F[x1, x2], (α-order differentiable functions on
[x1, x2]) be two positive functions on [0,∞) such that, for all
theta> 0, x1

Tτgδ
1(ζ)<∞ and x2

TτUδ
2(ζ)<∞. If

0< k≤ (U1(ρ1)/h1(ρ1))≤K, ρ1 ∈ [x1, ζ], then the following
inequality holds:

x1
T

τ
U

δ
1(ζ)􏼐 􏼑

(1/δ)
+ x1

T
τ
U

δ
2(ζ)􏼐 􏼑

(1/δ)
≤

(1 + K)(k + 2)

(k + 1)(K + 1) x1
T

τ
U1 + U2( 􏼁

δ
(ζ)􏼐 􏼑

(1/δ)
. (13)

Proof. Under the given hypothesis of *eorem 5,
(U1(ρ1)/U2(ρ1))≤K, ρ1 ∈ [x1, ζ], ζ > 0, we have

(K + 1)
δ
U

δ
1 ρ1( 􏼁≤K

δ
U1 + U2( 􏼁

δ ρ1( 􏼁. (14)

Consider a function:

Λ ζ, ρ1( 􏼁 �
1
ΓαF(τ)

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
. (15)

We conclude that the function Λ(ζ , ρ1) is positive for all
ρ1 ∈ (x1, ζ), 0≤x1 < ζ ≤ x2, as each term of Λ(ζ , ρ1) defined
in (15) is positive in view of hypothesis of *eorem 5.

*erefore, conducting product on both sides of (14) by
Λ(ζ, ρ1) and integrating the estimated inequality with re-
spect to ρ1 from SαF(a) to SαF(ζ), we have

(K + 1)
δ

ΓαF(τ)
􏽚
ζ

x1

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
U

δ
1 ρ1( 􏼁d

α
Fρ1

≤
K

δ

ΓαF(τ)
􏽚
ζ

x1

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
U1 + U2( 􏼁

δ ρ1( 􏼁d
α
Fρ1,

(16)

which can be written as

x1
T

τ
U

δ
1(ζ)≤

K
δ

(K + 1)
δ x1

T
τ,η

U1 + U2( 􏼁
δ
(ζ). (17)

Hence, it follows that
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x1
T

τ
U

δ
1(ζ)􏼐 􏼑

(1/δ)
≤

K

(K + 1) x1
T

τ
U1 + U2( 􏼁

δ
(ζ)􏼐 􏼑

(1/δ)
.

(18)

Now, utilizing the condition kU1(ρ1)≤U2(ρ1), we have

1 +
1
k

􏼒 􏼓U2 ρ1( 􏼁≤
1
k

U1 ρ1( 􏼁 + U2 ρ1( 􏼁( 􏼁. (19)

It follows that

1 +
1
k

􏼒 􏼓
δ
U

δ
2 ρ1( 􏼁≤

1
k

􏼒 􏼓
δ
U1 ρ1( 􏼁 + U2 ρ1( 􏼁( 􏼁

δ
. (20)

Again, conducting product on both sides of (20) by
Λ(ζ, ρ1) and integrating the estimated inequality with re-
spect to ρ1 from SαF(x1) to SαF(ζ), we obtain

x1
T

τ
U

δ
2(ζ)􏼐 􏼑

(1/δ)
≤

1
(k + 1) x1

T
τ
U1 + U2( 􏼁

δ
(ζ)􏼐 􏼑

(1/δ)
.

(21)

*us, by adding inequalities (18) and (21) yields the
desired inequality. □

Theorem 6. Let τ ∈ C, R(τ)> 0, δ ≥ 1 and let U1 and
U2 ∈ Cα

F[x1, x2] (α-order differentiable functions on

[x1, x2]) be two positive functions on [0,∞) such that, for all
ζ > 0, x1

Iτgδ
1(ζ)<∞ and x1

Iτhδ(ζ)<∞. If
0< k≤ (g1(ρ1)/h(ρ1))≤K, ρ1 ∈ [x1, ζ], then the following
inequality holds:

x1
T

τ
U

δ
1(ζ)􏼐 􏼑

(2/δ)
+ x1

T
τ
U

δ
2(ζ)􏼐 􏼑

(2/δ)

≥
(K + 1)(k + 1)

K
− 2􏼠 􏼡 x1

T
τ
U

δ
1(ζ)􏼐 􏼑

(1/δ)

x1
T

τ
U

δ
2(ζ)􏼐 􏼑

(1/δ)
.

(22)

Proof. *emultiplication of inequalities (18) and (21) yields

(K + 1)(k + 1)

M
􏼠 􏼡 x1

T
τ
U

δ
1(ζ)􏼐 􏼑

(1/δ)

x1
T

τ,η
U

δ
2(ζ)􏼐 􏼑

(1/δ)

≤ x1
T

τ
U1(ζ) + U2(ζ)( 􏼁

δ
􏼐 􏼑

(1/δ)
􏼔 􏼕

2

(23)

By utilizing the Minkowski inequality to the right-hand
side of [17], we have

x1
T

τ
g(ζ)+U2(ζ)􏼐 􏼑

δ
􏼒 􏼓

(1/δ)

􏼢 􏼣

2

≤ x1
T

τ
U

δ
1(ζ)􏼐 􏼑

(1/δ)
+ x1

T
τ
U

δ
2(ζ)􏼐 􏼑

(1/δ)
􏼔 􏼕

2

≤ x1
T

τ
U

δ
1(ζ)􏼐 􏼑

(2/δ)
+ x1

T
τ
U

δ
2(ζ)􏼐 􏼑

(2/δ)
+ 2 x1

T
τ
U

δ
1(ζ)􏼐 􏼑

(1/δ)

x1
T

τ
U

δ
2(ζ)􏼐 􏼑

(1/δ)
.

(24)

*us, from inequalities (23) and (24), we get the desired
inequality (22). □

4. Certain Related Nonlocal Fractal Integral
Inequalities on Fractal Sets

*is section is devoted to deriving certain related nonlocal
fractal integral inequalities on the fractal set.

Theorem 7. Let τ ∈ C, R(τ)> 0, r> 1, (1/δ) + (1/σ) � 1
and let U1 and U2 ∈ Cα

F[x1, x2] (α-order differentiable
functions on [x1, x2]) be two positive functions on [0,∞) such
that x1

Tτ[U1(ζ)]<∞ and x1
Tτ[U2(ζ)]<∞. If

0< k≤ (g(ρ1)/h(ρ1))≤K<∞, ρ1 ∈ [x1, ζ], ζ >x1, we have

x1
T

τ
U1(ζ)􏼐 􏼑

(1/δ)

x1
T

τ
U2(ζ)􏼐 􏼑

(1/σ)

≤
K

k
􏼒 􏼓

(1/rs)

x1
T

τ
U1(ϑ)􏼂 􏼃

(1/δ)
U2(ϑ)􏼂 􏼃

(1/σ)
􏼐 􏼑.

(25)

Proof. Since (U1(ρ1)/U2(ρ1))≤K<∞, ρ1 ∈ [x1, ζ], ζ > a,
therefore, we have

U2 ρ1( 􏼁􏼂 􏼃
(1/σ) ≥K

(− 1/σ)
U1 ρ1( 􏼁􏼂 􏼃

(1/σ)
. (26)

It follows that

U1 ρ1( 􏼁􏼂 􏼃
(1/δ)

U2 ρ1( 􏼁􏼂 􏼃
(1/σ) ≥K

(− 1/σ)
U1 ρ1( 􏼁􏼂 􏼃

(1/δ)
U1 ρ1( 􏼁􏼂 􏼃

(1/σ)

≥K
(− 1/σ)

U1 ρ1( 􏼁􏼂 􏼃
(1/δ)+(1/σ)

≥K
(− 1/σ)

U1 ρ1( 􏼁􏼂 􏼃.

(27)

Conducting multiplication on both sides of (27) by
Λ(ζ , ρ1) where Λ(ζ, ρ1) is defined by (15) and integrating the
estimated inequality with respect to ρ1 from SαF(x1) to
SαF(ζ), we have

1
ΓαF(τ)

􏽚
ζ

x1

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
U1 ρ1( 􏼁􏼂 􏼃

(1/δ)
U2 ρ1( 􏼁􏼂 􏼃

(1/σ)
d
α
Fρ1

≥
K

(− 1/σ)

ΓαF(τ)
􏽚
ζ

x1

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
g ρ1( 􏼁d

α
Fρ1.

(28)

It follows that

x1
T

τ
U1(ζ)( 􏼁

(1/δ)
[h(ζ)]

(1/σ)
􏽨 􏽩≥K

(− 1/δ)
x1
T

τ
U1(ζ)􏽨 􏽩.

(29)

Consequently, we have
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x1
T

τ
U1(ζ)( 􏼁

(1/δ)
[h(ζ)]

(1/σ)
􏽨 􏽩≥K

(− 1/rs)
x1
T

τ
U1(ζ)􏽨 􏽩

(1/δ)
.

(30)

On the contrary, kU1(ρ1)≤U2(ρ1), ρ1 ∈ [x1, ζ], ζ >x1;
therefore, we have

U1 ρ1( 􏼁􏼂 􏼃
(1/δ) ≥ k

(1/δ)
U2 ρ1( 􏼁􏼂 􏼃

(1/δ)
. (31)

It follows that

U1 ρ1( 􏼁􏼂 􏼃
(1/δ)

h ρ1( 􏼁􏼂 􏼃
(1/σ) ≥ k

(1/δ)
U1 ρ1( 􏼁􏼂 􏼃

(1/δ)
U2 ρ1( 􏼁􏼂 􏼃

(1/σ)

≥ k
(1/δ)

U2 ρ1( 􏼁􏼂 􏼃
(1/δ)+(1/σ)

≥ k
(1/δ)

U2 ρ1( 􏼁􏼂 􏼃.

(32)

Again, conducting multiplication on both sides of (32)
by Λ(ζ , ρ1)where Λ(ζ , ρ1) is defined by (15) and integrating
the estimated inequality with respect to ρ1 from SαF(x1) to
SαF(ζ), we have

1
ΓαF(τ)

􏽚
ζ

x1

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
U1 ρ1( 􏼁􏼂 􏼃

(1/δ)
U2 ρ1( 􏼁􏼂 􏼃

(1/σ)
d
α
Fρ1

≥
k

(1/δ)

ΓαF(τ)
􏽚
ζ

x1

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
U2 ρ1( 􏼁d

α
Fρ1.

(33)

Hence, we can write

x1
T

τ
U1(ζ)􏼂 􏼃

(1/δ)
U2(ϑ)􏼂 􏼃

(1/σ)
􏽨 􏽩􏼐 􏼑

(1/δ)
≥ k

(1/rs)
x1
T

τ
U1(ζ)􏽨 􏽩

(1/σ)
.

(34)

Multiplying (30) and (34), we get the desired
inequality. □

Theorem 8. Let τ ∈ C, R(τ)> 0, δ > 1, (1/δ) + (1/σ) � 1
and let U1 and U2 ∈ Cα

F[x1, x2] (α-order differentiable
functions on [x1, x2]) be two positive functions on [0,∞) such
that x1

Tτ[Uδ
1(ζ)]<∞ and x1

Tτ[Uσ
2(ζ)]<∞. If 0< k≤

(U1(ρ1)
δ/U2(ρ1)

σ)≤K<∞, ρ1 ∈ [a, ϑ], ζ >x1, we have

x1
T

τ
U

δ
1(ζ)􏼐 􏼑

(1/δ)

x1
T

τ
U

σ
2(ζ)􏼐 􏼑

(1/σ)

≤
K

k
􏼒 􏼓

(1/rs)

x1
T

τ
U1(ζ)􏼂 􏼃

1/δ
U2(ζ)􏼂 􏼃

1/σ
􏼐 􏼑.

(35)

Proof. Replacing U1(ζ) and U2(ζ) by Uδ
1(ζ) and hσ

1(ζ),
x1 < ζ ≤x2 in *eorem 7, and we get the desired inequality
(35). □

Theorem 9. Let τ ∈ C, R(τ)> 0, δ > 1, (1/δ) + (1/σ) � 1
and let U1 and U2 ∈ Cα

F[x1, x2] (α-order differentiable
functions on [x1, x2]) be two positive functions on [0,∞) such
that x1

Tτ[Uδ
1(ζ)]<∞ and x1

Tτ[Uσ
2(ζ)]<∞. If 0< k≤

(U1(ρ1)
δ/U2(ρ1)

σ)≤K<∞ where k, K ∈ R, ρ1 ∈

[x1, ζ], ζ > x1, then the following inequality for left nonlocal
fractal integral with fractal support holds:

x1
T

τ
U1(ζ)U2(ζ)􏼂 􏼃≤

2δ− 1
K

δ

δ(K + 1)
δ x1

T
τ
U

δ
1 + h

δ
􏽨 􏽩(ζ)

+
2σ− 1

σ(k + 1)
σ x1

T
τ
U

σ
1 + U

σ
2􏼂 􏼃(ϑ).

(36)

Proof. By the given hypothesis (U1(ρ1)/U2(ρ1))≤K, we
have

(K + 1)
δ
U

δ
1 ρ1( 􏼁≤K

δ
U1 + U2􏼂 􏼃

δ ρ1( 􏼁. (37)

Conducting multiplication on both sides of inequality
(37) by Λ(ζ , ρ1) where Λ(ζ, ρ1) id defined by (15) and in-
tegrating the estimated inequality with respect to ρ1 over
(SαF(x1), SαF(ζ)), we obtain

(K + 1)
δ

ΓαF(τ)
􏽚
ζ

x1

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
U

δ
1 ρ1( 􏼁d

α
Fρ1

≤
K

δ

ΓαF(τ)
􏽚
ζ

x1

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
U1 + U2􏼂 􏼃

δ ρ1( 􏼁d
α
Fρ1.

(38)

It follows that

x1
T

τ
U

δ
1(ζ)≤

K
δ

(K + 1)
δ x1

T
τ
U1 + U2􏼂 􏼃

δ
(ζ). (39)

On the contrary, using k≤ (U1(ρ1)/U2(ρ1)), a≤ ρ1 ≤ ζ,
we have

(k + 1)
σ
U

σ
2 ρ1( 􏼁≤ U1 + U2􏼂 􏼃

σ ρ1( 􏼁. (40)

Again, conducting multiplication on both sides of in-
equality (40) by Λ(ζ, ρ1) where Λ(ζ, ρ1) is defined by (15)
and integrating the estimated inequality with respect to ρ1
over (SαF(x1), SαF(ζ)), we obtain

x1
T

τ
U

σ
2(ζ)≤

1
(k + 1)

σ x1
T

τ
U1 + U2􏼂 􏼃

σ
(ζ). (41)

Now, using Young’s inequality, we have

U1 ρ1( 􏼁U2 ρ1( 􏼁≤
U

δ
1 ρ1( 􏼁

δ
+
U

σ
1 ρ1( 􏼁

σ
. (42)

Taking product on both sides of inequality (40) by
Λ(ζ , ρ1)whereΛ(ζ , ρ1) id defined by (15) and integrating the
resultant identity with respect to ρ1 over SαF(x1) to SαF(ζ),
we obtain

x1
T

τ
U1(ζ)U2(ζ)≤

1
δ x1

T
τ
U

δ
1(ζ)􏼐 􏼑 +

1
σ x1

T
τ
U

σ
1(ζ)􏼐 􏼑.

(43)

With the aid of (39) and (41), (43) can be written as
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x1
T

τ
U1(ζ)U2(ζ)≤

1
δ x1

T
τ
U

δ
1(ζ)􏼐 􏼑 +

1
σ x1

T
τ
U

σ
1(ζ)􏼐 􏼑

≤
K

δ

δ(K + 1)
δ x1

T
τ
U1 + U2􏼂 􏼃

δ
(ζ) +

1
σ(k + 1)

σ x1
T

τ
U1 + U2􏼂 􏼃

σ
(ζ).

(44)

Now, using the inequality (ρ1 + ω)δ ≤ 2σ− 1

(ρδ1 + ωδ), δ > 1, ρ1,ω> 0, one can obtain

x1
T

τ
U1 + U2􏼂 􏼃

δ
(ζ)≤ x1

T
τ
U

δ
1 + U

δ
2􏽨 􏽩(ζ) (45)

and

x1
T

τ
U1 + U2􏼂 􏼃

σ
(ζ)≤ x1

T
τ
U

σ
1 + U

σ
2􏼂 􏼃(ζ). (46)

Hence, the proof of (36) can be followed from
(44)–(46). □

Theorem 10. Let τ ∈ C, R(τ)> 0, δ ≥ 1 and let U1 and
U2 ∈ Cα

F[x1, x2] (α-order differentiable functions on
[x1, x2]) be two positive functions on [0,∞) such that
x1
Tτ[Uδ

2(ζ)]<∞, x1
Tτ[Uσ

2(ζ)]<∞. If 0< l< k≤ (U1(ρ1)/
U2(ρ1))≤K<∞ where l, k, K ∈ R, ζ > a, then we have

K + 1
K − k x1

T
τ
U1(ζ) − lU2(ζ)􏼂 􏼃􏼐 􏼑≤ x1

T
τ
U

δ
1(ζ)􏼐 􏼑

(1/δ)
+ x1

T
τ
U

δ
2(ζ)􏼐 􏼑

(1/δ)

≤
k + 1
k − l x1

T
τ
U1(ζ) − lU2(ζ)􏼂 􏼃􏼐 􏼑

(1/δ)
.

(47)

Proof. Under the given hypothesis 0< l< k≤ (U1(ρ1)/
U2(ρ1))≤K<∞, we have

kl≤Kl⇒ kl + m≤ kl + K≤Kl + K⇒(K + 1)(k − l)≤ (k + 1)(k − l).

(48)

It can be written as

(K + 1)

(K − l)
≤

(k + 1)

(k − l)
. (49)

Also, we have

k − l≤
U1 ρ1( 􏼁 − lU2 ρ1( 􏼁

U2 ρ1( 􏼁
≤K − l. (50)

It follows that

U1 ρ1( 􏼁 − lU2 ρ1( 􏼁( 􏼁
δ

(K − l)
δ ≤Uδ

2 ρ1( 􏼁≤
U1 ρ1( 􏼁 − lU2 ρ1( 􏼁( 􏼁

δ

(k − l)
δ .

(51)

Also, we have

1
K
≤
U2 ρ1( 􏼁

U1 ρ1( 􏼁
≤
1
K
⇒

k − l

kl
≤
U1 ρ1( 􏼁 − lU2 ρ1( 􏼁

lU1 ρ1( 􏼁
≤

k − l

lK
. (52)

It follows that

K

K − l
􏼒 􏼓

δ
≤ U1 ρ1( 􏼁 − lU2 ρ1( 􏼁( 􏼁

δ ≤Uδ
1 ρ1( 􏼁≤

k

k − l
􏼠 􏼡

δ

≤ U1 ρ1( 􏼁 − lU2 ρ1( 􏼁( 􏼁
δ
.

(53)

Conducting product on both sides of inequality (51) by
Λ(ζ , ρ1) where Λ(ζ, ρ1) is defined by (15) and integrating the
resultant identity with respect to ρ1 over (SαF(x1), SαF(ζ)),
we obtain

1
(K − l)

δΓαF(τ)
􏽚
ζ

x1

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
U1 ρ1( 􏼁 − lU2 ρ1( 􏼁( 􏼁

δ
d
α
Fρ1
≤

1
ΓαF(τ)

􏽚
ζ

x1

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
U

δ
2 ρ1( 􏼁d

α
Fρ1

≤
1

(k − l)
δΓαF(τ)

􏽚
ζ

x1

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
U1 ρ1( 􏼁 − lU2 ρ1( 􏼁( 􏼁

δ
d
α
Fρ1.

(54)

It follows that

1
(K − l) x1

T
τ
U1(ζ)lU2(ζ)( 􏼁

δ
􏼐 􏼑

(1/δ)
≤ x1

T
τ
U

δ
2(ζ)􏼐 􏼑

(1/δ)
≤

1
(k − l) x1

T
τ
U1(ζ) − lU2(ζ)( 􏼁

δ
􏼐 􏼑

(1/δ)
􏼒 􏼓. (55)
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Again, conducting product on both sides of inequality
(53) by Λ(ζ , ρ1) where Λ(ζ, ρ1) is defined by (15) and in-
tegrating the resultant identity with respect to ρ1 over
(SαF(x1), SαF(ζ)), we obtain

K

K − l
􏼒 􏼓 x1

T
τ
U1(ζ) − lU2(ζ)( 􏼁

δ
􏼐 􏼑

(1/δ)
≤ x1

T
τ
U

δ
1(ζ)􏼐 􏼑

(1/δ)

≤
k

k − l
􏼠 􏼡 x1

T
τ
U1(ζ) − lU2(ζ)( 􏼁

δ
􏼐 􏼑

(1/δ)
.

(56)

Hence, by adding inequalities (55) and (56), we get the
desired inequality (47). □

Theorem 11. Let τ ∈ C, R(τ)> 0, δ ≥ 1 and let U1 and
U2 ∈ Cα

F[x1, x2] (α-order differentiable functions on
[x1, x2]) be two positive functions on [0,∞) such that
x1
Tτ[Uδ

1(ζ)]<∞, x1
Tτ[Uδ

2(ζ)]<∞. If 0≤ α≤U1(ρ1)≤A
and 0≤ σ ≤ h1(ρ1)≤B for all ρ1 ∈ [x1, ζ], ζ > x1, then we
have

x1
T

τ
U

δ
1(ζ)􏼐 􏼑

(1/δ)
+ x1

T
τ
U

δ
2(ζ)􏼐 􏼑

(1/δ)

≤
A(α + B) + B(σ + A)

(A + σ)(B + α) x1
T

τ
U1 + U2􏼂 􏼃

δ
(ζ)􏼐 􏼑

(1/δ)
.

(57)

Proof. Under the given hypothesis, we have
1
B
≤

1
U2 ρ1( 􏼁
≤
1
σ

. (58)

*e product of inequality (58) with 0≤ α≤U1(ρ1)≤A
gives

α
B
≤
U1 ρ1( 􏼁

U2 ρ1( 􏼁
≤
A

σ
. (59)

From (59), we obtain

U
δ
2 ρ1( 􏼁≤

B

α + B
􏼠 􏼡

δ

U1 ρ1( 􏼁 + U2 ρ1( 􏼁( 􏼁
δ (60)

and

U
δ
1 ρ1( 􏼁≤

A

σ + A
􏼠 􏼡

δ

U1 ρ1( 􏼁 + U2 ρ1( 􏼁( 􏼁
δ
. (61)

Now, conducting product on both sides of (60) and (61),
respectively, by Λ(ζ, ρ1) where Λ(ζ, ρ1) id is defined by (15)
and integrating the estimated identity with respect to ρ1 over
(SαF(x1), SαF(ζ)), we obtain

x1
T

τ
U

δ
2(ζ)􏼐 􏼑

(1/δ)
≤

B

α + B
􏼠 􏼡 x1

T
τ
U1(ζ) + U2(ζ)( 􏼁

δ
􏼐 􏼑

(1/δ)

(62)

and

x1
T

τ
U

δ
1(ζ)􏼐 􏼑

(1/δ)
≤

A

σ + A
􏼠 􏼡 x1

T
τ
U1(ζ) + U2(ζ)( 􏼁

δ
􏼐 􏼑

(1/δ)
.

(63)

Hence, by adding (62) and (63), we get the desired
proof. □

Theorem 12. Let τ ∈ C, R(τ)> 0, δ ≥ 1 and let U1 and
U2 ∈ Cα

F[x1, x2] (α-order differentiable functions on
[x1, x2]) be two positive functions on [0,∞) such that
x1
TT[U1(ζ)]<∞, x1

TT[U2(ζ)]<∞. If 0< k≤ (U1(ρ1)/
h1(ρ1))≤K where k, K ∈ R for all ρ1 ∈ [x1, ζ], ζ > x1, then
we have

1
K x1

T
τ
U1(ζ)U2(ζ)􏼐 􏼑≤

1
(k + 1)(K + 1) x1

T
τ
U1(ζ) + U2(ζ)( 􏼁

2
􏼐 􏼑

≤
1
k x1

T
τ
U1(ζ)U2(ζ)􏼐 􏼑.

(64)

Proof. Under the given hypothesis, 0< k≤ (U1(ρ1)/
U2(ρ1))≤K, we have

U2 ρ1( 􏼁(k + 1)≤U2 ρ1( 􏼁 + U1 ρ1( 􏼁≤U2 ρ1( 􏼁(K + 1).

(65)

Also, we have (1/K)≤ (U2(ρ1)/U1(ρ1))≤ (1/K), which
gives

U1 ρ1( 􏼁
K + 1

K
􏼒 􏼓≤U1 ρ1( 􏼁 + U2 ρ1( 􏼁≤U1 ρ1( 􏼁

k + 1
k

􏼠 􏼡.

(66)

*e multiplication of (65) and (66) yields

U1 ρ1( 􏼁U2 ρ1( 􏼁

K
≤

U1 ρ1( 􏼁 + U2 ρ1( 􏼁( 􏼁
2

(k + 1)(K + 1)
≤
U1 ρ1( 􏼁U2 ρ1( 􏼁

k
.

(67)

Now, conducting multiplication on both sides of in-
equality (67) by Λ(ζ , ρ1) where Λ(ζ, ρ1) id is defined by (15)
and integrating the resultant identity with respect to ρ1 over
(SαF(x1), SαF(ζ)), we have
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1
KΓαF(τ)

􏽚
ζ

x1

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
U1 ρ1( 􏼁U2 ρ1( 􏼁d

α
Fρ1

≤
1

(k + 1)(K + 1)ΓαF(τ)
􏽚
ζ

x1

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
U1 ρ1( 􏼁 + U2 ρ1( 􏼁( 􏼁

2
d
α
Fρ1

≤
1

kΓαF(τ)
􏽚
ζ

x1

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
U1 ρ1( 􏼁U2 ρ1( 􏼁d

α
Fρ1.

(68)

It follows that
1
K x1

T
τ
U1(ζ)U2(ζ)􏼐 􏼑≤

1
(k + 1)(K + 1) x1

T
τ
U1(ζ) + U2(ζ)( 􏼁

2
􏼐 􏼑

≤
1
k x1

T
τ
U1(ζ)U2(ζ)􏼐 􏼑,

(69)

which completes the desired proof. □

Theorem 13. Let τ ∈ C, R(τ)> 0, δ ≥ 1 and let U1 and
U2 ∈ Cα

F[x1, x2] (α-order differentiable functions on
[x1, x2]) be two positive functions on [0,∞) such that
x1
Tτ[U1(ζ)]<∞ and x1

Tτ[U2(ζ)]<∞. If 0< k≤ (U1(ρ1)/
h1(ρ1))≤K where k, K ∈ R for all ρ1 ∈ [x1, ζ], ζ >x1, then
the following inequality for the left nonlocal fractal integral on
fractal set holds:

x1
T

τ
U

δ
1(ζ)􏼐 􏼑

(1/δ)
+ x1

T
τ
U

δ
2(ζ)􏼐 􏼑

(1/δ)

≤ 2 x1
T

τ
h
δ
U1(ζ),U2(ζ)( 􏼁􏼐 􏼑,

(70)

where h(U1(ζ),U2 (ζ)) � max K[((K/k) + 1)U1(ρ1) −􏼈

KU2(ρ1)], ((k + K)U2(ρ1) − U1(ρ1)/k)}.

Proof. Under the given hypothesis
0< k≤ (U1(ρ1)/U2(ρ1))≤K where ρ1 ∈ [x1, ζ], ζ > x1, we
have

0< k≤K + k −
U1 ρ1( 􏼁

U2 ρ1( 􏼁
(71)

and

K + k −
U1 ρ1( 􏼁

U2 ρ1( 􏼁
≤K. (72)

From (71) and (72), we have

U2 ρ1( 􏼁<
(K + k)U2 ρ1( 􏼁 − U1 ρ1( 􏼁

k
≤ h U1 ρ1( 􏼁,U2 ρ1( 􏼁( 􏼁,

(73)

where h(U1(ρ1),U2 (ρ1)) � max K[((K/k) + 1)U1(ρ1) −􏼈

KU2(ρ1)], ((k + K)U2(ρ1) − U1(ρ1)/k)}. Also, from the
given hypothesis 0< (1/K)≤ (U2(ρ1)/U1(ρ1))≤ (1/K), we
have

1
K
≤
1
K

+
1
k

−
U2 ρ1( 􏼁

U1 ρ1( 􏼁
(74)

and

1
K

+
1
k

−
U2 ρ1( 􏼁

U1 ρ1( 􏼁
≤
1
k

. (75)

From (74) and (75), we obtain

1
K
≤

((1/K) +(k))U1 ρ1( 􏼁 − U2 ρ1( 􏼁

U1 ρ1( 􏼁
≤
1
k

. (76)

It follows that

U1 ρ1( 􏼁 � K
1
K

+
1
k

􏼒 􏼓U1 ρ1( 􏼁 − KU2 ρ1( 􏼁

�
K(K + k)g ρ1( 􏼁 − K

2
kU2 ρ1( 􏼁

kK

�
K

k
+ 1􏼒 􏼓U1 ρ1( 􏼁 − KU2 ρ1( 􏼁

� K
K

k
+ 1􏼒 􏼓U1 ρ1( 􏼁 − KU2 ρ1( 􏼁􏼔 􏼕

≤ h U1 ρ1( 􏼁,U2 ρ1( 􏼁( 􏼁.

(77)

From (73) and (77), we can write

U
δ
1 ρ1( 􏼁≤ h

δ
g ρ1( 􏼁, h ρ1( 􏼁( 􏼁 (78)

and

h
δ ρ1( 􏼁≤ h

δ
g ρ1( 􏼁, h ρ1( 􏼁( 􏼁. (79)

Now, conducting multiplication on both sides of (78)
and (79), respectively, by Λ(ζ, ρ1) where Λ(ζ , ρ1) id is de-
fined by (15) and integrating the resultant identity with
respect to ρ1 over (SαF(x1), SαF(ζ)), we obtain

1
ΓαF(τ)

􏽚
ζ

x1

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
U

δ
1 ρ1( 􏼁d

α
Fρ1

≤
1
ΓαF(τ)

􏽚
ζ

x1

S
α
F(ζ) − S

α
F ρ1( 􏼁( 􏼁

τ− α
h U1 ρ1( 􏼁,U2 ρ1( 􏼁( 􏼁d

α
Fρ1.

(80)

It follows that

x1
T

τ
U

δ
1(ζ)􏼐 􏼑

(1/δ)
≤ x1

T
τ
h U1(ζ),U2(ζ)( 􏼁􏼐 􏼑

(1/δ)
. (81)

Similarly, from (79), we obtain
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x1
T

τ
U

δ
2(ζ)􏼐 􏼑

(1/δ)
≤ x1

T
τ
h
δ
U1(ζ),U2(ζ)( 􏼁􏼐 􏼑

(1/δ)
. (82)

Hence, by summing (81) and (82), we obtain the re-
quired proof. □

Remark 2. We note that all results lead to standard frac-
tional calculus by setting α � 1, that is, SαF(x) � x.

5. Concluding Remarks

In this present investigation, we presented the nonlocal
reverseMinkowski’s inequalities and some other inequalities
for nonlocal fractal integral operator on fractal sets. *e
special cases of this work can be found in the work of
[51, 58, 59].
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